Skip to main content

Advertisement

Log in

Molecular profiling of prostate cancer

  • Published:
Current Urology Reports Aims and scope Submit manuscript

Abstract

The ability to distinguish between aggressive and nonaggressive tumors has not changed despite vast improvements in the detection of prostate cancer (PCA). To improve predictive accuracy, additional PCA-specific biomarkers must be identified and it is the emerging microarray technology and gene expression profiling that appear to be capable of achieving this goal. Through comparisons of a number of published microarray studies of PCA, several potential biomarkers appear on the horizon, including the serine protease Hepsin, α-methylacyl CoA racemase, and the human homologue of the Drosophila protein Enhancer of Zeste. Although these markers will move toward validation by eventual protein expression studies, another aspect of microarray expression, global signature expression patterns through multidimensional scaling, appears to be promising in distinguishing between aggressive and nonaggressive forms of PCA or in distinguishing PCA from benign prostatic hyperplasia or normal prostate tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Jewett HJ: The present status of radical prostatectomy for stages A and B prostatic cancer. J Urol 1975, 2:105–124.

    CAS  Google Scholar 

  2. Gleason D: Classification of prostatic carcinomas. Cancer Chemother Rep 1966, 50:125–128.

    PubMed  CAS  Google Scholar 

  3. Stamey TA, Yang N, Hay AR, et al.: Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. N Engl J Med 1987, 317:909–916.

    Article  PubMed  CAS  Google Scholar 

  4. Bertucci F, Viens P, Tagett R, et al.: DNA Arrays in clinical oncology: promises and challenges. Lab Invest 2003, 83:305–316.

    PubMed  Google Scholar 

  5. Macgregor PF, Squire JA: Application of microarray to the analysis of gene expression in cancer. Clin Chem 2002, 48:1170–1177.

    PubMed  CAS  Google Scholar 

  6. Cole KA, Krizman DB, Emmert-Buck MR: The genetics of cancer: a 3D model. Nat Genet 1999, 21:38–41.

    Article  PubMed  CAS  Google Scholar 

  7. Best CJ, Leiva IM, Chuaqui RF, et al.: Molecular differentiation of high-and moderate-grade human prostate cancer by cDNA microarray analysis. Diagn Mol Pathol 2003, 12:63–70.

    Article  PubMed  CAS  Google Scholar 

  8. Whitney, AR, Diehn M, Popper SJ, et al.: Individuality and variation in gene expression patterns in human blood. Proc Natl Acad Sci USA 2003, 100:1896–1901.

    Article  PubMed  CAS  Google Scholar 

  9. Khan J, Wei JS, Ringer M, et al.: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 2001, 7:673–679.

    Article  PubMed  CAS  Google Scholar 

  10. Tusher VG, Olkin IV, Chu G: Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 2001, 98:5116–5121.

    Article  PubMed  CAS  Google Scholar 

  11. Agarwal D, Chen T, Irby R, et al.: Osteopontin identified as lead marker of colon cancer progression, using pooled sample expression profiling. J Natl Cancer Inst 2002 94:513–521.

    Google Scholar 

  12. Luo J, Duggan DJ, Chen VD, et al.: Human prostate cancer and benign prostatic hyperplasia: molecular dissection by gene expression profiling. Can Res 2001, 61:4683–4688. This paper was the first to distinguish PCA from BPH by MOS and weighted gene analysis.

    CAS  Google Scholar 

  13. Dhanasekaran SM., Barrette TR, Ghosh D, et al.: Delineation of prognostic biomarkers in prostate cancer. Nature 2001, 412:822–826. One of the first and most comprehensive studies of MET, PCA, prostatitis, BPH, and NAP by microarray expression analysis.

    Article  PubMed  CAS  Google Scholar 

  14. Magee JA, Araki T, Patil S, et al.: Expression profiling reveals hepsin overexpression in prostate cancer. Can Res 2001, 61:5692–5696.

    CAS  Google Scholar 

  15. Chetcuti A, Margan S, Mann S, et al.: Identification of differentially expressed genes in organ-confined prostate cancer by gene expression array. Prostate 2001, 47:132–140.

    Article  PubMed  CAS  Google Scholar 

  16. Welsh JB, Sapinoso LM, Su AI, et al.: Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Can Res 2001, 61:5974–5978.

    CAS  Google Scholar 

  17. Ernst T, Hergenhahn M, Kenzelman M, et al.: Decrease and gain of gene expression are equally discriminatory markers for prostate carcinoma: a gene expression analysis on total and microdissected prostate tissue. Am J Pathol 2002, 160:2169–2180.

    PubMed  CAS  Google Scholar 

  18. Bull JH, Ellison G, Patel A, et al.: Identification of potential diagnostic markers of prostate cancer and prostatic intraepithelial neoplasia using microarray. Br J Cancer 2001, 84:1512–1519.

    Article  PubMed  CAS  Google Scholar 

  19. Singh D, Febbo Pg, Ross K, et al.: Gene expression correlates of clinical prostate cancer behavior. Cancer Cell 2002, 1:203–209. This paper successfully shows that expression of a group of 29 genes by microarray analysis clustered according to Gleason score, but did not correlate with clinical outcome for prostate cancer.

    Article  PubMed  CAS  Google Scholar 

  20. Luo J, Yu YP, Cieply K, et al.: Gene expression analysis of prostate cancers. Mol Carcinog 2002, 33:25–35.

    Article  PubMed  CAS  Google Scholar 

  21. LaTulippe E, Satagopan J, Smith A, et al.: Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease. Can Res 2002, 62:4499–4506.

    CAS  Google Scholar 

  22. Rhodes DR, Barrette TR, Rubin MA, et al.: Meta-analysis of microarrays: interstudy validation of gene expression profiles reveals pathway dysregulation in prostate cancer. Can Res 2002, 62:4427–4433. This is the first paper that has attempted to establish a statistical metaanalysis model for cross-validating data from four independent microarray experiments on the expression of genes in prostate cancer.

    CAS  Google Scholar 

  23. Ferdinandusse S, Denis S, Clayton PT: Mutations in the gene encoding peroxisomal alpha-methylacyl-CoA racemase cause adult-onset sensory motor neuropathy. Nat Gen 2000, 24:188–191.

    Article  CAS  Google Scholar 

  24. Raaphorst FM, van Kemenade FJ, Blokzijl T, et al.: Coexpression of BM-1 and EZH2 polycomb group genes in Reed-Sternberg cells of Hodgkin’s disease. Am J Pathol 2000, 157:709–715.

    PubMed  CAS  Google Scholar 

  25. van Lohuizen M, Verbeek S, Scheijen B, et al.: Identification of cooperating oncogenes in Eu-myc transgenic mice by provirus tagging. Cell 1991, 65:737–752.

    Article  PubMed  Google Scholar 

  26. Haupt Y, Alexander WS, Barri G, et al.: Novel zinc finger gene implicated as myc collaborator by retrovirally accelerated lymphomagenesis in Eu-myc transgenic mice. Cell 1991, 65:753–763.

    Article  PubMed  CAS  Google Scholar 

  27. Varambally S, Dhanasekaran SM, Zhou M, et al.: The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature 2002, 419:624–629.

    Article  PubMed  CAS  Google Scholar 

  28. Shimizu K, Nagamachi Y, Tani M, et al.: Molecular cloning of a novel NF2/ERM/4.1 superfamily gene, EHM2, that is expressed in high-metastatic K1735 murine melanoma cells. Genomics 2000, 65:113–120.

    Article  PubMed  CAS  Google Scholar 

  29. Shurbaji MS, Kalbfleisch JH, Thurmond TS: Immunohistochemical detection of a fatty acid synthase (OA-519) as a predictor of progression of prostate cancer. Hum Pathol 1996, 27:917–921.

    Article  PubMed  CAS  Google Scholar 

  30. Rhodes DR, Sanda MG, Otte AP, et al.: Multiplex biomarker approach for determining risk of prostate-specific antigendefined recurrence of prostate cancer. J Natl Cancer Inst 2003, 95:661–668. An interesting paper that incorporates protein expression in the tissue microarray with attempts at combining candidate biomarkers. The results of this study suggest E-cadherin and EZH2 are significantly associated with PCA recurrence after radical prostatectomy.

    Article  PubMed  CAS  Google Scholar 

  31. Kattan MW: Judging new markers by their ability to improve predictive accuracy. J Natl Cancer Inst 2003, 95:634–635.

    Article  PubMed  CAS  Google Scholar 

  32. Magrath I: Molecular characteristics of diffuse large-b-cell lymphoma. N Engl J Med 2002, 346:1998–1999.

    Article  PubMed  Google Scholar 

  33. Rosenwald A, Wright G, Chan WC, et al.: The use of molecular profiling to predict survival after chemotherapy for diffuse large-b-cell lymphoma. N Engl J Med 2003, 346:1937–1947.

    Article  Google Scholar 

  34. vande Vijver MJ, He YD, van’t Veer LJ, et al.: A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002, 347:1999–2009.

    Article  PubMed  Google Scholar 

  35. Nielsen TO, West RB, Linn SC, et al.: Molecular characterization of soft tissue tumors: a gene expression study. Lancet 2002, 359:1301–1307.

    Article  PubMed  CAS  Google Scholar 

  36. Khan J, Simon R, Bittner M, et al.: Gene expression profiling of alveolar rhabdomyosarcoma with cDNA arrays. Cancer Res 1998, 58:5009–5010.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huppi, K., Chandramouli, G.V.R. Molecular profiling of prostate cancer. Curr Urol Rep 5, 45–51 (2004). https://doi.org/10.1007/s11934-004-0011-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11934-004-0011-0

Keywords

Navigation