Skip to main content

Advertisement

Log in

The Role of Environmental Factors in the Development of Idiopathic Inflammatory Myopathies: a Narrative Review

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review aims to evaluate recent findings on the role of environmental factors in the development and clinical presentation of idiopathic inflammatory myopathies (IIMs).

Recent Findings

A targeted literature review was conducted to identify reports relevant to the association between environmental factors and IIMs published over the past three years. There has been an increasing number of publications dealing with the association of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection or vaccination with the development of IIMs, highlighting the significant role of the antiviral immune response in the pathogenesis of the disease. Traditional environmental factors associated with the pathogenic process of IIM subclassifications included drugs such as statins and immune checkpoint inhibitors, ultraviolet radiation, smoking, air pollutants, and vitamin D deficiency. Correlations of seasonality and residence with the onset of certain IIM subtypes suggest a potential role of environmental triggers in the pathogenic process. An interplay between genetic predisposition and various environmental factors might contribute to the development of IIMs as well as the heterogeneous clinical and serological presentation of IIMs.

Summary

The growing evidence on the role of environmental factors in the development of IIMs provides important clues to elucidate the pathophysiology of these disease entities. The mechanisms underlying the interactions between genetic predisposition and environmental factors should be investigated in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Dalakas MC. Inflammatory muscle diseases. N Engl J Med. 2015;372:1734–47. https://doi.org/10.1056/NEJMra1402225.

    Article  PubMed  Google Scholar 

  2. Lundberg IE, Tjärnlund A, Bottai M, Werth VP, Pilkington C, de Visser M, et al. 2017 European League Against Rheumatism/American College of Rheumatology classification criteria for adult and juvenile idiopathic inflammatory myopathies and their major subgroups. Ann Rheum Dis. 2017;76:1955–64. https://doi.org/10.1136/annrheumdis-2017-211468.

    Article  PubMed  Google Scholar 

  3. Lundberg IE, Fujimoto M, Vencovsky J, Aggarwal R, Holmqvist M, Christopher-Stine L, et al. Idiopathic inflammatory myopathies. Nat Rev Dis Primers. 2021;7:86. https://doi.org/10.1038/s41572-021-00321-x.

    Article  PubMed  Google Scholar 

  4. Miller FW, Lamb JA, Schmidt J, Nagaraju K. Risk factors and disease mechanisms in myositis. Nat Rev Rheumatol. 2018;14:255–68. https://doi.org/10.1038/nrrheum.2018.48.5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gono T, Kawaguchi Y, Kuwana M, Sugiura T, Furuya T, Takagi K, et al. Brief report: Association of HLA-DRB1*0101/*0405 with susceptibility to anti-melanoma differentiation-associated gene 5 antibody-positive dermatomyositis in the Japanese population. Arthritis Rheum. 2012;64:3736–40. https://doi.org/10.1002/art.34657.

    Article  CAS  PubMed  Google Scholar 

  6. Chen Z, Wang Y, Kuwana M, Xu X, Hu W, Feng X, et al. HLA-DRB1 alleles as genetic risk factors for the development of anti-MDA5 antibodies in patients with dermatomyositis. J Rheumatol. 2017;44:1389–93. https://doi.org/10.3899/jrheum.170165.

    Article  CAS  PubMed  Google Scholar 

  7. Nguyen Thi Phuong T, Nguyen Thi Ngoc L, Nguyen Xuan H, Rönnelid J, Padyukov L, Lundberg IE. Clinical phenotype, autoantibody profile and HLA-DR-type in Vietnamese patients with idiopathic inflammatory myopathies. Rheumatology. 2019;58:361–3. https://doi.org/10.1093/rheumatology/key313.

    Article  CAS  PubMed  Google Scholar 

  8. O’Hanlon TP, Carrick DM, Targoff IN, Arnett FC, Reveille JD, Carrington M, et al. Immunogenetic risk and protective factors for the idiopathic inflammatory myopathies: distinct HLA-A, -B, -Cw, -DRB1, and -DQA1 allelic profiles distinguish European American patients with different myositis autoantibodies. Medicine. 2006;85:111–27. https://doi.org/10.1097/01.md.0000217525.82287.eb.

    Article  CAS  PubMed  Google Scholar 

  9. O’Hanlon TP, Rider LG, Mamyrova G, Targoff IN, Arnett FC, Reveille JD, et al. HLA polymorphisms in African Americans with idiopathic inflammatory myopathy: allelic profiles distinguish patients with different clinical phenotypes and myositis autoantibodies. Arthritis Rheum. 2006;54:3670–81. https://doi.org/10.1002/art.22205.

    Article  CAS  PubMed  Google Scholar 

  10. Furuya T, Hakoda M, Higami K, Ueda H, Tsuchiya N, Tokunaga K, et al. Association of HLA class I and class II alleles with myositis in Japanese patients. J Rheumatol. 1998;25:1109–14.

    CAS  PubMed  Google Scholar 

  11. Che WI, Lundberg IE, Holmqvist M. Environmental risks for Inflammatory myopathies. Rheum Dis Clin North Am. 2022;48:861–74. https://doi.org/10.1016/j.rdc.2022.06.007.

    Article  PubMed  Google Scholar 

  12. Saud A, Naveen R, Aggarwal R, Gupta L. COVID-19 and myositis: what we know so far. Curr Rheumatol Rep. 2021;23:63. https://doi.org/10.1007/s11926-021-01023-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Saygin D, Ghosh N, Reid P. Immune checkpoint inhibitor–associated myositis. J Clin Rheumatol. 2022;28:367–73. https://doi.org/10.1097/RHU.0000000000001874.

    Article  PubMed  Google Scholar 

  14. Kouranloo K, Dey M, Elwell H, Nune A. A systematic review of the incidence, management and prognosis of new-onset autoimmune connective tissue diseases after COVID-19. Rheumatol Int. 2023;43:1–23. https://doi.org/10.1007/s00296-023-05283-9.

    Article  Google Scholar 

  15. Gracia-Ramos AE, Martin-Nares E, Hernández-Molina G. New onset of autoimmune diseases following COVID-19 diagnosis. Cells. 2021;10:3592. https://doi.org/10.3390/cells10123592.16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tang K-T, Hsu B-C, Chen D-Y. Autoimmune and rheumatic manifestations associated with COVID-19 in adults: an updated systematic review. Front Immunol. 2021;12:645013. https://doi.org/10.3389/fimmu.2021.645013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rider LG, Parks CG, Wilkerson J, Schiffenbauer AI, Kwok RK, NorooziFarhadi P, et al. Baseline factors associated with self-reported disease flares following COVID-19 vaccination among adults with systemic rheumatic disease: results from the COVID-19 global rheumatology alliance vaccine survey. Rheumatology. 2022;61:SI143-50. https://doi.org/10.1093/rheumatology/keac249.18.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Xie Y, Liu Y, Liu Y. The flare of rheumatic disease after SARS-CoV-2 vaccination: a review. Front Immunol. 2022;13:919979. https://doi.org/10.3389/fimmu.2022.919979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen Y, Xu Z, Wang P, Li X-M, Shuai Z-W, Ye D-Q, et al. New-onset autoimmune phenomena post-COVID-19 vaccination. Immunol. 2022;165:386–401. https://doi.org/10.1111/imm.13443.

    Article  CAS  Google Scholar 

  20. Guo M, Liu X, Chen X, Li Q. Insights into new-onset autoimmune diseases after COVID-19 vaccination. Autoimmun Rev. 2023;22:103340. https://doi.org/10.1016/j.autrev.2023.103340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kharouf F, Kenig A, Bohbot E, Rubin L, Peleg H, Shamriz O. Increased rates of idiopathic inflammatory myopathies during the COVID-19 pandemic: a single-centre experience. Clin Exp Rheumatol. 2023;41:316–21. https://doi.org/10.55563/clinexprheumatol/970881.

    Article  PubMed  Google Scholar 

  22. Holzer M-T, Krusche M, Ruffer N, Haberstock H, Stephan M, Huber TB, et al. New-onset dermatomyositis following SARS-CoV-2 infection and vaccination: a case-based review. Rheumatol Int. 2022;42:2267–76. https://doi.org/10.1007/s00296-022-05176-3.23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chang SE, Feng A, Meng W, Apostolidis SA, Mack E, Artandi M, et al. New-onset IgG autoantibodies in hospitalized patients with COVID-19. Nat Commun. 2021;12:5417. https://doi.org/10.1038/s41467-021-25509-3. This longitudinal analysis of prototypical autoantibodies associated with SAIRDs in hospitalized COVID-19 patients found that a subset of autoantibodies developed de novo following SARS-CoV-2 infection.

  24. Teo K-F, Chen D-Y, Hsu J-T, Lai Y-H, Chang C-K, Hsueh P-R, et al. Screening and characterization of myositis-related autoantibodies in COVID-19 patients. Clin Transl Sci. 2023;16:140–50. https://doi.org/10.1111/cts.13434.

    Article  CAS  PubMed  Google Scholar 

  25. Swartzman I, Gu JJ, Toner Z, Grover R, Suresh L, Ullman LE. Prevalence of myositis-specific autoantibodies and myositis-associated autoantibodies in COVID-19 patients: a pilot study and literature review. Cureus. 2022;14:e29752. https://doi.org/10.7759/cureus.29752.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rebendenne A, Valadão ALC, Tauziet M, Maarifi G, Bonaventure B, McKellar J, et al. SARS-CoV-2 triggers an MDA-5-dependent interferon response which is unable to control replication in lung epithelial cells. J Virol. 2021;95:e02415-e2420. https://doi.org/10.1128/JVI.02415-20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yin X, Riva L, Pu Y, Martin-Sancho L, Kanamune J, Yamamoto Y, et al. MDA5 governs the innate immune response to SARS-CoV-2 in lung epithelial cells. Cell Rep. 2021;34:108628. https://doi.org/10.1016/j.celrep.2020.108628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hu H, Yang H, Liu Y, Yan B. Pathogenesis of anti-melanoma differentiation-associated gene 5 antibody-positive dermatomyositis: a concise review with an emphasis on type I interferon system. Front Med. 2021;8:833114. https://doi.org/10.3389/fmed.2021.833114.

    Article  Google Scholar 

  29. Giannini M, Ohana M, Nespola B, Zanframundo G, Geny B, Meyer A. Similarities between COVID-19 and anti-MDA5 syndrome: what can we learn for better care? Eur Respir J. 2020;56:2001618. https://doi.org/10.1183/13993003.01618-2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang Y, Du G, Zhang G, Matucci-Cerinic M, Furst DE. Similarities and differences between severe COVID-19 pneumonia and anti-MDA-5-positive dermatomyositis-associated rapidly progressive interstitial lung diseases: a challenge for the future. Ann Rheum Dis. 2022;81:e192. https://doi.org/10.1136/annrheumdis-2020-218594. This short review summarized cinical and pathological similarities and differences between severe COVID-19 pneumonia and anti-MDA5 antibody-positive DM-associated rapidly-progressive ILD.

  31. Kondo Y, Kaneko Y, Takei H, Tamai H, Kabata H, Suhara T, et al. COVID-19 shares clinical features with anti-melanoma differentiation-associated protein 5 positive dermatomyositis and adult Still’s disease. Clin Exp Rheumatol. 2021;39:631–8. https://doi.org/10.55563/clinexprheumatol/44kaji.

    Article  PubMed  Google Scholar 

  32. Mangalmurti N, Hunter CA. Cytokine storms: understanding COVID-19. Immunity. 2020;53:19–25. https://doi.org/10.1016/j.immuni.2020.06.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gono T, Kaneko H, Kawaguchi Y, Hanaoka M, Kataoka S, Kuwana M, et al. Cytokine profiles in polymyositis and dermatomyositis complicated by rapidly progressive or chronic interstitial lung disease. Rheumatology. 2014;53:2196–203. https://doi.org/10.1093/rheumatology/keu258.

    Article  CAS  PubMed  Google Scholar 

  34. Liu Y, Jesus AA, Marrero B, Yang D, Ramsey SE, Sanchez GAM, et al. Activated STING in a vascular and pulmonary syndrome. N Engl J Med. 2014;371:507–18. https://doi.org/10.1056/NEJMoa1312625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ali SS, R N, Sen P, Day J, Joshi M, Nune A, et al. Flares after COVID-19 infection in patients with idiopathic inflammatory myopathies: results from the COVAD study. Rheumatology (Oxford). 2023;62:e263–e268. https://doi.org/10.1093/rheumatology/kead149.

  36. Vertui V, Zanframundo G, Castañeda S, Biglia A, Palermo BL, Cavazzana I, et al. Clinical evolution of antisynthetase syndrome after SARS-CoV2 infection: a 6-month follow-up analysis. Clin Rheumatol. 2022;41:2601–4. https://doi.org/10.1007/s10067-022-06216-w.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Syrmou V, Liaskos C, Ntavari N, Mitsimponas K, Simopoulou T, Alexiou I, et al. COVID-19 vaccine-associated myositis: a comprehensive review of the literature driven by a case report. Immunol Res. 2023;16:1–10. https://doi.org/10.1007/s12026-023-09368-2.

    Article  Google Scholar 

  38. Connolly CM, Ruddy JA, Boyarsky BJ, Barbur I, Werbel WA, Geetha D, et al. Disease flare and reactogenicity in patients with rheumatic and musculoskeletal diseases following two-dose SARS-CoV-2 messenger RNA vaccination. Arthritis Rheumatol. 2022;74:28–32. https://doi.org/10.1002/art.41924.

    Article  CAS  PubMed  Google Scholar 

  39. ・Naveen R, Sen P, Griger Z, Day J, Joshi M, Nune A, et al. Flares in IIMs and the timeline following COVID-19 vaccination: a combined analysis of the COVAD-1 and 2 surveys. Rheumatology (Oxford). 2023:kead180. https://doi.org/10.1093/rheumatology/kead180. This study evaluated the frequency of disease flare following COVID-19 vaccination in IIM patients using data obtained from an international, multicenter, e-survey.

  40. Conticini E, d’Alessandro M, Grazzini S, Fornaro M, Sabella D, Lopalco G, et al. Relapses of idiopathic inflammatory myopathies after vaccination against COVID-19: a real-life multicenter Italian study. Intern Emerg Med. 2022;17:1921–8. https://doi.org/10.1007/s11739-022-03028-3.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Nagy-Vincze M, Béldi T, Szab K, Vincze A, Miltényi-Szab B, Student M, et al. Incidence, features, and outcome of disease relapse after COVID-19 vaccination in patients with idiopathic inflammatory myopathies. Muscle Nerve. 2023;67:371–7. https://doi.org/10.1002/mus.27811.

    Article  CAS  PubMed  Google Scholar 

  42. Pan BACX, Ba NG, Kim BSDY, Ms RRBS, Bs MS, LaChance MDMPHA, et al. Disease flare in patients with dermatomyositis following COVID-19 vaccination. J Am Acad Dermatol. 2022;87:1373–4. https://doi.org/10.1016/j.jaad.2022.07.010.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zebardast A, Hasanzadeh A, Ebrahimian Shiadeh SA, Tourani M, Yahyapour Y. COVID-19: a trigger of autoimmune diseases. Cell Biol Int. 2023;47:848–58. https://doi.org/10.1002/cbin.11997.

    Article  CAS  PubMed  Google Scholar 

  44. Megremis S, Walker TDJ, He X, O’Sullivan J, Ollier WER, Chinoy H, et al. Analysis of human total antibody repertoires in TIF1γ autoantibody positive dermatomyositis. Commun Biol. 2021;4:419. https://doi.org/10.1038/s42003-021-01932-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Megremis S, Walker TDJ, He X, Ollier WER, Chinoy H, Hampson L, et al. Antibodies against immunogenic epitopes with high sequence identity to SARS-CoV-2 in patients with autoimmune dermatomyositis. Ann Rheum Dis. 2020;79:1383–6. https://doi.org/10.1136/annrheumdis-2020-217522. This study indicated that coronaviruses infection may trigger autoimmunity against TIF1-γ through molecular mimicry.

  46. Rodero MP, Pelleau S, Welfringer-Morin A, FJDM study group, Duffy D, Melki I, et al. Onset and relapse of juvenile dermatomyositis following asymptomatic SARS-CoV-2 infection. J Clin Immunol. 2022;42:25–7. https://doi.org/10.1007/s10875-021-01119-y.

  47. Svensson J, Holmqvist M, Lundberg IE, Arkema EV. Infections and respiratory tract disease as risk factors for idiopathic inflammatory myopathies: a population-based case-control study. Ann Rheum Dis. 2017;76:1803–8. https://doi.org/10.1136/annrheumdis-2017-211174.

    Article  PubMed  Google Scholar 

  48. Helmers SB, Jiang X, Pettersson D, Wikman A-L, Axelman P, Lundberg Å, et al. Inflammatory lung disease a potential risk factor for onset of idiopathic inflammatory myopathies: results from a pilot study. RMD Open. 2016;2:e000342. https://doi.org/10.1136/rmdopen-2016-000342.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zampieri S, Ghirardello A, Iaccarino L, Briani C, Sarzi-Puttini P, Atzeni F, et al. Polymyositis-dermatomyositis and infections. Autoimmunity. 2006;39:191–6. https://doi.org/10.1080/08916930600622348.

    Article  CAS  PubMed  Google Scholar 

  50. Rider LG, Wu L, Mamyrova G, Targoff IN, Miller FW. Childhood Myositis Heterogeneity Collaborative Study Group. Environmental factors preceding illness onset differ in phenotypes of the juvenile idiopathic inflammatory myopathies. Rheumatol (Oxford). 2010;49:2381–90. https://doi.org/10.1093/rheumatology/keq277.

    Article  Google Scholar 

  51. Nielsen PR, Kragstrup TW, Deleuran BW, Benros ME. Infections as risk factor for autoimmune diseases—a nationwide study. J Autoimmun. 2016;74:176–81. https://doi.org/10.1016/j.jaut.2016.05.013.

    Article  PubMed  Google Scholar 

  52. Barzilai O, Sherer Y, Ram M, Izhaky D, Anaya JM, Shoenfeld Y. Epstein-Barr virus and cytomegalovirus in autoimmune diseases: are they truly notorious? A preliminary report. Ann N Y Acad Sci. 2007;1108:567–77. https://doi.org/10.1196/annals.1422.059.

    Article  CAS  PubMed  Google Scholar 

  53. Uruha A, Noguchi S, Hayashi YK, Tsuburaya RS, Yonekawa T, Nonaka I, et al. Hepatitis C virus infection in inclusion body myositis: a case-control study. Neurology. 2016;86:211–7. https://doi.org/10.1212/WNL.0000000000002291.

    Article  CAS  PubMed  Google Scholar 

  54. Fasth AER, Dastmalchi M, Rahbar A, Salomonsson S, Pandya JM, Lindroos E, et al. T cell infiltrates in the muscles of patients with dermatomyositis and polymyositis are dominated by CD28null T cells. J Immunol. 2009;183:4792–9. https://doi.org/10.4049/jimmunol.0803688.

    Article  CAS  PubMed  Google Scholar 

  55. El-Beshbishi SN, Ahmed NN, Mostafa SH, El-Ganainy GA. Parasitic infections and myositis. Parasitol Res. 2012;110:1–18. https://doi.org/10.1007/s00436-011-2609-8.

    Article  PubMed  Google Scholar 

  56. Carroll GJ, Will RK, Peter JB, Garlepp MJ, Dawkins RL. Penicillamine induced polymyositis and dermatomyositis. J Rheumatol. 1987;14:995–1001.

    CAS  PubMed  Google Scholar 

  57. Takahashi K, Ogita T, Okudaira H, Yoshinoya S, Yoshizawa H, Miyamoto T. D-penicillamine-induced polymyositis in patients with rheumatoid arthritis. Arthritis Rheum. 1986;29:560–4. https://doi.org/10.1002/art.1780290416.

    Article  CAS  PubMed  Google Scholar 

  58. Esteva-Lorenzo FJ, Janik JE, Fenton RG, Emslie-Smith A, Engel AG, Longo DL. Myositis associated with interleukin-2 therapy in a patient with metastatic renal cell carcinoma. Cancer. 1995;76:1219–23. https://doi.org/10.1002/1097-0142(19951001)76:7%3c1219::aid-cncr2820760719%3e3.0.co;2-o.

    Article  CAS  PubMed  Google Scholar 

  59. Brunasso AMG, Aberer W, Massone C. New onset of dermatomyositis/polymyositis during anti-TNF-α therapies: a systematic literature review. ScientificWorldJournal. 2014;2014:179180. https://doi.org/10.1155/2014/179180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cirigliano G, Della Rossa A, Tavoni A, Viacava P, Bombardieri S. Polymyositis occurring during α-interferon treatment for malignant melanoma: a case report and review of the literature. Rheumatol Int. 1999;19:65–7. https://doi.org/10.1007/s002960050103.

    Article  CAS  PubMed  Google Scholar 

  61. Hengstman GJ, Vogels OJ, ter Laak HJ, de Witte T, van Engelen BG. Myositis during long-term interferon-alpha treatment. Neurology. 2000;54:2186. https://doi.org/10.1212/wnl.54.11.2186.

    Article  CAS  PubMed  Google Scholar 

  62. Mammen AL. Statin-associated autoimmune myopathy. N Engl J Med. 2016;374:664–9. https://doi.org/10.1056/NEJMra1515161.

    Article  CAS  PubMed  Google Scholar 

  63. Christopher-Stine L, Casciola-Rosen LA, Hong G, Chung T, Corse AM, Mammen AL. A novel autoantibody recognizing 200-kd and 100-kd proteins is associated with an immune-mediated necrotizing myopathy. Arthritis Rheum. 2010;62:2757–66. https://doi.org/10.1002/art.27572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rademacher J-G, Glaubitz S, Zechel S, Oettler M, Tampe B, Schmidt J, et al. Treatment and outcomes in anti-HMG-CoA reductase-associated immune-mediated necrotising myopathy Comparative analysis of a single-centre cohort and published data. Clin Exp Rheumatol. 2022;40:320–8. https://doi.org/10.55563/clinexprheumatol/2ao5ze.

    Article  PubMed  Google Scholar 

  65. Tiniakou E, Pinal-Fernandez I, Lloyd TE, Albayda J, Paik J, Werner JL, et al. More severe disease and slower recovery in younger patients with anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase-associated autoimmune myopathy. Rheumatology. 2017;56:787–94. https://doi.org/10.1093/rheumatology/kew470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mammen AL, Chung T, Christopher-Stine L, Rosen P, Rosen A, Doering KR, et al. Autoantibodies against 3-hydroxy-3-methylglutaryl-coenzyme A reductase in patients with statin-associated autoimmune myopathy. Arthritis Rheum. 2011;63:713–21. https://doi.org/10.1002/art.30156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Mohassel P, Mammen AL. Statin-associated autoimmune myopathy and anti-HMGCR autoantibodies: anti-HMGCR-Associated Myopathy. Muscle Nerve. 2013;48:477–83. https://doi.org/10.1002/mus.23854.

    Article  CAS  PubMed  Google Scholar 

  68. Werner JL, Christopher-Stine L, Ghazarian SR, Pak KS, Kus JE, Daya NR, et al. Antibody levels correlate with creatine kinase levels and strength in anti-3-hydroxy-3-methylglutaryl-coenzyme A reductase-associated autoimmune myopathy. Arthritis Rheum. 2012;64:4087–93. https://doi.org/10.1002/art.34673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Caughey GE, Gabb GM, Ronson S, Ward M, Beukelman T, Hill CL, et al. Association of statin exposure with histologically confirmed idiopathic inflammatory myositis in an Australian population. JAMA Intern Med. 2018;178:1224–9. https://doi.org/10.1001/jamainternmed.2018.2859.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Wei J, Ketner E, Mammen AL (2022) Increased risk of statin-associated autoimmune myopathy among American Indians. Arthritis Rheumatol 74:1602–3. https://doi.org/10.1002/art.42126This study suggested an increased risk of statin-associated autoimmune myopathy in native Americans.

  71. Close RM, Close LM, Galdun P, Gerstberger S, Rydberg M, Christopher-Stine L. Potential implications of six American Indian patients with myopathy, statin exposure and anti-HMGCR antibodies. Rheumatology. 2021;60:692–8. https://doi.org/10.1093/rheumatology/keaa337.

    Article  PubMed  Google Scholar 

  72. Mammen AL, Gaudet D, Brisson D, Christopher-Stine L, Lloyd TE, Leffell MS, et al. Increased frequency of DRB1*11:01 in anti-hydroxymethylglutaryl-coenzyme A reductase-associated autoimmune myopathy. Arthritis Care Res. 2012;64:1233–7. https://doi.org/10.1002/acr.21671.

    Article  CAS  Google Scholar 

  73. Brunham LR, Baker S, Mammen A, Mancini GBJ, Rosenson RS. Role of genetics in the prediction of statin-associated muscle symptoms and optimization of statin use and adherence. Cardiovasc Res. 2018;114:1073–81. https://doi.org/10.1093/cvr/cvy119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Postow MA, Sidlow R, Hellmann MD. Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med. 2018;378:158–68. https://doi.org/10.1056/NEJMra1703481.

    Article  CAS  PubMed  Google Scholar 

  75. Sundarrajan C, Bhai S, Dimachkie MM. Immune checkpoint inhibitor-related myositis: from pathophysiology to treatment. Clin Exp Rheumatol. 2023;41:379–85. https://doi.org/10.55563/clinexprheumatol/q7mdjs.

    Article  PubMed  Google Scholar 

  76. Allenbach Y, Anquetil C, Manouchehri A, Benveniste O, Lambotte O, Lebrun-Vignes B, et al. Immune checkpoint inhibitor-induced myositis, the earliest and most lethal complication among rheumatic and musculoskeletal toxicities. Autoimmun Rev. 2020;19:102586. https://doi.org/10.1016/j.autrev.2020.102586.

    Article  CAS  PubMed  Google Scholar 

  77. Nguyễn T, Maria ATJ, Ladhari C, Palassin P, Quantin X, Lesage C, et al. Rheumatic disorders associated with immune checkpoint inhibitors: what about myositis? An analysis of the WHO’s adverse drug reactions database. Ann Rheum Dis. 2022;81:e32. https://doi.org/10.1136/annrheumdis-2020-217018.

    Article  PubMed  Google Scholar 

  78. Seki M, Uruha A, Ohnuki Y, Kamada S, Noda T, Onda A, et al. Inflammatory myopathy associated with PD-1 inhibitors. J Autoimmun. 2019;100:105–13. https://doi.org/10.1016/j.jaut.2019.03.005.

    Article  CAS  PubMed  Google Scholar 

  79. Hamada N, Maeda A, Takase-Minegishi K, Kirino Y, Sugiyama Y, Namkoong H, et al. Incidence and distinct features of immune checkpoint inhibitor-related myositis from idiopathic inflammatory myositis: a single-center experience with systematic literature review and meta-analysis. Front Immunol. 2021;12:803410. https://doi.org/10.3389/fimmu.2021.803410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kao JC, Liao B, Markovic SN, Klein CJ, Naddaf E, Staff Nathan P, et al. Neurological complications associated with anti–programmed death 1 (PD-1) antibodies. JAMA Neurol. 2017;74:1216–22. https://doi.org/10.1001/jamaneurol.2017.1912.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Anquetil C, Salem J-E, Lebrun-Vignes B, Johnson DB, Mammen AL, Stenzel W, et al. Immune checkpoint inhibitor-associated myositis: expanding the spectrum of cardiac complications of the immunotherapy revolution. Circulation. 2018;138:743–5. https://doi.org/10.1161/CIRCULATIONAHA.118.035898.

    Article  PubMed  Google Scholar 

  82. Touat M, Maisonobe T, Knauss S, Ben Hadj Salem O, Hervier B, Auré K, et al. Immune checkpoint inhibitor-related myositis and myocarditis in patients with cancer. Neurology. 2018;91:e985-94. https://doi.org/10.1212/WNL.0000000000006124.

    Article  CAS  PubMed  Google Scholar 

  83. Aldrich J, Pundole X, Tummala S, Palaskas N, Andersen CR, Shoukier M, et al. Inflammatory myositis in cancer patients receiving immune checkpoint inhibitors. Arthritis Rheumatol. 2021;73:866–74. https://doi.org/10.1002/art.41604. This large-scale retrospective cohort study described the incidence, clinical characteristics, patterns of care, and outcomes of patints with ICI-related myositis.

  84. Kufukihara K, Watanabe Y, Inagaki T, Takamatsu K, Nakane S, Nakahara J, et al. Cytometric cell-based assays for anti-striational antibodies in myasthenia gravis with myositis and/or myocarditis. Sci Rep. 2019;9:5284. https://doi.org/10.1038/s41598-019-41730-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Suzuki S Significance of antistriational antibodies for immune checkpoint inhibitor-related myositis: comment on the article by Aldrich et al. Arthritis Rheumatol 2021;73:1563–4 https://doi.org/10.1002/art.41713

  86. Kadota H, Gono T, Shirai Y, Okazaki Y, Takeno M, Kuwana M. Immune checkpoint inhibitor-induced myositis: a case report and literature review. Curr Rheumatol Rep. 2019;21:10. https://doi.org/10.1007/s11926-019-0811-3.

    Article  PubMed  Google Scholar 

  87. ・・Pinal-Fernandez I, Quintana A, Milisenda JC, Casal-Dominguez M, Muñoz-Braceras S, Derfoul A, et al. Transcriptomic profiling reveals distinct subsets of immune checkpoint inhibitor induced myositis. Ann Rheum Dis. 2023;82:829–36. https://doi.org/10.1136/ard-2022-223792 This study identified three distinct subsets of ICI-related myositis using transcriptomic analysis on muscle biopsy samples.

  88. Mamyrova G, Rider LG, Ehrlich A, Jones O, Pachman LM, Nickeson R, et al. Environmental factors associated with disease flare in juvenile and adult dermatomyositis. Rheumatology. 2017;56:1342–7. https://doi.org/10.1093/rheumatology/kex162.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Parks CG, Wilkerson J, Rose KM, Faiq A, Noroozi Farhadi P, Long CS, et al. Association of ultraviolet radiation exposure with dermatomyositis in a national myositis patient registry. Arthritis Care Res. 2020;72:1636–44. https://doi.org/10.1002/acr.24059.

    Article  CAS  Google Scholar 

  90. Okada S, Weatherhead E, Targoff IN, Wesley R, Miller FW. International Myositis Collaborative Study Group. Global surface ultraviolet radiation intensity may modulate the clinical and immunologic expression of autoimmune muscle disease. Arthritis Rheum. 2003;48:2285–93. https://doi.org/10.1002/art.11090.

    Article  PubMed  Google Scholar 

  91. Love LA, Weinberg CR, McConnaughey DR, Oddis CV, Medsger TA Jr, Reveille JD, et al. Ultraviolet radiation intensity predicts the relative distribution of dermatomyositis and anti-Mi-2 autoantibodies in women. Arthritis Rheum. 2009;60:2499–504. https://doi.org/10.1002/art.24702.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Shah M, Targoff IN, Rice MM, Miller FW, Rider LG. with the Childhood Myositis Heterogeneity Collaborative Study Group. Brief report: ultraviolet radiation exposure is associated with clinical and autoantibody phenotypes in juvenile myositis: ultraviolet radiation exposure and juvenile myositis phenotypes. Arthritis Rheum. 2013;65:1934–41. https://doi.org/10.1002/art.37985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Neely J, Long CS, Sturrock H, Kim S. Association of short-term ultraviolet radiation exposure and disease severity in juvenile dermatomyositis: results from the Childhood Arthritis and Rheumatology Research Alliance Legacy Registry. Arthritis Care Res (Hoboken). 2019;71:1600–5. https://doi.org/10.1002/acr.23840.

    Article  PubMed  Google Scholar 

  94. Aguilar-Vazquez A, Chavarria-Avila E, Pizano-Martinez O, Ramos-Hernandez A, Andrade-Ortega L, Rubio-Arellano E-D, et al. Geographical latitude remains as an important factor for the prevalence of some myositis autoantibodies: a systematic review. Front Immunol. 2021;12:672008. https://doi.org/10.3389/fimmu.2021.672008. This systematic literature review featured the relationship between geographical latitude and the prevalence of MSAs/MAAs.

  95. Wolf SJ, Estadt SN, Gudjonsson JE, Kahlenberg JM. Human and Murine evidence for mechanisms driving autoimmune photosensitivity. Front Immunol. 2018;9:2430. https://doi.org/10.3389/fimmu.2018.02430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Burd CJ, Kinyamu HK, Miller FW, Archer TK. UV radiation regulates Mi-2 through protein translation and stability. J Biol Chem. 2008;283:34976–82. https://doi.org/10.1074/jbc.M805383200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chinoy H, Adimulam S, Marriage F, New P, Vincze M, Zilahi E, et al. Interaction of HLA-DRB1*03 and smoking for the development of anti-Jo-1 antibodies in adult idiopathic inflammatory myopathies: a European-wide case study. Ann Rheum Dis. 2012;71:961–5. https://doi.org/10.1136/annrheumdis-2011-200182.

    Article  CAS  PubMed  Google Scholar 

  98. Schiffenbauer A, Faghihi-Kashani S, O’Hanlon TP, Flegel WA, Adams SD, Targoff IN, et al. The effect of cigarette smoking on the clinical and serological phenotypes of polymyositis and dermatomyositis. Semin Arthritis Rheum. 2018;48:504–12. https://doi.org/10.1016/j.semarthrit.2018.02.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Lilleker JB, Vencovsky J, Wang G, Wedderburn LR, Diederichsen LP, Schmidt J, et al. The EuroMyositis registry: an international collaborative tool to facilitate myositis research. Ann Rheum Dis. 2018;77:30–9. https://doi.org/10.1136/annrheumdis-2017-211868.

    Article  PubMed  Google Scholar 

  100. Levine SM, Raben N, Xie D, Askin FB, Tuder R, Mullins M, et al. Novel conformation of histidyl-transfer RNA synthetase in the lung: the target tissue in Jo-1 autoantibody-associated myositis: the target tissue in Jo-1 autoantibody-associated myositis. Arthritis Rheum. 2007;56:2729–39. https://doi.org/10.1002/art.22790.

    Article  CAS  PubMed  Google Scholar 

  101. Galindo-Feria AS, Albrecht I, Fernandes-Cerqueira C, Notarnicola A, James EA, Herrath J, et al. Proinflammatory histidyl-transfer RNA synthetase-specific CD4+ T cells in the blood and lungs of patients with idiopathic inflammatory myopathies. Arthritis Rheumatol. 2020;72:179–91. https://doi.org/10.1002/art.41075. This study proposed a potential mechanism by which inhalation stimuli trigger the production of anti-Jo-1 antibodies.

  102. Ying D, Schmajuk G, Trupin L, Blanc PD. Inorganic dust exposure during military service as a predictor of rheumatoid arthritis and other autoimmune conditions. ACR Open Rheumatol. 2021;3:466–74. https://doi.org/10.1002/acr2.11273.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Blanc PD, Järvholm B, Torén K. Prospective risk of rheumatologic disease associated with occupational exposure in a cohort of male construction workers. Am J Med. 2015;128:1094–101. https://doi.org/10.1016/j.amjmed.2015.05.001.

    Article  PubMed  Google Scholar 

  104. Miller-Archie SA, Izmirly PM, Berman JR, Brite J, Walker DJ, Dasilva RC, et al. Systemic autoimmune disease among adults exposed to the September 11, 2001 terrorist attack. Arthritis Rheumatol. 2020;72:849–59. https://doi.org/10.1002/art.41175.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Brite J, Miller-Archie SA, Cone J. The relationship between 9/11 exposure, systemic autoimmune disease, and post-traumatic stress disorder: a mediational analysis. Int J Environ Res Public Health. 2022;19:6514. https://doi.org/10.3390/ijerph19116514.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Labirua-Iturburu A, Selva-O’Callaghan A, Zock J-P, Orriols R, Martínez-Gómez X, Vilardell-Tarrés M. Occupational exposure in patients with the antisynthetase syndrome. Clin Rheumatol. 2014;33:221–5. https://doi.org/10.1007/s10067-013-2467-0.

    Article  PubMed  Google Scholar 

  107. Notarnicola A, Preger C, Lundström SL, Renard N, Wigren E, Van Gompel E, et al. Longitudinal assessment of reactivity and affinity profile of anti-Jo1 autoantibodies to distinct HisRS domains and a splice variant in a cohort of patients with myositis and anti-synthetase syndrome. Arthritis Res Ther. 2022;24:62. https://doi.org/10.1186/s13075-022-02745-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Katzap E, Barilla-LaBarca M-L, Marder G. Antisynthetase syndrome. Curr Rheumatol Rep. 2011;13:175–81. https://doi.org/10.1007/s11926-011-0176-8.

    Article  CAS  PubMed  Google Scholar 

  109. Cutolo M, Smith V, Paolino S, Gotelli E. Involvement of the secosteroid vitamin D in autoimmune rheumatic diseases and COVID-19. Nat Rev Rheumatol. 2023;19:265–87. https://doi.org/10.1038/s41584-023-00944-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Azali P, Barbasso Helmers S, Kockum I, Olsson T, Alfredsson L, Charles PJ, et al. Low serum levels of vitamin D in idiopathic inflammatory myopathies. Ann Rheum Dis. 2013;72:512–6. https://doi.org/10.1136/annrheumdis-2012-201849.

    Article  CAS  PubMed  Google Scholar 

  111. Yu Z, Cheng H, Liang Y, Ding T, Yan C, Gao C, et al. Decreased serum 25-(OH)-D level associated with muscle enzyme and myositis specific autoantibodies in patients with idiopathic inflammatory myopathy. Front Immunol. 2021;12:642070. https://doi.org/10.3389/fimmu.2021.642070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Leff RL, Burgess SH, Miller FW, Love LA, Targoff IN, Dalakas MC, et al. Distinct seasonal patterns in the onset of adult idiopathic inflammatory myopathy in patients with anti-Jo-1 and anti-signal recognition particle autoantibodies. Arthritis Rheum. 1991;34:1391–6. https://doi.org/10.1002/art.1780341108.

    Article  CAS  PubMed  Google Scholar 

  113. Sarkar K, Weinberg CR, Oddis CV, Medsger TA Jr, Plotz PH, Reveille JD, et al. Seasonal influence on the onset of idiopathic inflammatory myopathies in serologically defined groups. Arthritis Rheum. 2005;52:2433–8. https://doi.org/10.1002/art.21198.

    Article  PubMed  Google Scholar 

  114. Nishina N, Sato S, Masui K, Gono T, Kuwana M. Seasonal and residential clustering at disease onset of anti-MDA5-associated interstitial lung disease. RMD Open. 2020;6;e001202. https://doi.org/10.1136/rmdopen-2020-001202. This study demonstrated the association of seasonality and residence with the onset of anti-MDA5-associated ILD using a multicenter retrospective cohort.

  115. So H, So J, Lam TT-O, Wong VT-L, Ho R, Li WL, et al. Seasonal effect on disease onset and presentation in anti-MDA5 positive dermatomyositis. Front Med. 2022;9:837024. https://doi.org/10.3389/fmed.2022.837024.

    Article  Google Scholar 

  116. Toquet S, Granger B, Uzunhan Y, Mariampillai K, Nunes H, Benveniste O, et al. The seasonality of Dermatomyositis associated with anti-MDA5 antibody: an argument for a respiratory viral trigger. Autoimmun Rev. 2021;20:102788. https://doi.org/10.1016/j.autrev.2021.102788.

    Article  CAS  PubMed  Google Scholar 

  117. Rath B, Conrad T, Myles P, Alchikh M, Ma X, Hoppe C, et al. Influenza and other respiratory viruses: standardizing disease severity in surveillance and clinical trials. Expert Rev Anti Infect Ther. 2017;15:545–68. https://doi.org/10.1080/14787210.2017.1295847.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Sun K-Y, Fan Y, Wang Y-X, Zhong Y-J, Wang G-F. Prevalence of interstitial lung disease in polymyositis and dermatomyositis: a meta-analysis from 2000 to 2020. Semin Arthritis Rheum. 2021;51:175–91. https://doi.org/10.1016/j.semarthrit.2020.11.009.

    Article  CAS  PubMed  Google Scholar 

  119. Rothwell S, Chinoy H, Lamb JA. Genetics of idiopathic inflammatory myopathies: insights into disease pathogenesis: insights into disease pathogenesis. Curr Opin Rheumatol. 2019;31:611–6. https://doi.org/10.1097/BOR.0000000000000652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Muro Y, Sugiura K, Hoshino K, Akiyama M, Tamakoshi K. Epidemiologic study of clinically amyopathic dermatomyositis and anti-melanoma differentiation-associated gene 5 antibodies in central Japan. Arthritis Res Ther. 2011;13:R214. https://doi.org/10.1186/ar3547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by a research grant on intractable diseases from the Japanese Ministry of Health, Labour and Welfare (23FC1017) and a research grant on intractable diseases from the Japan Agency for Medical Research and Development (22ek0109531h0002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masataka Kuwana.

Ethics declarations

Conflict of Interest

SY and AY have nothing to disclose. TG received speaking fees from Asahi Kasei, Astellas, Boehringer Ingelheim, Bristol-Myers Squibb, Chugai, Eisai, Janssen, MBL, Nippon Shinyaku, Pfizer, and Ono Pharmaceuticals. MK holds a patent on the anti-MDA5 measuring kit; received research grants from Boehringer Ingelheim, Medical and Biological Laboratories, and Ono Pharmaceuticals; and received personal fees from AbbVie, Asahi Kasei Pharma, Astellas, Boehringer Ingelheim, Chugai, Eisai, Kissei, Mochida, Nippon Shinyaku, Ono Pharmaceuticals, and Tanabe-Mitsubishi.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The journal thanks Dr. Chih-Wei Tseng for reviewing this manuscript.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 45 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, S., Yoshida, A., Gono, T. et al. The Role of Environmental Factors in the Development of Idiopathic Inflammatory Myopathies: a Narrative Review. Curr Rheumatol Rep 25, 264–275 (2023). https://doi.org/10.1007/s11926-023-01120-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-023-01120-x

Keywords

Navigation