Skip to main content

Advertisement

Log in

Machine Learning Approaches to the Prediction of Osteoarthritis Phenotypes and Outcomes

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Osteoarthritis (OA) is a complex heterogeneous disease with no effective treatments. Artificial intelligence (AI) and its subfield machine learning (ML) can be applied to data from different sources to (1) assist clinicians and patients in decision making, based on machine-learned evidence, and (2) improve our understanding of pathophysiology and mechanisms underlying OA, providing new insights into disease management and prevention. The purpose of this review is to improve the ability of clinicians and OA researchers to understand the strengths and limitations of AI/ML methods in applications to OA research.

Recent Findings

AI/ML can assist clinicians by prediction of OA incidence and progression and by providing tailored personalized treatment. These methods allow using multidimensional multi-source data to understand the nature of OA, to identify different OA phenotypes, and for biomarker discovery.

Summary

We described the recent implementations of AI/ML in OA research and highlighted potential future directions and associated challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACR :

American College of Rheumatology

AI :

artificial intelligence

AUC :

area under curve

BMI :

body mass index

CDW :

Clinical Data Warehouses

CNN :

convolutional neural network

DEC :

deep embedded clustering

DL :

deep learning

EHR :

electronic health record

GWAS :

genome-wide association studies

KLG :

Kellgren-Lawrence Grade

LR :

logistic regression

MFAC :

clustering with multiple factor analysis

ML :

machine learning

MRI :

magnetic resonance imaging

NSAID :

non-steroidal anti-inflammatory drugs

OA :

osteoarthritis

OAI :

Osteoarthritis Initiative

RCT :

randomized clinical trial

RF :

random forest

TJR :

total joint replacement

US :

ultrasound data

WOMAC :

Western Ontario and McMaster Universities Arthritis Index

XGB :

eXtreme Gradient Boosting

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Murphy LB, Cisternas MG, Pasta DJ, Helmick CG, Yelin EH. Medical expenditures and earnings losses among us adults with arthritis in 2013. Arthritis Care Res (Hoboken). 2018;70(6):869–76.

    Article  PubMed  Google Scholar 

  2. Kolasinski SL, Neogi T, Hochberg MC, Oatis C, Guyatt G, Block J, et al. 2019 American College of Rheumatology/Arthritis Foundation Guideline for the Management of Osteoarthritis of the Hand, Hip, and Knee. Arthritis Rheumatol. 2020;72(2):220–33.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Grässel S, Muschter D. Recent advances in the treatment of osteoarthritis. F1000Res. 2020;9:F1000 Faculty Rev–325. https://doi.org/10.12688/f1000research.22115.1.

  4. Loos NL, Hoogendam L, Souer JS, Slijper HP, Andrinopoulou ER, Coppieters MW, et al. Machine learning can be used to predict function but not pain after surgery for thumb carpometacarpal osteoarthritis. Clin Orthop Relat Res. 2022;480(7):1271–84.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bowes MA, Kacena K, Alabas OA, Brett AD, Dube B, Bodick N, et al. Machine-learning, MRI bone shape and important clinical outcomes in osteoarthritis: data from the Osteoarthritis Initiative. Ann Rheum Dis. 2021;80(4):502–8.

    Article  PubMed  Google Scholar 

  6. Chaudhari AS, Stevens KJ, Wood JP, Chakraborty AK, Gibbons EK, Fang Z, et al. Utility of deep learning super-resolution in the context of osteoarthritis MRI biomarkers. J Magn Reson Imaging. 2020;51(3):768–79.

    Article  PubMed  Google Scholar 

  7. Lester G. The Osteoarthritis Initiative: A NIH Public-Private Partnership. HSS J. 2012;8(1):62–3.

    Article  PubMed  Google Scholar 

  8. Chen G, Sullivan PF, Kosorok MR. Biclustering with heterogeneous variance. Proc Natl Acad Sci U S A. 2013;110(30):12253–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cheng Y, Church GM. Biclustering of expression data. Proc Int Conf Intell Syst Mol Biol. 2000;8:93–103.

    CAS  PubMed  Google Scholar 

  10. Nelson AE, Keefe TH, Schwartz TA, Callahan LF, Loeser RF, Golightly YM, et al. Biclustering reveals potential knee OA phenotypes in exploratory analyses: Data from the Osteoarthritis Initiative. PLoS One. 2022;17(5):e0266964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Demanse D, Saxer F, Lustenberger P, Tanko LB, Nikolaus P, Rasin I, et al. Unsupervised machine-learning algorithms for the identification of clinical phenotypes in the osteoarthritis initiative database. Semin Arthritis Rheum. 2023;58:152140.

    Article  CAS  PubMed  Google Scholar 

  12. Trajerova M, Kriegova E, Mikulkova Z, Savara J, Kudelka M, Gallo J. Knee osteoarthritis phenotypes based on synovial fluid immune cells correlate with clinical outcome trajectories. Osteoarthritis Cartilage. 2022;30(12):1583–92.

    Article  CAS  PubMed  Google Scholar 

  13. Deveza LA, Nelson AE, Loeser RF. Phenotypes of osteoarthritis: Current state and future implications. Clin Exp Rheumatol. 2019;37 Suppl;120(5):64–72.

    Google Scholar 

  14. Mobasheri A, van Spil WE, Budd E, Uzieliene I, Bernotiene E, Bay-Jensen AC, et al. Molecular taxonomy of osteoarthritis for patient stratification, disease management and drug development: Biochemical markers associated with emerging clinical phenotypes and molecular endotypes. Curr Opin Rheumatol. 2019;31(1):80–9.

    Article  PubMed  Google Scholar 

  15. Steinberg J, Southam L, Fontalis A, Clark MJ, Jayasuriya RL, Swift D, et al. Linking chondrocyte and synovial transcriptional profile to clinical phenotype in osteoarthritis. Ann Rheum Dis. 2021;80(8):1070–4. Used machine learning to assess gene expression profiles with results supporting the theory that osteoarthritis is a continuum with less variation at later stages of disease; greater heterogeneity early in disease suggests an opportunity for tailored treatment.

    Article  CAS  PubMed  Google Scholar 

  16. Widera P, PMJ W, Ladel C, Loughlin J, Lafeber F, Petit Dop F, et al. Multi-classifier prediction of knee osteoarthritis progression from incomplete imbalanced longitudinal data. Sci Rep. 2020;10(1):8427. Rigorous statistical framework using advanced statistical techniques to account for classes imbalance and incomplete data. Used categorical rather than binary definition of the outcome, KOA progression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. van Helvoort EM, van Spil WE, Jansen MP, Welsing PMJ, Kloppenburg M, Loef M, et al. Cohort profile: The Applied Public-Private Research enabling OsteoArthritis Clinical Headway (IMI-APPROACH) study: a 2-year, European, cohort study to describe, validate and predict phenotypes of osteoarthritis using clinical, imaging and biochemical markers. BMJ Open. 2020;10(7):e035101.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kraus VB, Collins JE, Hargrove D, Losina E, Nevitt M, Katz JN, et al. Predictive validity of biochemical biomarkers in knee osteoarthritis: Data from the FNIH OA biomarkers consortium. Ann Rheum Dis. 2017;76(1):186–95.

    Article  CAS  PubMed  Google Scholar 

  19. Bonakdari H, Pelletier JP, Abram F, Martel-Pelletier J. A machine learning model to predict knee osteoarthritis cartilage volume changes over time using baseline bone curvature. Biomedicines. 2022;10(6)

  20. Raynauld JP, Pelletier JP, Delorme P, Dodin P, Abram F, Martel-Pelletier J. Bone curvature changes can predict the impact of treatment on cartilage volume loss in knee osteoarthritis: data from a 2-year clinical trial. Rheumatology (Oxford). 2017;56(6):989–98.

    Article  PubMed  Google Scholar 

  21. Raynauld JP, Martel-Pelletier J, Bias P, Laufer S, Haraoui B, Choquette D, et al. Protective effects of licofelone, a 5-lipoxygenase and cyclo-oxygenase inhibitor, versus naproxen on cartilage loss in knee osteoarthritis: a first multicentre clinical trial using quantitative MRI. Ann Rheum Dis. 2009;68(6):938–47.

    Article  CAS  PubMed  Google Scholar 

  22. Ilse M, Tomczak J, Welling M. Attention-based deep multiple instance learning. In: International conference on machine learning. PMLR; 2018. p. 2127–36.

    Google Scholar 

  23. Schiratti JB, Dubois R, Herent P, Cahane D, Dachary J, Clozel T, et al. A deep learning method for predicting knee osteoarthritis radiographic progression from MRI. Arthritis Res Ther. 2021;23(1):262. Developed a weakly supervised deep learning algorithm to predict OA progression over a short time frame; encouraging results suggest that such algorithms can feasibility be integrated into the screening phase of clinical trials and improve how inclusion criteria are determined.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: Visual explanations from deep networks via gradient-based localization. Int J Comput Vis. 2020;128(2):336–59.

    Article  Google Scholar 

  25. Guan B, Liu F, Haj-Mirzaian A, Demehri S, Samsonov A, Neogi T, et al. Deep learning risk assessment models for predicting progression of radiographic medial joint space loss over a 48-MONTH follow-up period. Osteoarthritis Cartilage. 2020;28(4):428–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Guan B, Liu F, Mizaian AH, Demehri S, Samsonov A, Guermazi A, et al. Deep learning approach to predict pain progression in knee osteoarthritis. Skeletal Radiol. 2022;51(2):363–73.

    Article  PubMed  Google Scholar 

  27. Nelson AE, Arbeeva L. Narrative review of machine learning in rheumatic and musculoskeletal diseases for clinicians and researchers: biases, goals, and future directions. J Rheumatol. 2022;49(11):1191–200. Review of machine learning in rheumatic and musculoskeletal diseases beyond osteoarthritis, providing extensive discussion around potential biases and limitations.

    CAS  PubMed  Google Scholar 

  28. Yoo HJ, Jeong HW, Kim SW, Kim M, Lee JI, Lee YS. Prediction of progression rate and fate of osteoarthritis: Comparison of machine learning algorithms. J Orthop Res. 2023;41(3):583–90.

    Article  CAS  PubMed  Google Scholar 

  29. Dunn CM, Sturdy C, Velasco C, Schlupp L, Prinz E, Izda V, et al. Peripheral blood DNA methylation-based machine learning models for prediction of knee osteoarthritis progression: Biologic specimens and data from the osteoarthritis initiative and johnston county osteoarthritis project. Arthritis Rheumatol. 2023;75(1):28–40. Use of fully independent data for external validation and investigation of potentially novel epigenetic biomarkers for useful clinical progression definitions are strengths of this work.

    Article  CAS  PubMed  Google Scholar 

  30. Bonakdari H, Pelletier JP, Blanco FJ, Rego-Pérez I, Durán-Sotuela A, Aitken D, et al. Single nucleotide polymorphism genes and mitochondrial DNA haplogroups as biomarkers for early prediction of knee osteoarthritis structural progressors: use of supervised machine learning classifiers. BMC Med. 2022;20(1):316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dore D, Martens A, Quinn S, Ding C, Winzenberg T, Zhai G, et al. Bone marrow lesions predict site-specific cartilage defect development and volume loss: a prospective study in older adults. Arthritis Res Ther. 2010;12(6):R222.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Leung K, Zhang B, Tan J, Shen Y, Geras KJ, Babb JS, et al. Prediction of total knee replacement and diagnosis of osteoarthritis by using deep learning on knee radiographs: data from the osteoarthritis initiative. Radiology. 2020;296(3):584–93.

    Article  PubMed  Google Scholar 

  33. Jamshidi A, Pelletier JP, Labbe A, Abram F, Martel-Pelletier J, Droit A. Machine learning-based individualized survival prediction model for total knee replacement in osteoarthritis: data from the osteoarthritis initiative. Arthritis Care Res (Hoboken). 2021;73(10):1518–27.

    Article  PubMed  Google Scholar 

  34. Tiulpin A, Saarakkala S, Mathiessen A, Hammer HB, Furnes O, Nordsletten L, et al. Predicting total knee arthroplasty from ultrasonography using machine learning. Osteoarthr Cartil Open. 2022;4(4):100319.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hirvasniemi J, Runhaar J, van der Heijden RA, Zokaeinikoo M, Yang M, Li X, et al. The KNee OsteoArthritis Prediction (KNOAP2020) challenge: An image analysis challenge to predict incident symptomatic radiographic knee osteoarthritis from MRI and X-ray images. Osteoarthritis Cartilage. 2023;31(1):115–25. The first biomedical challenge on the prediction of incident symptomatic radiographic knee OA, a step towards unbiased comparison between different models, robust validation and clinical translation of AI/ML algorithms.

    Article  CAS  PubMed  Google Scholar 

  36. Runhaar J, van Middelkoop M, Reijman M, Willemsen S, Oei EH, Vroegindeweij D, et al. Prevention of knee osteoarthritis in overweight females: the first preventive randomized controlled trial in osteoarthritis. Am J Med. 2015;128(8):888–95. e4

    Article  PubMed  Google Scholar 

  37. Allen KD, Helmick CG, Schwartz TA, DeVellis RF, Renner JB, Jordan JM. Racial differences in self-reported pain and function among individuals with radiographic hip and knee osteoarthritis: the Johnston County Osteoarthritis Project. Osteoarthritis Cartilage. 2009;17(9):1132–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Vaughn IA, Terry EL, Bartley EJ, Schaefer N, Fillingim RB. Racial-ethnic differences in osteoarthritis pain and disability: A meta-analysis. J Pain. 2019;20(6):629–44.

    Article  PubMed  Google Scholar 

  39. Pierson E, Cutler DM, Leskovec J, Mullainathan S, Obermeyer Z. An algorithmic approach to reducing unexplained pain disparities in underserved populations. Nat Med. 2021;27(1):136–40. An example of implementation of AI algorithm for predicting the severity of OA symptoms based on objective image data rather than subjective self-report and/or radiologist assessment. If externally validated, can be used as a decision aid for TJR referral as it can potentially mitigate bias in pain assessment in disadvantaged social groups and reduce health disparities in pain management and medical decisions.

    Article  CAS  PubMed  Google Scholar 

  40. Blum MA, Ibrahim SA. Race/ethnicity and use of elective joint replacement in the management of end-stage knee/hip osteoarthritis: a review of the literature. Clin Geriatr Med. 2012;28(3):521–32.

    Article  PubMed  Google Scholar 

  41. Singh JA, Lu X, Rosenthal GE, Ibrahim S, Cram P. Racial disparities in knee and hip total joint arthroplasty: An 18-year analysis of national Medicare data. Ann Rheum Dis. 2014;73(12):2107–15.

    Article  PubMed  Google Scholar 

  42. Joseph GB, McCulloch CE, Nevitt MC, Link TM, Sohn JH. Machine learning to predict incident radiographic knee osteoarthritis over 8 Years using combined MR imaging features, demographics, and clinical factors: data from the Osteoarthritis Initiative. Osteoarthritis Cartilage. 2022;30(2):270–9.

    Article  CAS  PubMed  Google Scholar 

  43. Messier SP, Mihalko SL, Legault C, Miller GD, Nicklas BJ, DeVita P, et al. Effects of intensive diet and exercise on knee joint loads, inflammation, and clinical outcomes among overweight and obese adults with knee osteoarthritis: the IDEA randomized clinical trial. JAMA. 2013;310(12):1263–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jiang X, Nelson AE, Cleveland RJ, Beavers DP, Schwartz TA, Arbeeva L, et al. Precision medicine approach to develop and internally validate optimal exercise and weight-loss treatments for overweight and obese adults with knee osteoarthritis: Data from a single-center randomized trial. Arthritis Care Res (Hoboken). 2021;73(5):693–701. This is among the first studies to apply precision medicine methodology to interventions in OA, and uses data from an existing, high quality RCT, finding potential subgroups where benefit could be increased by optimal assignment based on baseline features.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen B, Butte AJ. Leveraging big data to transform target selection and drug discovery. Clin Pharmacol Ther. 2016;99(3):285–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hodos RA, Kidd BA, Shameer K, Readhead BP, Dudley JT. In silico methods for drug repurposing and pharmacology. Wiley Interdiscip Rev Syst Biol Med. 2016;8(3):186–210.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Jang IJ. Artificial intelligence in drug development: clinical pharmacologist perspective. Transl Clin Pharmacol. 2019;27(3):87–8.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gianfrancesco MA, Tamang S, Yazdany J, Schmajuk G. Potential biases in machine learning algorithms using electronic health record data. JAMA Intern Med. 2018;178(11):1544–7.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Reinke A, Tizabi MD, Eisenmann M, Maier-Hein L. Common pitfalls and recommendations for grand challenges in medical artificial intelligence. Eur Urol Focus. 2021;7(4):710–2.

    Article  PubMed  Google Scholar 

Download references

Funding

Funding for this work was provided in part by NIH/NIAMS K24AR081368 and P30AR07250. The funders had no role in the writing or submission of the manuscript. Dr. Nelson also reports funding outside this work from NIH/NIAMS and the Rheumatology Research Foundation; she has received honoraria from Osteoarthritis and Cartilage and Nestle Health. The other authors report no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda E. Nelson.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arbeeva, L., Minnig, M.C., Yates, K.A. et al. Machine Learning Approaches to the Prediction of Osteoarthritis Phenotypes and Outcomes. Curr Rheumatol Rep 25, 213–225 (2023). https://doi.org/10.1007/s11926-023-01114-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-023-01114-9

Keywords

Navigation