Skip to main content

Advertisement

Log in

Exogenous miRNA: A Perspective Role as Therapeutic in Rheumatoid Arthritis

  • Rheumatoid Arthritis (L Moreland, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis (RA) is an autoimmune and chronic inflammatory disease that causes joint deformation. Till now several studies has been carried out promising its cure, but curing has not yet achieved to the satisfactory levels. Herbal approach to treat disease by a cross-kingdom mechanism via exogenous miRNA is an emerging trend to target associated genes with RA pathogenesis as a therapeutic potential. The concept of acquired/exogenous miRNA into pathophysiological prospect provides an opportunity to explore inter-species kingdom like regulation of plant miRNAs on human health. The change in gene expression was attributed by a short 22-24 nucleotide long sequence that binds to its complementary region to suppress/silence the gene expression. This makes exogenous miRNA a novel approach for targeted therapy to treat complex chronic inflammatory diseases. Here, aim of the review was to address significance of plant derived miRNA based targeted therapy to regulate inflammation in RA.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, et al. Rheumatoid arthritis. Nat Rev Dis Pri. 2018;4:18001. This article describes the heterogeneity of RA disease.

  2. World Health Organization. Available from ttps://www.who.int/chp/topics/rheumatic/en/. Accessed 2019.

  3. Gierut A, Perlman H, Pope RM. Innate immunity and rheumatoid arthritis. Rheum Dis Clin. 2010;36(2):271–96. https://doi.org/10.1016/j.rdc.2010.03.004.

    Article  Google Scholar 

  4. Guo Q, Wang Y, Xu D, Nossent J, Pavlos NJ, Xu J. Rheumatoid arthritis: pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018;6:15. https://doi.org/10.1038/s41413-018-0016-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105.

    Article  CAS  Google Scholar 

  6. Dharap A, Pokrzywa C, Murali S, Pandi G, Vemuganti R. MicroRNA miR-324-3p induces promoter-mediated expression of RelA gene. PLoS One. 2013;8(11):e79467. https://doi.org/10.1371/journal.pone.0079467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Marín RM, Sulc M, Vanícek J. Searching the coding region for microRNA targets. RNA. 2013;19(4):467–74. https://doi.org/10.1261/rna.035634.112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brümmer A, Hausser J. MicroRNA binding sites in the coding region of mRNAs: extending the repertoire of post-transcriptional gene regulation. Bioessays. 2014;36(6):617–26. https://doi.org/10.1002/bies.201300104.

    Article  CAS  PubMed  Google Scholar 

  9. Chandan K, Gupta M, Sarwat M. Role of Host and Pathogen-Derived MicroRNAs in Immune Regulation During Infectious and Inflammatory Diseases. Front Immunol. 24(10):3081. https://doi.org/10.3389/fimmu.2019.03081. This article describes the role of plant exogenous miRNA in alteration of host gene expression.

  10. Sanchita T. R, Asif MH, Trivedi PK. Dietary plant miRNAs as an augmented therapy: cross-kingdom gene regulation. RNA Biol. 2018;15(12):1433–9. https://doi.org/10.1080/15476286.2018.1551693. This article describes the importance of dietary miRNA in cross-kingdom regulation.

  11. Li Z, Xu R, Li N. MicroRNAs from plants to animals, do they define a new messenger for communication? Nutr Metab. 2018;15:68. https://doi.org/10.1186/s12986-018-0305-8. This article describes the conservation of miRNA between plants and animals.

  12. Lukasik A, Brzozowska I, Zielenkiewicz U, Zielenkiewicz P. Detection of Plant miRNAs Abundance in Human Breast Milk. Int J Mol Sci. 2017;19(1):37. https://doi.org/10.3390/ijms19010037. This article describes the presence of plant based miRNA in Human body fluid.

  13. Wang W, Liu D, Zhang X, Chen D, Cheng Y, Shen F. Plant MicroRNAs in Cross-Kingdom Regulation of Gene Expression. Int J Mol Sci. 2018;19(7):2007. https://doi.org/10.3390/ijms19072007. This article describes the use of exogenous miRNA as a therapeutic target to treat various diseases.

  14. Ardekani AM, Naeini MM. The Role of MicroRNAs in Human Diseases. Avicenna J Med Biotechnol. 2010;2(4):161–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Liang H, Huang L, Cao J, Zen K, Chen X, Zhang CY. Regulation of mammalian gene expression by exogenous microRNAs. Wiley Interdiscip Rev RNA. 2012;3(5):733–42. https://doi.org/10.1002/wrna.1127.

    Article  CAS  PubMed  Google Scholar 

  16. Chamnanchanunt S, Kuroki C, Desakorn V, Enomoto M, Thanachartwet V, Sahassananda D, et al. Downregulation of plasma miR-451 and miR-16 in Plasmodium vivax infection. Exp Parasitol. 2015;155:19–25. https://doi.org/10.1016/j.exppara.2015.04.013.

    Article  CAS  PubMed  Google Scholar 

  17. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. Modulation of hepatitis C virus RNA abundance by a liver-specific. Micro RNA Sci. 2005;309(5740):1577–81. https://doi.org/10.1126/science.1113329.

    Article  CAS  Google Scholar 

  18. Kitab B, Alj HS, Ezzikouri S, Benjelloun S. MicroRNAs as Important Players in Host-hepatitis B Virus Interactions. J Clin Transl Hepatol. 2015;3(2):149–61. https://doi.org/10.14218/JCTH.2015.00002.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Moran-Moguel MC, Petarra-Del Rio S, Mayorquin-Galvan EE, Zavala-Cerna MG. Rheumatoid Arthritis and miRNAs: A Critical Review through a Functional View. J Immunol Res. 2018;2018:2474529–16. https://doi.org/10.1155/2018/2474529. This article describes the functional differences between plant and animal miRNA.

  20. Catalanotto C, Cogoni C, Zardo G. MicroRNA in Control of Gene Expression: An Overview of Nuclear Functions. Int J Mol Sci. 2016;17(10):1712. https://doi.org/10.3390/ijms17101712.

    Article  CAS  PubMed Central  Google Scholar 

  21. Zeng J, Gupta VK, Jiang Y, Yang B, Gong L, Zhu H. Cross-Kingdom Small RNAs Among Animals. Plants Microbes Cells. 2019;8(4):371. https://doi.org/10.3390/cells8040371. This article describes the way of communication through conserved exogenous miRNA among kingdoms.

  22. Fang Y, Spector DL. Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants. Curr Biol. 2007;17:818–23. https://doi.org/10.1016/j.cub.2007.04.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Song L, Han MH, Lesicka J, Fedoroff N. Arabidopsis primary microRNA processing proteins HYL1 and DCL1 define a nuclear body distinct from the Cajal body. PNA Sci USA. 2007;104:5437–42. https://doi.org/10.1073/pnas.0701061104.

    Article  CAS  Google Scholar 

  24. Xie Z, Allen E, Fahlgren N, Calamar A, Givan SA, Carrington JC. Expression of Arabidopsis MIRNA genes. Plant Physiol. 2005;138:2145–54. https://doi.org/10.1104/pp.105.062943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kurihara Y, Watanabe Y. Arabidopsis micro-RNA biogenesis through Dicer-like 1 protein functions. PNA Sci USA. 2004;101:12753–8. https://doi.org/10.1073/pnas.0403115101.

    Article  CAS  Google Scholar 

  26. Yu B, Yang Z, Li J, Minakhina S, Yang M, Padgett RW, et al. Methylation as a crucial step in plant microRNA biogenesis. Sci. 2005;307:932–5. https://doi.org/10.1126/science.1107130.

    Article  CAS  Google Scholar 

  27. Huang Y, Ji L, Huang Q, Vassylyev DG, Chen X, Ma JB. Structural insights into mechanisms of the small RNA methyltransferase HEN1. Nat. 2009;461(7265):823–7. https://doi.org/10.1038/nature08433.

    Article  CAS  Google Scholar 

  28. Yu B, Yang Z, Li J, Minakhina S, Yang M, Padgett RW, et al. Methylation as a crucial step in plant microRNA biogenesis. Sci. 2005;307(5711):932–5. https://doi.org/10.1126/science.1107130.

    Article  CAS  Google Scholar 

  29. Park MY, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig RS. Nuclear processing and export of microRNAs in Arabidopsis. PNA Sci USA. 2005;102:3691–6. https://doi.org/10.1073/pnas.0405570102.

    Article  CAS  Google Scholar 

  30. Borchert GM, Lanier W, Davidson BL. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol. 2006;13:1097–101. https://doi.org/10.1038/nsmb1167.

    Article  CAS  PubMed  Google Scholar 

  31. Ruby JG, Stark A, Johnston WK, Kellis M, Bartel DP, Lai EC. Evolution, biogenesis, expression, and target predictions of a substantially expanded set of Drosophila microRNAs. Genome Res. 2007;17:1850–64. https://doi.org/10.1101/gr.6597907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Huntzinger E, Izaurralde E. Gene silencing by microRNAs: contributions of translational repression and mRNA decay. Nat Rev Genet. 2011;12(2):99–110. https://doi.org/10.1038/nrg2936.

    Article  CAS  PubMed  Google Scholar 

  33. Ipsaro JJ, Joshua-Tor L. From guide to target: molecular insights into eukaryotic RNA-interference machinery. Nat Struct Mol. 2015;22(1):20–8. https://doi.org/10.1038/nsmb.2931.

    Article  CAS  Google Scholar 

  34. Forman JJ, Legesse-Miller A, Coller HA. A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence. PNA Sci USA. 2008;105(39):14879–84. https://doi.org/10.1073/pnas.0803230105.

    Article  Google Scholar 

  35. Zhang J, Zhou W, Liu Y, Liu T, Li C, Wang L. Oncogenic role of microRNA-532-5p in human colorectal cancer via targeting of the 5'UTR of RUNX3. Oncol Lett. 2018;15(5):7215–20. https://doi.org/10.3892/ol.2018.8217. This article describes miRNA which can bind complementary region within 5’UTR.

  36. Dharap A, Pokrzywa C, Murali S, Pandi G, Vemuganti R. MicroRNA miR-324-3p induces promoter-mediated expression of RelA gene. PLoS One. 2013;8(11):e79467. https://doi.org/10.1371/journal.pone.0079467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jo MH, Shin S, Jung SR, Kim E, Song JJ, Hohng S. Human Argonaute 2 Has Diverse Reaction Pathways on Target RNAs. Mol Cell. 2015;59(1):117–24. https://doi.org/10.1016/j.molcel.2015.04.027.

    Article  CAS  PubMed  Google Scholar 

  38. Jonas S, Izaurralde E. Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet. 2015;16(7):421–33. https://doi.org/10.1038/nrg3965.

    Article  CAS  PubMed  Google Scholar 

  39. Hunter MP, Ismail N, Zhang X, Aguda BD, Lee EJ, Yu L, et al. Detection of microRNA expression in human peripheral blood microvesicles. PLoS One. 2008;3:e3694.

    Article  Google Scholar 

  40. Cocucci E, Racchetti G, Meldolesi J. Shedding microvesicles: artefacts no more. Trends Cell Biol. 2009;19:43–51.

    Article  CAS  Google Scholar 

  41. Li Z, Xu R, Li N. MicroRNAs from plants to animals, do they define a new messenger for communication? Nutr Metab. 2018;15:68.

    Article  Google Scholar 

  42. Kinet V, Halkein J, Dirkx E, Windt LJ. Cardiovascular extracellular microRNAs: emerging diagnostic markers and mechanisms of cell-to-cell RNA communication. Front Genet. 2013;4:214. https://doi.org/10.3389/fgene.2013.00214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ji L, Chen X. Regulation of small RNA stability: methylation and beyond. Cell Res. 2012;22:624–36.

    Article  CAS  Google Scholar 

  44. Liang H, Zen K, Zhang J, Zhang CY, Chen X. New roles for microRNAs in cross-species communication. RNA Biol. 2013;10:367–70.

    Article  CAS  Google Scholar 

  45. Zhou Z, Li X, Liu J, Dong L, Chen Q, Liu J, et al. Honeysuckle-encoded atypical microRNA2911 directly targets influenza A viruses. Cell Res. 2015;25:39–49.

    Article  CAS  Google Scholar 

  46. Zhang L, Hou D, Chen X, Li D, Zhu L, Zhang Y, et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res. 2012;22:107–26.

    Article  CAS  Google Scholar 

  47. Hou D, He F, Ma L, Cao M, Zhou Z, Wei Z, et al. The potential atheroprotective role of plant MIR156a as a repressor of monocyte recruitment on inflamed human endothelial cells. J Nutr Biochem. 2018;57:197–205. This article describes the inhibitory role of green vegetables derived miR156a in human aortic endothelial cells.

  48. Liang G, Zhu Y, Sun B, Shao Y, Jing A, Wang J, et al. Assessing the survival of exogenous plant microRNA in mice. Food Sci Nutr. 2014;2:380–8.

    Article  CAS  Google Scholar 

  49. Chen X, Dai GH, Ren ZM, Tong YL, Yang F, Zhu YQ. Identification of dietetically absorbed rapeseed (Brassica campestris L.) bee pollen microRNAs in serum of mice. Biomed Res Int. 2016;2016:1–5.

    Google Scholar 

  50. Chin AR, Fong MY, Somlo G, Wu J, Swiderski P, Wu X, et al. Cross-kingdom inhibition of breast cancer growth by plant miR159. Cell Res. 2016;26:217–28.

    Article  CAS  Google Scholar 

  51. Li J, Zhang Y, Li D, Liu Y, Chu D, Jiang X, et al. Small non-coding RNAs transfer through mammalian placenta and directly regulate fetal gene expression. Protein Cell. 2015;6(6):391–6. https://doi.org/10.1007/s13238-015-0156-2.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zhou Z, Li X, Liu J, Dong L, Chen Q, Liu J, et al. Honeysuckle-encoded atypical microRNA2911 directly targets influenza A viruses. Cell Res. 2015;25:39–49.

    Article  CAS  Google Scholar 

  53. Li Z, Xu R, Li N. MicroRNAs from plants to animals, do they define a new messenger for communication? Nutri Metab. 2018;15:68. https://doi.org/10.1186/s12986-018-0305-8.

    Article  CAS  Google Scholar 

  54. Liu YC, Chen WL, Kung WH, Huang HD. Plant miRNAs found in human circulating system provide evidences of cross kingdom RNAi. BMC Genomics. 2017;18:12.

    Article  CAS  Google Scholar 

  55. Kumar D, Kumar S, Ayachit G, Bhairappanavar SB, Ansari A, Sharma P, Soni S, Das J. Cross-kingdom regulation of putative miRNAs derived from happy tree in cancer pathway: a systems biology approach. Int J Mol Sci. 2017;18(6):1191. https://doi.org/10.3390/ijms18061191. This article describes the role of medicinal plant derived miRNA in Cancer.

  56. Sharma A, Sahu S, Kumari P, Gopi SR, Malhotra R, Biswas S. Genome-wide identification and functional annotation of miRNAs in anti-inflammatory plant and their cross-kingdom regulation in homo sapiens. J Biomol Struct Dyn. 2017;35:1389–400. This article describes plant miRNA, as a therapeutic approach in RA.

  57. LaMonte G, Philip N, Reardon J, Lacsina JR, Majoros W, Chapman L, et al. Translocation of sickle cell erythrocyte microRNAs into Plasmodium falciparum inhibits parasite translation and contributes to malaria resistance. Cell Host Microbe. 2012;12:187–99.

    Article  CAS  Google Scholar 

  58. Samols MA, Skalsky RL, Maldonado AM, Riva A, Lopez MC, Baker HV, et al. Identification of cellular genes targeted by KSHV-encoded microRNAs. PLoS Pathog. 2007;3:e65.

    Article  Google Scholar 

  59. Jopling CL, Norman KL, Sarnow P. Positive and negative modulation of viral and cellular mRNAs by liver-specific microRNA miR-122. Cold Spring Harb Symp Quant Biol. 2006;71:369–76. https://doi.org/10.1101/sqb.2006.71.022.

    Article  CAS  PubMed  Google Scholar 

  60. Ledda B, Ottaggio L, Izzotti A, Sukkar SG, Miele M. Small RNAs in eucaryotes: new clues for amplifying microRNA benefits. Cell Bioscience. 2020;10:1. https://doi.org/10.1186/s13578-019-0370-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Condrat CE, Thompson DC, Barbu MG, Bugnar OL, Boboc A, Cretoiu D, et al. miRNAs as Biomarkers in Disease: Latest Findings Regarding Their Role in Diagnosis and Prognosis. Cells. 2020;9(2):276. https://doi.org/10.3390/cells9020276. This article describes circulatory miRNA as disease specific biomarker.

  62. Baumann V, Winkler J. miRNA-based therapies: strategies and delivery platforms for oligonucleotide and non-oligonucleotide agents. Future Med Chem. 2014;6(17):1967–84. https://doi.org/10.4155/fmc.14.116.

    Article  CAS  PubMed  Google Scholar 

  63. Bader AG. miR-34 - a microRNA replacement therapy is headed to the clinic. Front Genet. 2012;3:120. https://doi.org/10.3389/fgene.2012.00120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang Y, Yun Z, Gong L, Qu H, Duan X, Jiang Y, et al. Comparison of miRNA Evolution and Function in Plants and Animals. Microrna. 2018;7(1):4–10. https://doi.org/10.2174/2211536607666180126163031.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We acknowledge Council of Scientific and Industrial Research (CSIR), Project code MLP 2013 and Department of Science and Technology (DST), Government of India, New Delhi, India for providing financial support. Mohd Saquib received fellowship support from CSIR, Prachi Agnihotri received fellowship from DST project GAP0212, and Monu received fellowship support from CSIR. We also thank Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Delhi, India for research and AcSIR for academic support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sagarika Biswas.

Ethics declarations

Conflict of interest

All authors declared no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Rheumatoid Arthritis

Key message

• Functional implication of plant miRNAs in human is a useful strategy in therapeutic aspect.

• Plant exogenous miRNA and host mRNA interactions might have a potential role in the alteration of genetic regulation of host cellular machinery.

• The ability of plant miRNA to regulate the cross-kingdom mRNA translation can be used for the treatment of RA.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saquib, M., Agnihotri, P., Monu et al. Exogenous miRNA: A Perspective Role as Therapeutic in Rheumatoid Arthritis. Curr Rheumatol Rep 23, 43 (2021). https://doi.org/10.1007/s11926-021-01009-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11926-021-01009-7

Keywords

Navigation