Skip to main content

Advertisement

Log in

Calcinosis in Systemic Sclerosis: Updates in Pathophysiology, Evaluation, and Treatment

  • Scleroderma (J Varga, Section Editor)
  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Calcinosis is a common complication of systemic sclerosis with no known effective pharmacologic therapy. We reviewed the literature regarding systemic sclerosis-related calcinosis as well as other disorders of biomineralization in order to identify targets of future study for calcinosis.

Recent Findings

Patients with systemic sclerosis-related calcinosis demonstrate systemic abnormalities in mineralization pathways, including decreased levels of the mineralization inhibitor inorganic pyrophosphate. Insights from other mineralization disorders suggest that local and systemic phosphate metabolism pathways involving the ABCC6, ENPP1, and NT5E genes play a critical role in regulation of ectopic calcification. Knockout models of these genes may lead to an appropriate murine model for study of calcinosis. Poly(ADP-ribose) polymerase (PARP) enzymes may also play a critical role in hydroxyapatite nucleation and warrant future study in systemic sclerosis.

Summary

Study of local and systemic mineralization pathways, particularly phosphate metabolism pathways and PARP enzymes, should provide greater insight into the pathogenesis of systemic sclerosis-related calcinosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Pai S, Hsu V. Are there risk factors for scleroderma-related calcinosis? Mod Rheumatol. 2018;28(3):518–22.

    CAS  PubMed  Google Scholar 

  2. Bartoli F, Fiori G, Braschi F, Amanzi L, Bruni C, Blagojevic J, et al. Calcinosis in systemic sclerosis: subsets, distribution and complications. Rheumatology. 2016;55(9):1610–4.

    PubMed  Google Scholar 

  3. Gauhar R, Wilkinson J, Harris J, Manning J, Herrick AL. Calcinosis preferentially affects the thumb compared to other fingers in patients with systemic sclerosis. Scand J Rheumatol. 2016;45(4):317–20.

    CAS  PubMed  Google Scholar 

  4. Hughes M, Hodgson R, Harris J, Porter N, Jackson S, Kirwadi A, et al. Further evidence that calcinosis is associated with repetitive trauma in systemic sclerosis. Semin Arthritis Rheum. 2020;50(1):E4–5.

    PubMed  Google Scholar 

  5. Avouac J, Mogavero G, Guerini H, Drape JL, Mathieu A, Kahan A, et al. Predictive factors of hand radiographic lesions in systemic sclerosis: a prospective study. Ann Rheum Dis. 2011;70(4):630–3.

    CAS  PubMed  Google Scholar 

  6. Sakata K, Kaneko Y, Yasuoka H, Takeuchi T. Association of radiographic findings in hand X-ray with clinical features and autoantibodies in patients with systemic sclerosis. Clin Rheumatol. 2020;39(1):113–8.

    PubMed  Google Scholar 

  7. Motegi SI, Sekiguchi A, Yonemoto Y, Mieda T, Chikuda H, Ishikawa O. Demographic and clinical characteristics of spinal calcinosis in systemic sclerosis: possible association with peripheral angiopathy. J Dermatol. 2019;46(1):33–6.

    PubMed  Google Scholar 

  8. Morgan ND, Shah AA, Mayes MD, Domsic RT, Medsger TA Jr, Steen VD, et al. Clinical and serological features of systemic sclerosis in a multicenter African American cohort: analysis of the genome research in African American scleroderma patients clinical database. Medicine. 2017;96(51):e8980.

    PubMed  PubMed Central  Google Scholar 

  9. Fauny M, Bauer E, Albuisson E, Perrier-Cornet J, Deibener J, Chabot F, et al. Vertebral fracture prevalence and measurement of the scanographic bone attenuation coefficient on CT-scan in patients with systemic sclerosis. Rheumatol Int. 2018;38(10):1901–10.

    PubMed  Google Scholar 

  10. Valenzuela A, Baron M, Canadian scleroderma research G, Herrick AL, Proudman S, Stevens W, et al. Calcinosis is associated with digital ulcers and osteoporosis in patients with systemic sclerosis: a scleroderma clinical trials consortium study. Semin Arthritis Rheum. 2016;46(3):344–9.

    PubMed  PubMed Central  Google Scholar 

  11. Hsu V SN, Li Q, Varga J. Reduced circulating levels of inorganic pyrophosphate are associated with ectopic calcification in scleroderma spectrum disorders. Poster presented at: 2019 ACR/ARP annual meeting, Atlanta, GA.

  12. Hsu VM, Emge T, Schlesinger N. X-ray diffraction analysis of spontaneously draining calcinosis in scleroderma patients. Scand J Rheumatol. 2017;46(2):118–21.

    CAS  PubMed  Google Scholar 

  13. Brandt KD, Krey PR. Chalky joint effusion. The result of massive synovial deposition of calcium apatite in progressive systemic sclerosis. Arthritis Rheum. 1977;20(3):792–6.

    CAS  PubMed  Google Scholar 

  14. Leroux JL, Pernot F, Fedou P, Poubelle P, Bonnel F, Baldet P, et al. Ultrastructural and crystallographic study of calcifications from a patient with CREST syndrome. J Rheumatol. 1983;10(2):242–6.

    CAS  PubMed  Google Scholar 

  15. Baldet P, Pernot F, Blotman F, Bonnel F, Simon L. CRST syndrome. Ultrastructural and physico-chemical studies of calcifications (author’s transl). Ann Pathol. 1981;1(4):259–69.

    CAS  PubMed  Google Scholar 

  16. Urganus AL, Zhao YD, Pachman LM. Juvenile dermatomyositis calcifications selectively displayed markers of bone formation. Arthritis Rheum. 2009;61(4):501–8.

    PubMed  PubMed Central  Google Scholar 

  17. Teng AL, Robbin MR, Furey CG, Easley SE, Abdul-Karim FW, Bohlman HH. Tumoral calcinosis in the cervical spine in a patient with CREST syndrome. A case report. J Bone Joint Surg Am. 2006;88(1):193–7.

    PubMed  Google Scholar 

  18. Olsen KM, Pike EJ, Chew FS. Progressive systemic sclerosis with massive paraspinal soft-tissue calcinosis. AJR Am J Roentgenol. 2004;183(3):634.

    PubMed  Google Scholar 

  19. Nakamura T, Hirakawa K, Takaoka H, Iyama K. Dystrophic calcinosis with both a huge calcified mass in the cervical spine and calcification in the chest wall in a patient with rheumatoid overlap syndrome. Clin Rheumatol. 2016;35(5):1403–9.

    PubMed  Google Scholar 

  20. Ojemann JG, Grubb RL, Kyriakos M, Baker KB. Calcium carbonate apatite deposition in the cervical spine with associated vertebral destruction. Case Report J Neurosurg. 1997;86(6):1022–6.

    CAS  PubMed  Google Scholar 

  21. Belloli L, Ughi N, Massarotti M, Marasini B, Biondi ML, Brambilla G. Role of fetuin-A in systemic sclerosis-associated calcinosis. J Rheumatol. 2010;37(12):2638–9.

    PubMed  Google Scholar 

  22. Schinke T, Amendt C, Trindl A, Poschke O, Muller-Esterl W, Jahnen-Dechent W. The serum protein alpha2-HS glycoprotein/fetuin inhibits apatite formation in vitro and in mineralizing calvaria cells. A possible role in mineralization and calcium homeostasis. J Biol Chem. 1996;271(34):20789–96.

    CAS  PubMed  Google Scholar 

  23. Heiss A, Eckert T, Aretz A, Richtering W, van Dorp W, Schafer C, et al. Hierarchical role of fetuin-A and acidic serum proteins in the formation and stabilization of calcium phosphate particles. J Biol Chem. 2008;283(21):14815–25.

    CAS  PubMed  Google Scholar 

  24. Binkert C, Demetriou M, Sukhu B, Szweras M, Tenenbaum HC, Dennis JW. Regulation of osteogenesis by fetuin. J Biol Chem. 1999;274(40):28514–20.

    CAS  PubMed  Google Scholar 

  25. Dovio A, Data V, Carignola R, Calzolari G, Vitetta R, Ventura M, et al. Circulating osteoprotegerin and soluble RANK ligand in systemic sclerosis. J Rheumatol. 2008;35(11):2206–13.

    CAS  PubMed  Google Scholar 

  26. Nakahara T, Dweck MR, Narula N, Pisapia D, Narula J, Strauss HW. Coronary artery calcification: from mechanism to molecular imaging. J Am Coll Cardiol Img. 2017;10(5):582–93.

    Google Scholar 

  27. Jansen RS, Kucukosmanoglu A, de Haas M, Sapthu S, Otero JA, Hegman IE, et al. ABCC6 prevents ectopic mineralization seen in pseudoxanthoma elasticum by inducing cellular nucleotide release. Proc Natl Acad Sci U S A. 2013;110(50):20206–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Jansen RS, Duijst S, Mahakena S, Sommer D, Szeri F, Varadi A, et al. ABCC6-mediated ATP secretion by the liver is the main source of the mineralization inhibitor inorganic pyrophosphate in the systemic circulation-brief report. Arterioscler Thromb Vasc Biol. 2014;34(9):1985–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Jung A, Bisaz S, Fleisch H. The binding of pyrophosphate and two diphosphonates by hydroxyapatite crystals. Calcif Tissue Res. 1973;11(4):269–80.

    CAS  PubMed  Google Scholar 

  30. Ho AM, Johnson MD, Kingsley DM. Role of the mouse ank gene in control of tissue calcification and arthritis. Science. 2000;289(5477):265–70.

    CAS  PubMed  Google Scholar 

  31. Kavanaugh MP, Kabat D. Identification and characterization of a widely expressed phosphate transporter/retrovirus receptor family. Kidney Int. 1996;49(4):959–63.

    CAS  PubMed  Google Scholar 

  32. Bergen AA, Plomp AS, Schuurman EJ, Terry S, Breuning M, Dauwerse H, et al. Mutations in ABCC6 cause pseudoxanthoma elasticum. Nat Genet. 2000;25(2):228–31.

    CAS  PubMed  Google Scholar 

  33. Sanchez-Tevar AM, Garcia-Fernandez M, Murcia-Casas B, Rioja-Villodres J, Carrillo JL, Camacho M, et al. Plasma inorganic pyrophosphate and alkaline phosphatase in patients with pseudoxanthoma elasticum. Ann Transl Med. 2019;7(24):798.

    PubMed  PubMed Central  Google Scholar 

  34. Rutsch F, Vaingankar S, Johnson K, Goldfine I, Maddux B, Schauerte P, et al. PC-1 nucleoside triphosphate pyrophosphohydrolase deficiency in idiopathic infantile arterial calcification. Am J Pathol. 2001;158(2):543–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Nurnberg P, Thiele H, Chandler D, Hohne W, Cunningham ML, Ritter H, et al. Heterozygous mutations in ANKH, the human ortholog of the mouse progressive ankylosis gene, result in craniometaphyseal dysplasia. Nat Genet. 2001;28(1):37–41.

    CAS  PubMed  Google Scholar 

  36. Colgan SP, Eltzschig HK, Eckle T, Thompson LF. Physiological roles for ecto-5′-nucleotidase (CD73). Purinergic Signal. 2006;2(2):351–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. St Hilaire C, Ziegler SG, Markello TC, Brusco A, Groden C, Gill F, et al. NT5E mutations and arterial calcifications. N Engl J Med. 2011;364(5):432–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Anderson HC. Vesicles associated with calcification in the matrix of epiphyseal cartilage. J Cell Biol. 1969;41(1):59–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Cui L, Houston DA, Farquharson C, MacRae VE. Characterisation of matrix vesicles in skeletal and soft tissue mineralisation. Bone. 2016;87:147–58.

    CAS  PubMed  Google Scholar 

  40. Stewart AJ, Roberts SJ, Seawright E, Davey MG, Fleming RH, Farquharson C. The presence of PHOSPHO1 in matrix vesicles and its developmental expression prior to skeletal mineralization. Bone. 2006;39(5):1000–7.

    CAS  PubMed  Google Scholar 

  41. Hasegawa T, Yamamoto T, Tsuchiya E, Hongo H, Tsuboi K, Kudo A, et al. Ultrastructural and biochemical aspects of matrix vesicle-mediated mineralization. Jpn Dent Sci Rev. 2017;53(2):34–45.

    PubMed  Google Scholar 

  42. Kirsch T, Harrison G, Golub EE, Nah HD. The roles of annexins and types II and X collagen in matrix vesicle-mediated mineralization of growth plate cartilage. J Biol Chem. 2000;275(45):35577–83.

    CAS  PubMed  Google Scholar 

  43. Mahamid J, Sharir A, Gur D, Zelzer E, Addadi L, Weiner S. Bone mineralization proceeds through intracellular calcium phosphate loaded vesicles: a cryo-electron microscopy study. J Struct Biol. 2011;174(3):527–35.

    CAS  PubMed  Google Scholar 

  44. Azari F, Vali H, Guerquin-Kern JL, Wu TD, Croisy A, Sears SK, et al. Intracellular precipitation of hydroxyapatite mineral and implications for pathologic calcification. J Struct Biol. 2008;162(3):468–79.

    CAS  PubMed  Google Scholar 

  45. Boonrungsiman S, Gentleman E, Carzaniga R, Evans ND, McComb DW, Porter AE, et al. The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation. Proc Natl Acad Sci U S A. 2012;109(35):14170–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Furmanik M, Shanahan CM. ER stress regulates alkaline phosphatase gene expression in vascular smooth muscle cells via an ATF4-dependent mechanism. BMC Re Notes. 2018;11(1):483.

    Google Scholar 

  47. Zhu Q, Guo R, Liu C, Fu D, Liu F, Hu J, et al. Endoplasmic reticulum stress-mediated apoptosis contributing to high glucose-induced vascular smooth muscle cell calcification. J Vasc Res. 2015;52(5):291–8.

    CAS  PubMed  Google Scholar 

  48. Nakano-Kurimoto R, Ikeda K, Uraoka M, Nakagawa Y, Yutaka K, Koide M, et al. Replicative senescence of vascular smooth muscle cells enhances the calcification through initiating the osteoblastic transition. Am J Physiol Heart Circ Physiol. 2009;297(5):H1673–84.

    CAS  PubMed  Google Scholar 

  49. •• Muller KH, Hayward R, Rajan R, Whitehead M, Cobb AM, Ahmad S, et al. Poly(ADP-ribose) links the dna damage response and biomineralization. Cell Rep. 2019;27(11):3124–38 e13 This study demonstrated that poly(ADP-ribose) co-localizes with areas of DNA damage, binds calcium to form calcium-rich spheres, and induces bone-like calcification of collagen fibrils in the presence of calcium phosphate.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. •• Wang C, Xu W, An J, Liang M, Li Y, Zhang F, et al. Poly(ADP-ribose) polymerase 1 accelerates vascular calcification by upregulating Runx2. Nat Commun. 2019;10(1):1203 This study demonstrated that overexpression of PARP1 in rat aortas increased vascular calcification and osteogenic differentiation of vascular smooth muscle cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Alano CC, Kauppinen TM, Valls AV, Swanson RA. Minocycline inhibits poly(ADP-ribose) polymerase-1 at nanomolar concentrations. Proc Natl Acad Sci U S A. 2006;103(25):9685–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Davies CA, Jeziorska M, Freemont AJ, Herrick AL. Expression of osteonectin and matrix Gla protein in scleroderma patients with and without calcinosis. Rheumatology. 2006;45(11):1349–55.

    CAS  PubMed  Google Scholar 

  53. Luo G, Ducy P, McKee MD, Pinero GJ, Loyer E, Behringer RR, et al. Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature. 1997;386(6620):78–81.

    CAS  PubMed  Google Scholar 

  54. Khosroshahi HE, Sahin SC, Akyuz Y, Ede H. Long term follow-up of four patients with Keutel syndrome. Am J Med Genet A. 2014;164A(11):2849–56.

    CAS  PubMed  Google Scholar 

  55. Rosenthal AK, Gohr CM, Uzuki M, Masuda I. Osteopontin promotes pathologic mineralization in articular cartilage. Matrix Biol. 2007;26(2):96–105.

    CAS  PubMed  Google Scholar 

  56. Boskey AL, Maresca M, Ullrich W, Doty SB, Butler WT, Prince CW. Osteopontin-hydroxyapatite interactions in vitro: inhibition of hydroxyapatite formation and growth in a gelatin-gel. Bone Mineral. 1993;22(2):147–59.

    CAS  PubMed  Google Scholar 

  57. Hunter GK, Hauschka PV, Poole AR, Rosenberg LC, Goldberg HA. Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. Biochem J. 1996;317(Pt 1):59–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Wu M, Schneider DJ, Mayes MD, Assassi S, Arnett FC, Tan FK, et al. Osteopontin in systemic sclerosis and its role in dermal fibrosis. J Invest Dermatol. 2012;132(6):1605–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Lorenzen JM, Kramer R, Meier M, Werfel T, Wichmann K, Hoeper MM, et al. Osteopontin in the development of systemic sclerosis--relation to disease activity and organ manifestation. Rheumatology. 2010;49(10):1989–91.

    CAS  PubMed  Google Scholar 

  60. Portal-Nunez S, Mediero A, Esbrit P, Sanchez-Pernaute O, Largo R, Herrero-Beaumont G. Unexpected bone formation produced by RANKL blockade. Trends Endocrinol Metab. 2017;28(10):695–704.

    CAS  PubMed  Google Scholar 

  61. Li J, Sarosi I, Yan XQ, Morony S, Capparelli C, Tan HL, et al. RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism. Proc Natl Acad Sci U S A. 2000;97(4):1566–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Gamal RM, Gamal WM, Ghandour AM, Abozaid HSM, Mohamed ME, Emad Y, et al. Study of the osteoprotegerin/receptor activator of nuclear factor-kB ligand system association with inflammation and atherosclerosis in systemic sclerosis. Immunol Investig. 2018;47(3):241–50.

    CAS  Google Scholar 

  63. Zhao G, Xu MJ, Zhao MM, Dai XY, Kong W, Wilson GM, et al. Activation of nuclear factor-kappa B accelerates vascular calcification by inhibiting ankylosis protein homolog expression. Kidney Int. 2012;82(1):34–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Jahnen-Dechent W, Schafer C, Heiss A, Grotzinger J. Systemic inhibition of spontaneous calcification by the serum protein alpha 2-HS glycoprotein/fetuin. Z Kardiol. 2001;90(Suppl 3):47–56.

    PubMed  Google Scholar 

  65. Jahnen-Dechent W, Heiss A, Schafer C, Ketteler M. Fetuin-A regulation of calcified matrix metabolism. Circ Res. 2011;108(12):1494–509.

    CAS  PubMed  Google Scholar 

  66. Zhang Y, Gilliam AC. Animal models for scleroderma: an update. Curr Rheumatol Rep. 2002;4(2):150–62.

    PubMed  Google Scholar 

  67. Marangoni RG, Varga J, Tourtellotte WG. Animal models of scleroderma: recent progress. Curr Opin Rheumatol. 2016;28(6):561–70.

    CAS  PubMed  Google Scholar 

  68. Beck K, Hayashi K, Nishiguchi B, Le Saux O, Hayashi M, Boyd CD. The distribution of Abcc6 in normal mouse tissues suggests multiple functions for this ABC transporter. J Histochem Cytochem. 2003;51(7):887–902.

    CAS  PubMed  Google Scholar 

  69. Klement JF, Matsuzaki Y, Jiang QJ, Terlizzi J, Choi HY, Fujimoto N, et al. Targeted ablation of the abcc6 gene results in ectopic mineralization of connective tissues. Mol Cell Biol. 2005;25(18):8299–310.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Jiang Q, Li Q, Uitto J. Aberrant mineralization of connective tissues in a mouse model of pseudoxanthoma elasticum: systemic and local regulatory factors. J Investig Dermatol. 2007;127(6):1392–402.

    CAS  PubMed  Google Scholar 

  71. Zhao J, Kingman J, Sundberg JP, Uitto J, Li Q. Plasma PPi deficiency is the major, but not the exclusive, cause of ectopic mineralization in an Abcc6(−/−) mouse model of PXE. J Investig Dermatol. 2017;137(11):2336–43.

    CAS  PubMed  Google Scholar 

  72. Pomozi V, Julian CB, Zoll J, Pham K, Kuo S, Tokesi N, et al. Dietary pyrophosphate modulates calcification in a mouse model of -pseudoxanthoma elasticum: implication for treatment of patients. J Investig Dermatol. 2019;139(5):1082–8.

    CAS  PubMed  Google Scholar 

  73. Schafer C, Heiss A, Schwarz A, Westenfeld R, Ketteler M, Floege J, et al. The serum protein alpha 2-Heremans-Schmid glycoprotein/fetuin-A is a systemically acting inhibitor of ectopic calcification. J Clin Invest. 2003;112(3):357–66.

    PubMed  PubMed Central  Google Scholar 

  74. Westenfeld R, Jahnen-Dechent W, Ketteler M. Vascular calcification and fetuin-A deficiency in chronic kidney disease. Trends Cardiovasc Med. 2007;17(4):124–8.

    CAS  PubMed  Google Scholar 

  75. Herrmann M, Babler A, Moshkova I, Gremse F, Kiessling F, Kusebauch U, et al. Lumenal calcification and microvasculopathy in fetuin-A-deficient mice lead to multiple organ morbidity. PLoS One. 2020;15(2):e0228503.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Goding JW, Grobben B, Slegers H. Physiological and pathophysiological functions of the ecto-nucleotide pyrophosphatase/phosphodiesterase family. Biochim Biophys Acta. 2003;1638(1):1–19.

    CAS  PubMed  Google Scholar 

  77. Hajjawi MO, MacRae VE, Huesa C, Boyde A, Millan JL, Arnett TR, et al. Mineralisation of collagen rich soft tissues and osteocyte lacunae in Enpp1(−/−) mice. Bone. 2014;69:139–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Mackenzie NC, Zhu D, Milne EM, van ’t Hof R, Martin A, Darryl Quarles L, et al. Altered bone development and an increase in FGF-23 expression in Enpp1(−/−) mice. PloS One. 2012;7(2):e32177.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Lorenz-Depiereux B, Schnabel D, Tiosano D, Hausler G, Strom TM. Loss-of-function ENPP1 mutations cause both generalized arterial calcification of infancy and autosomal-recessive hypophosphatemic rickets. Am J Hum Genet. 2010;86(2):267–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Oheim R, Zimmerman K, Maulding ND, Sturznickel J, von Kroge S, Kavanagh D, et al. Human heterozygous ENPP1 deficiency is associated with early onset osteoporosis, a phenotype recapitulated in a mouse model of Enpp1 deficiency. J Bone Miner Res. 2020;35(3):528–39.

    CAS  PubMed  Google Scholar 

  81. Gurley KA, Chen H, Guenther C, Nguyen ET, Rountree RB, Schoor M, et al. Mineral formation in joints caused by complete or joint-specific loss of ANK function. J Bone Miner Res. 2006;21(8):1238–47.

    CAS  PubMed  Google Scholar 

  82. Li Q, Price TP, Sundberg JP, Uitto J. Juxta-articular joint-capsule mineralization in CD73 deficient mice: similarities to patients with NT5E mutations. Cell Cycle. 2014;13(16):2609–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Shahi V, Wetter DA, Howe BM, Ringler MD, Davis MD. Plain radiography is effective for the detection of calcinosis cutis occurring in association with autoimmune connective tissue disease. Br J Dermatol. 2014;170(5):1073–9.

    CAS  PubMed  Google Scholar 

  84. Chung L, Valenzuela A, Fiorentino D, Stevens K, Li S, Harris J, et al. Validation of a novel radiographic scoring system for calcinosis affecting the hands of patients with systemic sclerosis. Arthritis Care Res. 2015;67(3):425–30.

    Google Scholar 

  85. Narvaez J, Pirola JP, LLuch J, Juarez P, Nolla JM. Valenzuela a. Effectiveness and safety of rituximab for the treatment of refractory systemic sclerosis associated calcinosis: a case series and systematic review of the literature. Autoimmun Rev. 2019;18(3):262–9.

    CAS  PubMed  Google Scholar 

  86. Hsu V, Bramwit M, Schlesinger N. Use of dual-energy computed tomography for the evaluation of calcinosis in patients with systemic sclerosis. Clin Rheumatol. 2015;34(9):1557–61.

    PubMed  PubMed Central  Google Scholar 

  87. Blumhardt S, Frey DP, Toniolo M, Alkadhi H, Held U, Distler O. Safety and efficacy of extracorporeal shock wave therapy (ESWT) in calcinosis cutis associated with systemic sclerosis. Clin Exp Rheumatol. 2016;34(Suppl 100(5)):177–80.

    PubMed  Google Scholar 

  88. Hughes M, Hodgson R, Harris J, Porter N, Jackson S, Kirwadi A, et al. Imaging calcinosis in patients with systemic sclerosis by radiography, computerised tomography and magnetic resonance imaging. Semin Arthritis Rheum. 2019;49(2):279–82.

    PubMed  Google Scholar 

  89. Hawkins RA, Choi Y, Huang SC, Hoh CK, Dahlbom M, Schiepers C, et al. Evaluation of the skeletal kinetics of fluorine-18-fluoride ion with PET. J Nucl Med. 1992;33(5):633–42.

    CAS  PubMed  Google Scholar 

  90. Kawakami T, Nakamura C, Hasegawa H, Eda S, Akahane S, Yamazaki T, et al. Ultrastructural study of calcinosis universalis with dermatomyositis. J Cutan Pathol. 1986;13(2):135–43.

    CAS  PubMed  Google Scholar 

  91. Eekhoff EMW, Botman E, Coen Netelenbos J, de Graaf P, Bravenboer N, Micha D, et al. [18F]NaF PET/CT scan as an early marker of heterotopic ossification in fibrodysplasia ossificans progressiva. Bone. 2018;109:143–6.

    CAS  PubMed  Google Scholar 

  92. Dweck MR, Chow MW, Joshi NV, Williams MC, Jones C, Fletcher AM, et al. Coronary arterial 18F-sodium fluoride uptake: a novel marker of plaque biology. J Am Coll Cardiol. 2012;59(17):1539–48.

    CAS  PubMed  Google Scholar 

  93. Sheikhbahaei S, Jones KM, Werner RA, Salas-Fragomeni RA, Marcus CV, Higuchi T, et al. (18)F-NaF-PET/CT for the detection of bone metastasis in prostate cancer: a meta-analysis of diagnostic accuracy studies. Ann Nucl Med. 2019;33(5):351–61.

    CAS  PubMed  Google Scholar 

  94. Kranenburg G, de Jong PA, Bartstra JW, Lagerweij SJ, Lam MG, Ossewaarde-van Norel J, et al. Etidronate for prevention of ectopic mineralization in patients with pseudoxanthoma elasticum. J Am Coll Cardiol. 2018;71(10):1117–26.

    CAS  PubMed  Google Scholar 

  95. Cuomo G, Zappia M, Abignano G, Iudici M, Rotondo A, Valentini G. Ultrasonographic features of the hand and wrist in systemic sclerosis. Rheumatology. 2009;48(11):1414–7.

    PubMed  Google Scholar 

  96. Dolan AL, Kassimos D, Gibson T, Kingsley GH. Diltiazem induces remission of calcinosis in scleroderma. Br J Rheumatol. 1995;34(6):576–8.

    CAS  PubMed  Google Scholar 

  97. Abdallah-Lotf M, Grasland A, Vinceneux P, Sigal-Grinberg M. Regression of cutis calcinosis with diltiazem in adult dermatomyositis. Eur J Dermatol. 2005;15(2):102–4.

    CAS  PubMed  Google Scholar 

  98. Sharma NL, Mahajan VK, Ranjan N, Sharma VC, Gupta M. Systemic sclerosis sine scleroderma and calcinosis cutis: report of a rare case. Clin Rheumatol. 2010;29(2):215–9.

    PubMed  Google Scholar 

  99. Vayssairat M, Hidouche D, Abdoucheli-Baudot N, Gaitz JP. Clinical significance of subcutaneous calcinosis in patients with systemic sclerosis. Does diltiazem induce its regression? Ann Rheum Dis. 1998;57(4):252–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Fleisch H, Russell RG, Straumann F. Effect of pyrophosphate on hydroxyapatite and its implications in calcium homeostasis. Nature. 1966;212(5065):901–3.

    CAS  PubMed  Google Scholar 

  101. Metzger AL, Singer FR, Bluestone R, Pearson CM. Failure of disodium etidronate in calcinosis due to dermatomyositis and scleroderma. N Engl J Med. 1974;291(24):1294–6.

    CAS  PubMed  Google Scholar 

  102. Murphy E, Freaney R, Bresnihan B, McKenna M, FitzGerald O. Increased bone resorption and failure to respond to antiresorptive therapy in progressive dystrophic calcification. Calcif Tissue Int. 2003;73(5):433–40.

    CAS  PubMed  Google Scholar 

  103. Yatzidis H. Successful sodium thiosulphate treatment for recurrent calcium urolithiasis. Clin Nephrol. 1985;23(2):63–7.

    CAS  PubMed  Google Scholar 

  104. Cohen GF, Vyas NS. Sodium thiosulfate in the treatment of calciphylaxis. J Clin Aesthetic Dermatol. 2013;6(5):41–4.

    Google Scholar 

  105. Cicone JS, Petronis JB, Embert CD, Spector DA. Successful treatment of calciphylaxis with intravenous sodium thiosulfate. Am J Kidney Dis. 2004;43(6):1104–8.

    PubMed  Google Scholar 

  106. Meissner M, Bauer R, Beier C, Betz C, Wolter M, Kaufmann R, et al. Sodium thiosulphate as a promising therapeutic option to treat calciphylaxis. Dermatology. 2006;212(4):373–6.

    CAS  PubMed  Google Scholar 

  107. Baumgartner-Nielsen J, Olesen AB. Treatment of skin calcifications with intra-lesional injection of sodium thiosulphate: a case series. Acta Derm Venereol. 2016;96(2):257–8.

    CAS  PubMed  Google Scholar 

  108. Ma JE, Ernste FC, Davis MDP, Wetter DA. Topical sodium thiosulfate for calcinosis cutis associated with autoimmune connective tissue diseases: the Mayo Clinic experience, 2012-2017. Clin Exp Dermatol. 2019;44(5):e189–e92.

    CAS  PubMed  Google Scholar 

  109. Menon RK, Gill DS, Thomas M, Kernoff PB, Dandona P. Impaired carboxylation of osteocalcin in warfarin-treated patients. J Clin Endocrinol Metab. 1987;64(1):59–61.

    CAS  PubMed  Google Scholar 

  110. Yu WY, Bhutani T, Kornik R, Pincus LB, Mauro T, Rosenblum MD, et al. Warfarin-associated nonuremic calciphylaxis. JAMA Dermatol. 2017;153(3):309–14.

    PubMed  PubMed Central  Google Scholar 

  111. Moe SM, Duan D, Doehle BP, O'Neill KD, Chen NX. Uremia induces the osteoblast differentiation factor Cbfa1 in human blood vessels. Kidney Int. 2003;63(3):1003–11.

    CAS  PubMed  Google Scholar 

  112. Shroff RC, McNair R, Figg N, Skepper JN, Schurgers L, Gupta A, et al. Dialysis accelerates medial vascular calcification in part by triggering smooth muscle cell apoptosis. Circulation. 2008;118(17):1748–57.

    CAS  PubMed  Google Scholar 

  113. Tani T, Fujiwara M, Orimo H, Shimizu A, Narisawa S, Pinkerton AB, et al. Inhibition of tissue-nonspecific alkaline phosphatase protects against medial arterial calcification and improves survival probability in the CKD-MBD mouse model. J Pathol. 2020;250(1):30–41.

    CAS  PubMed  Google Scholar 

  114. Fuchs D, Fruchter L, Fishel B, Holtzman M, Yaron M. Colchicine suppression of local inflammation due to calcinosis in dermatomyositis and progressive systemic sclerosis. Clin Rheumatol. 1986;5(4):527–30.

    CAS  PubMed  Google Scholar 

  115. Daoussis D, Antonopoulos I, Liossis SN, Yiannopoulos G, Andonopoulos AP. Treatment of systemic sclerosis-associated calcinosis: a case report of rituximab-induced regression of CREST-related calcinosis and review of the literature. Semin Arthritis Rheum. 2012;41(6):822–9.

    PubMed  Google Scholar 

  116. Zufferey P, So A. A pilot study of IL-1 inhibition in acute calcific periarthritis of the shoulder. Ann Rheum Dis. 2013;72(3):465–7.

    PubMed  Google Scholar 

  117. Carmen Fonseca VO, Denton C. Minocycline for refractory calcinosis in systemic sclerosis: a single-centre observational cohort study. 2019 ACR/ARP annual meeting Atlanta, GA.

  118. Balin SJ, Wetter DA, Andersen LK, Davis MD. Calcinosis cutis occurring in association with autoimmune connective tissue disease: the Mayo Clinic experience with 78 patients, 1996-2009. Arch Dermatol. 2012;148(4):455–62.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carrie Richardson.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Scleroderma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richardson, C., Plaas, A. & Varga, J. Calcinosis in Systemic Sclerosis: Updates in Pathophysiology, Evaluation, and Treatment. Curr Rheumatol Rep 22, 73 (2020). https://doi.org/10.1007/s11926-020-00951-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11926-020-00951-2

Keywords