Skip to main content
Log in

Extracellular matrix and pathogenic mechanisms in osteoarthritis

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Osteoarthritis (OA) is a heterogeneous condition of joint degeneration characterized by structural changes in extracellular matrices such as subchondral bone and cartilage. Research has identified many diverse ways of initiating OA, varying from mechanical disruption to gene mutations in structural proteins. A frequent end point is cartilage loss, which can occur irrespective of the initiating mechanism. Of the mechanisms responsible for cartilage matrix damage, a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-5 was identified as of key importance in knockout mice, but work with human cartilage has suggested that ADAMTS-4 was also involved. A transgenic mouse expressing aggrecan lacking a key aggrecanase site clearly showed that loss of aggrecan from cartilage was an important step in both inflammatory and trauma-induced joint degeneration. In OA, cartilage chondrocytes show changes in gene expression, and it remains to be resolved if this reflects adaptive responses to changes in biological, physical, and mechanical signaling rather than any form of differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Hardingham TE: Articular cartilage. In Oxford Textbook of Rheumatology, 3rd edn. Edited by Isenberg DA, Maddison PJ, Woo P, et al. Oxford: Oxford University Press; 2004:324–334.

    Google Scholar 

  2. Felson DT, Lawrence RC, Dieppe PA, et al.: Osteoarthritis: new insights. Part 1: the disease and its risk factors. Ann Intern Med 2000, 133:635–646.

    PubMed  CAS  Google Scholar 

  3. Dieppe PA: Research in osteoarthritis. Curr Opin Rheumatol 2006, 18:512–513.

    Article  PubMed  Google Scholar 

  4. Ralston SH: New developments in the search for genetic determinants of osteoarthritis. Osteoarthritis Cartilage 2007, 15:117–119.

    Article  PubMed  Google Scholar 

  5. Aigner T, Söder S, Gebhard PM, et al.: Mechanisms of disease: role of chondrocytes in the pathogenesis of osteoarthritis—structure, chaos and senescence. Nat Clin Pract Rheumatol 2007, 3:391–399.

    Article  PubMed  CAS  Google Scholar 

  6. Ameye LG, Young MF: Animal models of osteoarthritis: lessons learned while seeking the “Holy Grail.” Curr Opin Rheumatol 2006, 18:537–547.

    Article  PubMed  Google Scholar 

  7. Pope FM: Molecular abnormalities of collagen and connective tissue. In Oxford Textbook of Rheumatology, 3rd edn. Edited by Isenberg DA, Maddison PJ, Woo P, et al. Oxford: Oxford University Press; 2004:301–325.

    Google Scholar 

  8. Tysoe C, Saunders J, White L, et al.: A glycine to aspartic acid substitution of COL2A1 in a family with the Strudwick variant of spondyloepimetaphyseal dysplasia. QJM 2003, 96:663–671.

    Article  PubMed  CAS  Google Scholar 

  9. Van Camp G, Snoeckx RL, Hilgert N, et al.: A new autosomal recessive form of Stickler syndrome is caused by a mutation in the COL9A1 gene. Am J Hum Genet 2006, 79:449–457.

    Article  PubMed  Google Scholar 

  10. Brandt KD, Radin EL, Dieppe PA, et al.: Yet more evidence that osteoarthritis is not a cartilage disease. Ann Rheum Dis 2006, 65:1261–1264.

    Article  PubMed  CAS  Google Scholar 

  11. Mansell JP, Collins C, Bailey AJ: Bone, not cartilage, should be the major focus in osteoarthritis. Nat Clin Pract Rheumatol 2007, 3:306–307.

    Article  PubMed  Google Scholar 

  12. Felson DT, Kim YJ: The futility of current approaches to chondroprotection. Arthritis Rheum 2007, 56:1378–1383.

    Article  PubMed  Google Scholar 

  13. Spector TD, Conaghan PG, Buckland-Wright JC, et al.: Effect of risedronate on joint structure and symptoms of knee osteoarthritis: results of the BRISK randomized, controlled trial [ISRCTN01928173]. Arthritis Res Ther 2005, 7:R625–R633.

    Article  PubMed  CAS  Google Scholar 

  14. Bingham CO III, Buckland-Wright JC, Garnero P, et al.: Risedronate decreases biochemical markers of cartilage degradation but does not decrease symptoms or slow radiographic progression in patients with medial compartment osteoarthritis of the knee: results of the two-year multinational knee osteoarthritis structural arthritis study. Arthritis Rheum 2006, 54:3494–3507.

    Article  PubMed  CAS  Google Scholar 

  15. Lohmander S: Can treatment with risedronate benefit patients with knee osteoarthritis? Nat Clin Pract Rheumatol 2007, 3:198–199.

    Article  PubMed  CAS  Google Scholar 

  16. Stanton H, Rogerson FM, East CJ, et al.: ADAMTS5 is the major aggrecanase in mouse cartilage in vivo and in vitro. Nature 2005, 434:648–652.

    Article  PubMed  CAS  Google Scholar 

  17. Little CB, Meeker CT, Golub SB, et al.: Blocking aggrecanase cleavage in the aggrecan interglobular domain abrogates cartilage erosion and promotes cartilage repair. J Clin Invest 2007, 117:1627–1636.

    Article  PubMed  CAS  Google Scholar 

  18. Song RH, Tortorella MD, Malfait AM, et al.: Aggrecan degradation in human articular cartilage explants is mediated by both ADAMTS-4 and ADAMTS-5. Arthritis Rheum 2007, 56:575–585.

    Article  PubMed  CAS  Google Scholar 

  19. Carney SL, Muir HM: The structure and function of cartilage proteoglycans. Physiol Rev 1988, 68:858–910.

    PubMed  CAS  Google Scholar 

  20. Tew SR, Li Y, Pothacharoen P, et al.: Retroviral transduction with SOX9 enhances re-expression of the chondrocyte phenotype in passaged osteoarthritic human articular chondrocytes. Osteoarthritis Cartilage 2005, 13:80–89.

    Article  PubMed  Google Scholar 

  21. von der Mark K, Kirsch T, Nerlich A, et al.: Type X collagen synthesis in human osteoarthritic cartilage. Indication of chondrocyte hypertrophy. Arthritis Rheumatism 1992, 35:806–811.

    Article  PubMed  Google Scholar 

  22. Girkontaite I, Frischholz S, Lammi P, et al.: Immunolocalization of type X collagen in normal fetal and adult osteoarthritic cartilage with monoclonal antibodies. Matrix Biology 1996, 15:231–238.

    Article  PubMed  CAS  Google Scholar 

  23. Brew CJ, Andrew JG, Boot-Handford R, Hardingham TE: Late osteoarthritic cartilage shows down regulation of SOX9 and aggrecan expression but little evidence of chondrocyte hypertrophy. Trans Orthop Res Soc (USA) 2004, 50:938.

    Google Scholar 

  24. Jakkula E, Melkoniemi M, Kiviranta I, et al.: The role of sequence variations within the genes encoding collagen II, IX and XI in non-syndromic, early-onset osteoarthritis. Osteoarthritis Cartilage 2005, 13:497–507.

    Article  PubMed  CAS  Google Scholar 

  25. Hecht JT, Sage EH: Retention of the matricellular protein SPARC in the endoplasmic reticulum of chondrocytes from patients with pseudoachondroplasia. J Histochem Cytochem 2006, 54:269–274.

    Article  PubMed  CAS  Google Scholar 

  26. Otten C, Wagener R, Paulsson M, et al.: Matrilin-3 mutations that cause chondrodysplasias interfere with protein trafficking while a mutation associated with hand osteoarthritis does not. J Med Genet 2005, 42:774–779.

    Article  PubMed  CAS  Google Scholar 

  27. Hecht JT, Hayes E, Haynes R, et al.: COMP mutations, chondrocyte function and cartilage matrix. Matrix Biology 2005, 23:525–533.

    Article  PubMed  CAS  Google Scholar 

  28. Gleghorn L, Ramesar R, Beighton P, et al.: A mutation in the variable repeat region of the aggrecan gene (AGC1) causes a form of spondyloepiphyseal dysplasia associated with severe, premature osteoarthritis. Am J Hum Genet 2005, 77:484–490.

    Article  PubMed  CAS  Google Scholar 

  29. Rousseau JC, Delmas PD: Biological markers in osteoarthritis. Nat Clin Pract Rheumatol 2007, 3:346–356.

    Article  PubMed  CAS  Google Scholar 

  30. Conrozier T, Ferrand F, Poole AR, et al.: Differences in biomarkers of type II collagen in atrophic and hypertrophic osteoarthritis of the hip: implications for the differing pathobiologies. Osteoarthritis Cartilage 2007, 15:462–467.

    Article  PubMed  CAS  Google Scholar 

  31. Huebner JL, Kraus VB: Assessment of the utility of biomarkers of osteoarthritis in the guinea pig. Osteoarthritis Cartilage 2006, 14:923–930.

    Article  PubMed  CAS  Google Scholar 

  32. Sumer EU, Qvist P, Tanko LB: Matrix metalloproteinase and aggrecanase generated aggrecan fragments: Implications for the diagnostics and therapeutics of destructive joint diseases. Drug Dev Res 2007, 68:1–13.

    Article  CAS  Google Scholar 

  33. Hardingham TE, Fosang AJ: Proteoglycans: many forms, many functions. FASEB J 1992, 6:861–870.

    PubMed  CAS  Google Scholar 

  34. Pothacharoen P, Teekachunhatean S, Louthrenoo W, et al.: Raised chondroitin sulfate epitopes and hyaluronan in serum from rheumatoid arthritis and osteoarthritis patients. Osteoarthritis Cartilage 2006, 14:299–301.

    Article  PubMed  CAS  Google Scholar 

  35. Bauer DC, Hunter DJ, Abramson SB, et al.: Classification of osteoarthritis biomarkers: a proposed approach. Osteoarthritis Cartilage 2006, 14:723–727.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Hardingham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hardingham, T. Extracellular matrix and pathogenic mechanisms in osteoarthritis. Curr Rheumatol Rep 10, 30–36 (2008). https://doi.org/10.1007/s11926-008-0006-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-008-0006-9

Keywords

Navigation