Skip to main content
Log in

Genetics of osteoporosis

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Genetic factors play an important role in regulating bone mineral density and other phenotypes relevant to the pathogenesis of osteoporosis such as ultrasound properties of bone, skeletal geometry, and bone turnover. Progress has been made in identifying quantitative traits for regulation of bone mineral density by linkage studies in man and mouse, but relatively few causal genes have been identified. Dramatic progress has been made in identifying the genes responsible for monogenic bone diseases and it appears that polymorphisms in many of these genes also play a role in regulating bone mineral density in the general population. Advances in knowledge about the genetic basis of osteoporosis and other bone diseases offer the prospect of developing new markers for assessment of fracture risk and the identification of novel molecular targets for the design of new drug treatments for osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Cummings SR, Melton LJ: Epidemiology and outcomes of osteoporotic fractures. Lancet 2002, 359:1761–1767.

    Article  PubMed  Google Scholar 

  2. Torgerson DJ, Campbell MK, Thomas RE, et al.: Prediction of perimenopausal fractures by bone mineral density and other risk factors. J Bone Miner Res 1996, 11:293–297.

    PubMed  CAS  Google Scholar 

  3. Ralston SH: Genetic control of susceptibility to osteoporosis. J Clin Endocrinol Metab 2002, 87:2460–2466.

    Article  PubMed  CAS  Google Scholar 

  4. Naganathan V, Macgregor A, Snieder H, et al.: Gender differences in the genetic factors responsible for variation in bone density and ultrasound. J Bone Miner Res 2002, 17:725–733.

    Article  PubMed  Google Scholar 

  5. Arden NK, Baker J, Hogg C, et al.: The heritability of bone mineral density, ultrasound of the calcaneus and hip axis length: a study of postmenopausal twins. J Bone Miner Res 1996, 11:530–534.

    PubMed  CAS  Google Scholar 

  6. Garnero P, Arden NK, Griffiths G, et al.: Genetic influence on bone turnover in postmenopausal twins. J Clin Endocrinol Metab 1996, 81:140–146.

    Article  PubMed  CAS  Google Scholar 

  7. Gong Y, Slee RB, Fukai N, et al.: LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell 2001, 107:513–523. This paper identified mutations in the LRP5 gene as the cause of osteoporosis pseudoglioma syndrome indicating for the first time, that LRP5 is a key gene in the regulation of bone formation and bone mass.

    Article  PubMed  CAS  Google Scholar 

  8. Deng HW, Livshits G, Yakovenko K, et al.: Evidence for a major gene for bone mineral density/content in human pedigrees identified via probands with extreme bone mineral density. Ann Hum Genet 2002, 66:61–74.

    Article  PubMed  CAS  Google Scholar 

  9. Gueguen R, Jouanny P, Guillemin F, et al.: Segregation analysis and variance components analysis of bone mineral density in healthy families. J Bone Miner Res 1995, 12:2017–2022.

    Article  Google Scholar 

  10. Devoto M, Shimoya K, Caminis J, et al.: First-stage autosomal genome screen in extended pedigrees suggests genes predisposing to low bone mineral density on chromosomes 1p, 2p and 4q. Eur J Hum Genet 1998, 6:151–157.

    Article  PubMed  CAS  Google Scholar 

  11. Nui T, Chen C, Cordell H, et al.: A genome-wide scan for loci linked to forearm bone mineral density. Hum Genet 1999, 104:226–233.

    Article  Google Scholar 

  12. Koller DL, Econs MJ, Morin PA, et al.: Genome screen for QTLs contributing to normal variation in bone mineral density and osteoporosis. J Clin Endocrinol Metab 2000, 85:3116–3120.

    Article  PubMed  CAS  Google Scholar 

  13. Deng HW, Xu FH, Huang QY, et al.: A whole-genome linkage scan suggests several genomic regions potentially containing quantitative trait Loci for osteoporosis. J Clin Endocrinol Metab 2002, 87:5151–5159.

    Article  PubMed  CAS  Google Scholar 

  14. Wilson SG, Reed PW, Bansal A, et al.: Comparison of genome screens for two independent cohorts provides replication of suggestive linkage of bone mineral density to 3p21 and 1p36. Am J Hum Genet 2003, 72:144–155.

    Article  PubMed  CAS  Google Scholar 

  15. Kammerer CM, Schneider JL, Cole SA, et al.: Quantitative trait loci on chromosomes 2 p, 4p, and 13q influence bone mineral density of the forearm and hip in mexican americans. J Bone Miner Res 2003, 18:2245–2252.

    Article  PubMed  CAS  Google Scholar 

  16. Koller DL, Liu G, Econs MJ, et al.: Genome screen for quantitative trait loci underlying normal variation in femoral structure. J Bone Miner Res 2001, 16:985–991.

    Article  PubMed  CAS  Google Scholar 

  17. Deng HW, Shen H, Xu FH, et al.: Several genomic regions potentially containing QTLs for bone size variation were identified in a whole-genome linkage scan. Am J Med Genet 2003, 119A:121–131.

    Article  PubMed  Google Scholar 

  18. Wilson SG, Reed PW, Andrew T, et al.: A genome-screen of a large twin cohort reveals linkage for quantitative ultrasound of the calcaneus to 2 q33-37 and 4q12-21. J Bone Miner Res 2004, 19:270–277.

    Article  PubMed  CAS  Google Scholar 

  19. Styrkarsdottir U, Cazier J-B, Kong A, et al.: Linkage of osteoporosis to chromosome 20p12 and association to BMP2. PLoS Biol 2003, 1:E69. This was the first study to identify a susceptibility gene for osteoporosis using linkage analysis and positional cloning. While the authors found a convincing association between a serine-alanine amino acid change in BMP2 and osteoporosis, this was insufficient to fully account for the linkage signal, indicating that other genes or allelic variants that predispose to osteoporosis remain to be discovered in this region.

    Article  PubMed  Google Scholar 

  20. Econs MJ, Koller DL, Hui SL, et al.: Confirmation of linkage to chromosome 1 q for peak vertebral bone mineral density in premenopausal white women. Am J Hum Genet 2004, 74:223–228. An important confirmation of a previous BMD QTL identified by the same group in this chromosomal region.

    Article  PubMed  CAS  Google Scholar 

  21. Devoto M, Specchia C, Li HH, et al.: Variance component linkage analysis indicates a QTL for femoral neck bone mineral density on chromosome 1 p36. Hum Mol Genet 2001, 10:2447–2452.

    Article  PubMed  CAS  Google Scholar 

  22. Spotila LD, Rodriguez H, Koch M, et al.: Association analysis of bone mineral density and single nucleotide polymorphisms in two candidate genes on chromosome 1p36. Calcif Tissue Int 2003, 73:140–146.

    Article  PubMed  CAS  Google Scholar 

  23. Albagha OME, Tasker PN, McGuigan FEA, et al.: Linkage disequilibrium between polymorphisms in the human TNFRSF1B gene and their association with bone mass in perimenopausal women. Hum Mol Genet 2002, 11:2289–2295. A large association study that demonstrated that allelic variation in the 3’ untranslated region of the TNFRSF1B gene explains part of the linkage signal for femoral neck BMD on chromosome 1p36.

    Article  PubMed  CAS  Google Scholar 

  24. McLean RR, Karasik D, Selhub J, et al.: Association of a common polymorphism in the methylenetetrahydrofolate reductase (MTHFR) gene with bone phenotypes depends on plasma folate status. J Bone Miner Res 2004, 19:410–418.

    Article  PubMed  CAS  Google Scholar 

  25. Abrahamsen B, Madsen JS, Tofteng CL, et al.: A common methylenetetrahydrofolate reductase (C677T) polymorphism is associated with low bone mineral density and increased fracture incidence after menopause: longitudinal data from the Danish osteoporosis prevention study. J Bone Miner Res 2003, 18:723–729.

    Article  PubMed  CAS  Google Scholar 

  26. Jorgensen HL, Madsen JS, Madsen B, et al.: Association of a common allelic polymorphism (C677T) in the methylene tetrahydrofolate reductase gene with a reduced risk of osteoporotic fractures. A case control study in Danish postmenopausal women. Calcif Tissue Int 2002, 71:386–392.

    Article  PubMed  CAS  Google Scholar 

  27. Miyao M, Morita H, Hosoi T, et al.: Association of methylenetetrahydrofolate reductase (MTHFR) polymorphism with bone mineral density in postmenopausal Japanese women. Calcif Tissue Int 2000, 66:190–194.

    Article  PubMed  CAS  Google Scholar 

  28. de Vernejoul MC, Benichou O: Human osteopetrosis and other sclerosing disorders: recent genetic developments. Calcif Tissue Int 2001, 69:1–6.

    Article  PubMed  Google Scholar 

  29. Janssens K, Van Hul W: Molecular genetics of too much bone. Hum Mol Genet 2002, 11:2385–2393.

    Article  PubMed  CAS  Google Scholar 

  30. Sobacchi C, Vezzoni P, Reid DM, et al.: Association between a polymorphism affecting an AP1 binding site in the promoter of the TCIRG1 gene and bone mass in women. Calcif Tissue Int 2004, 74:35–41.

    Article  PubMed  CAS  Google Scholar 

  31. Koay MA, Woon PY, Zhang Y, et al.: Influence of LRP5 polymorphisms on normal variation in BMD. J Bone Miner Res 2004, 19:1619–1627. Convincing demonstration that subtle variations in the LRP5 gene contribute to regulation of BMD in the general population.

    Article  PubMed  CAS  Google Scholar 

  32. Mirolo M, Taranta A, Albagha OME, et al.: A missense polymorphism in exon 15 of the chloride channel 7 gene (CLCN7) is associated with hip bone density in women. Calcif Tiss Int 2003, 72:421–422.

    Google Scholar 

  33. Rogers J, Mahaney MC, Beamer WG, et al.: Beyond one gene-one disease: alternative strategies for deciphering genetic determinants of osteoporosis. Calcif Tissue Int 1997, 60:225–228.

    Article  PubMed  CAS  Google Scholar 

  34. Beamer WG, Shultz KL, Donahue LR, et al.: Quantitative trait loci for femoral and lumbar vertebral bone mineral density in C57BL/6J and C3H/HeJ inbred strains of mice. J Bone Miner Res 2001, 16:1195–1206.

    Article  PubMed  CAS  Google Scholar 

  35. Benes H, Weinstein RS, Zheng W, et al.: Chromosomal mapping of osteopenia-associated quantitative trait loci using closely related mouse strains. J Bone Miner Res 2000, 15:626–633.

    Article  PubMed  CAS  Google Scholar 

  36. Klein RF, Mitchell SR, Phillips TJ, et al.: Quantitative trait loci affecting peak bone mineral density in mice. J Bone Miner Res 1998, 13:1648–1656.

    Article  PubMed  CAS  Google Scholar 

  37. Turner CH, Sun Q, Schriefer J, et al.: Congenic mice reveal sexspecific genetic regulation of femoral structure and strength. Calcif Tissue Int 2003, 73:297–303.

    Article  PubMed  CAS  Google Scholar 

  38. Orwoll ES, Belknap JK, Klein RF: Gender-specific genetic determinants of peak bone mass. J Bone Miner Res 1999, 14:S175.

    Google Scholar 

  39. Karasik D, Cupples LA, Hannan MT, et al.: Age, gender, and body mass effects on quantitative trait loci for bone mineral density: the Framingham Study. Bone 2003, 33:308–316.

    Article  PubMed  CAS  Google Scholar 

  40. Klein RF, Allard J, Avnur Z, et al.: Regulation of bone mass in mice by the lipoxygenase gene Alox15. Science 2004, 303:229–232. The first example of a BMD regulatory gene identified by genetic linkage studies in inbred strains of mice. The key to identification of Alox15 came from microarray analysis that showed 20-fold upregulation of Alox15 messenger RNA in the low BMD associated mouse strain. Further studies in Alox15 null animals confirmed that BMD was elevated, consistent with the hypothesis that Alox15 lowers BMD and an Alox15 inhibitor was found to prevent ovariectomy induced bone loss in mice in vivo.

    Article  PubMed  CAS  Google Scholar 

  41. Grant SFA, Reid DM, Blake G, et al.: Reduced bone density and osteoporosis associated with a polymorphic Sp1 site in the collagen type I alpha 1 gene. Nat Genet 1996, 14:203–205.

    Article  PubMed  CAS  Google Scholar 

  42. Mann V, Hobson EE, Li B, et al.: A COL1A1 Sp1 binding site polymorphism predisposes to osteoporotic fracture by affecting bone density and quality. J Clin Invest 2001, 107:899–907. Detailed functional analysis of a candidate gene polymorphism, coupled with a meta-analysis of published data that indicated that the COLIA1 Sp1 polymorphism is a functional genetic variant that affects gene transcription, protein production and bone strength.

    PubMed  CAS  Google Scholar 

  43. Misof K, Landis WJ, Klaushofer K, et al.: Collagen from the osteogenesis imperfecta mouse model (oim) shows reduced resistance against tensile stress. J Clin Invest 1997, 100:40–45.

    Article  PubMed  CAS  Google Scholar 

  44. Garcia-Giralt N, Nogues X, Enjuanes A, et al.: Two new single nucleotide polymorphisms in the COLIA1 upstream regulatory region and their relationship with bone mineral density. J Bone Miner Res 2002, 17:384–393.

    Article  PubMed  CAS  Google Scholar 

  45. Thakkinstian A, D’Este C, Eisman J, et al.: Meta-analysis of molecular association studies: vitamin D receptor gene polymorphisms and BMD as a case study. J Bone Miner Res 2004, 19:419–428.

    Article  PubMed  CAS  Google Scholar 

  46. Uitterlinden AG, Fang Y, van Meurs JB, et al.: Genetics and biology of vitamin D receptor polymorphisms. Gene 2004, 338:143–156.

    Article  PubMed  CAS  Google Scholar 

  47. Ioannidis JP, Ralston SH, Bennett ST, et al.: Large-scale evidence for differential genetic effects of ESR1 polymorphisms on osteoporosis outcomes: the GENOMOS Study. JAMA 2004, 292:2105–2114. A large scale association study involving over 18,000 individuals from six European centers that demonstrates convincingly that the ESR1 XbaI polymorphism predisposes to fracture, independent of BMD.

    Article  PubMed  CAS  Google Scholar 

  48. Yamada Y, Miyauchi A, Goto J, et al.: Association of a polymorphism of the transforming growth factor-beta1 gene with genetic susceptibility to osteoporosis in postmenopausal Japanese women. J Bone Miner Res 1998, 13:1569–1576.

    Article  PubMed  CAS  Google Scholar 

  49. Hinke V, Seck T, Clanget C, et al.: Association of transforming growth factor-beta1 (TGFbeta1) T29 --> C gene polymorphism with bone mineral density (BMD), changes in BMD, and serum concentrations of TGF-beta1 in a populationbased sample of postmenopausal german women. Calcif Tissue Int 2001, 69:315–320.

    Article  PubMed  CAS  Google Scholar 

  50. Liu YZ, Liu YJ, Recker RR, et al.: Molecular studies of identification of genes for osteoporosis: the 2002 update. J Endocrinol 2003, 177:147–196.

    Article  PubMed  CAS  Google Scholar 

  51. Uitterlinden AG, Arp PP, Paeper BW, et al.: Polymorphisms in the sclerosteosis/van Buchem disease gene (SOST) region are associated with bone mineral density in elderly whites. Am J Hum Genet 2004, 75:1032–1045.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jin, H., Ralston, S.H. Genetics of osteoporosis. Curr Rheumatol Rep 7, 66–70 (2005). https://doi.org/10.1007/s11926-005-0011-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-005-0011-1

Keywords

Navigation