Skip to main content

Advertisement

Log in

Genetic Similarities between Compulsive Overeating and Addiction Phenotypes: A Case for “Food Addiction”?

  • Genetic Disorders (W Berrettini, Section Editor)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

There exists a continuous spectrum of overeating, where at the extremes there are casual overindulgences and at the other a ‘pathological’ drive to consume palatable foods. It has been proposed that pathological eating behaviors may be the result of addictive appetitive behavior and loss of ability to regulate the consumption of highly processed foods containing refined carbohydrates, fats, salt, and caffeine. In this review, we highlight the genetic similarities underlying substance addiction phenotypes and overeating compulsions seen in individuals with binge eating disorder. We relate these similarities to findings from neuroimaging studies on reward processing and clinical diagnostic criteria based on addiction phenotypes. The abundance of similarities between compulsive overeating and substance addictions puts forth a case for a ‘food addiction’ phenotype as a valid, diagnosable disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. James W. The epidemiology of obesity: the size of the problem. J Intern Med. 2008;263(4):336–52.

    Article  CAS  PubMed  Google Scholar 

  2. Sorof J, Daniels S. Obesity hypertension in children a problem of epidemic proportions. Hypertension. 2002;40(4):441–7.

    Article  CAS  PubMed  Google Scholar 

  3. Landsberg L, Aronne LJ, Beilin LJ, Burke V, Igel LI, Lloyd‐Jones D, et al. Obesity‐related hypertension: pathogenesis, cardiovascular risk, and treatment—a position paper of the obesity society and the American society of hypertension. Obesity. 2013;21(1):8–24.

    Article  PubMed  Google Scholar 

  4. Eckel RH, Kahn SE, Ferrannini E, Goldfine AB, Nathan DM, Schwartz MW, et al. Obesity and type 2 diabetes: what can be unified and what needs to be individualized? J Clin Endocrinol Metab. 2011;96(6):1654–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Littleton SW. Impact of obesity on respiratory function. Respirology. 2012;17(1):43–9.

    Article  PubMed  Google Scholar 

  6. Nikolopoulou A, Kadoglou NP. Obesity and metabolic syndrome as related to cardiovascular disease. Expert Rev Cardiovasc Ther. 2012;10(7):933–9.

    Article  CAS  PubMed  Google Scholar 

  7. Fock KM, Khoo J. Diet and exercise in management of obesity and overweight. J Gastroenterol Hepatol. 2013;28 Suppl 4:59–63.

    Article  CAS  PubMed  Google Scholar 

  8. Davis C. From passive overeating to food addiction: a spectrum of compulsion and severity. ISRN Obesity. 2013;2013:20. This review describes the dimensional scale of compulsive overeating. It also considers the overlapping symptomology between compulsive overeating and addiction phenotypes, in both human and animal studies.

    Google Scholar 

  9. Vancampfort D, Vanderlinden J, De Hert M, Adamkova M, Skjaerven LH, Catalan-Matamoros D, et al. A systematic review on physical therapy interventions for patients with binge eating disorder. Disabil Rehabil. 2013;35(26):2191–6.

    Article  PubMed  Google Scholar 

  10. Brownley KA, Berkman ND, Sedway JA, Lohr KN, Bulik CM. Binge eating disorder treatment: a systematic review of randomized controlled trials. Int J Eat Disord. 2007;40(4):337–48.

    Article  PubMed  Google Scholar 

  11. Davis C, Curtis C, Levitan RD, Carter JC, Kaplan AS, Kennedy JL. Evidence that ‘food addiction’ is a valid phenotype of obesity. Appetite. 2011;57(3):711–7. This article to validates the Yale Food Addiction Scale (YFAS) in a sample of obese adults, providing further evidence of the association between YFAS scores and the ‘food addiction’ phenotype. Individuals presenting with ‘food addiction’ showed greater impulsivity, emotional reactivity and comorbidity with attention-deficit/ hyperactivity disorder, binge eating disorder and depression.

    Article  PubMed  Google Scholar 

  12. Ifland J, Preuss H, Marcus M, Rourke K, Taylor W, Burau K, et al. Refined food addiction: a classic substance use disorder. Med Hypotheses. 2009;72(5):518–26.

    Article  CAS  PubMed  Google Scholar 

  13. Davis C, Carter JC. Compulsive overeating as an addiction disorder. A review of theory and evidence. Appetite. 2009;53(1):1–8.

    Article  PubMed  Google Scholar 

  14. Volkow ND, Wang G-J, Fowler JS, Telang F. Overlapping neuronal circuits in addiction and obesity: evidence of systems pathology. Philos Trans Royal Soc London B: Biol Sci. 2008;363(1507):3191–200.

    Article  Google Scholar 

  15. Berridge KC. Liking’ and ‘wanting’ food rewards: brain substrates and roles in eating disorders. Physiol Behav. 2009;97(5):537–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Davis C. Evolutionary and neuropsychological perspectives on addictive behaviors and addictive substances: relevance to the “food addiction” construct. Subst Abuse Rehab. 2014;5:129.

    Article  Google Scholar 

  17. Bellisari A. Evolutionary origins of obesity. Obesity Rev: Off J Int Assoc Study Obesity. 2008;9(2):165–80.

    Article  CAS  Google Scholar 

  18. Cummins S, Macintyre S. Food environments and obesity—neighbourhood or nation? Int J Epidemiol. 2006;35(1):100–4.

    Article  PubMed  Google Scholar 

  19. Morland KB, Evenson KR. Obesity prevalence and the local food environment. Health Place. 2009;15(2):491–5.

    Article  PubMed  Google Scholar 

  20. Rainer G. Behavioral flexibility and the frontal lobe. Neuron. 2007;53(3):321–3.

    Article  CAS  PubMed  Google Scholar 

  21. Uchibe E, Doya K. Finding intrinsic rewards by embodied evolution and constrained reinforcement learning. Neural Netw. 2008;21(10):1447–55.

    Article  PubMed  Google Scholar 

  22. Kalivas PW, Volkow ND. The neural basis of addiction: a pathology of motivation and choice. Am J Psych. 2014.

  23. Volkow ND, Wang GJ, Tomasi D, Baler RD. Obesity and addiction: neurobiological overlaps. Obes Rev. 2013;14(1):2–18. This article reviews the similarities between compulsive overeating and substance use disorders, with a particular focus on evidence from neuroimaging in areas contributing to reward processing, incentive motivation, self-inhibition and other aspects of reward processing.

    Article  CAS  PubMed  Google Scholar 

  24. Baudonnat M, Huber A, David V, Walton ME. Heads for learning, tails for memory: reward, reinforcement and a role of dopamine in determining behavioral relevance across multiple timescales. Frontiers Neurosci. 2013;7.

  25. Robinson TE, Berridge KC. Review. The incentive sensitization theory of addiction: some current issues. Philos Trans R Soc Lond Ser B Biol Sci. 2008;363(1507):3137–46.

    Article  Google Scholar 

  26. Berridge KC, Robinson TE, Aldridge JW. Dissecting components of reward: ‘liking’, ‘wanting’, and learning. Curr Opin Pharmacol. 2009;9(1):65–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Berridge KC. Motivation concepts in behavioral neuroscience. Physiol Behav. 2004;81(2):179–209.

    Article  CAS  PubMed  Google Scholar 

  28. Volkow ND, Fowler JS, Wang G-J, Goldstein RZ. Role of dopamine, the frontal cortex and memory circuits in drug addiction: insight from imaging studies. Neurobiol Learn Mem. 2002;78(3):610–24.

    Article  CAS  PubMed  Google Scholar 

  29. Volkow ND, Wang G-J, Telang F, Fowler JS, Logan J, Childress A-R, et al. Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. J Neurosci. 2006;26(24):6583–8.

    Article  CAS  PubMed  Google Scholar 

  30. Kühn S, Gallinat J. Common biology of craving across legal and illegal drugs—a quantitative meta-analysis of cue-reactivity brain response. Eur J Neurosci. 2011;33(7):1318–26.

    Article  PubMed  Google Scholar 

  31. Gearhardt AN, Yokum S, Orr PT, Stice E, Corbin WR, Brownell KD. The neural correlates of “food addiction. Arch Gen Psychiatry. 2011;68(8):808–16. This fMRI investigation provides further evidence for the similarities in neural networks implicated in substance use disorders and ‘food addiction’. Researchers showed that individuals with higher food addiction scores showed greater activation of the anterior cingulate cortex (ACC), medial orbitofrontal cortex (OFC), and amygdala in response to food reward anticipation. Interestingly, these individuals also showed less activation of the lateral OFC after receiving a food reward.

    Article  PubMed Central  PubMed  Google Scholar 

  32. Meule A, Lutz A, Vögele C, Kübler A. Women with elevated food addiction symptoms show accelerated reactions, but no impaired inhibitory control, in response to pictures of high-calorie food-cues. Eat Behav. 2012;13(4):423–8.

    Article  PubMed  Google Scholar 

  33. Wise RA, Koob GF. The development and maintenance of drug addiction. Neuropsychopharmacology. 2014;39(2):254–62.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Volkow ND, Wang GJ, Fowler JS, Tomasi D, Telang F, Baler R. Addiction: decreased reward sensitivity and increased expectation sensitivity conspire to overwhelm the brain’s control circuit. Bioessays. 2010;32(9):748–55.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Gardner EL. Addiction and brain reward and antireward pathways. 2011.

  36. Stice E, Spoor S, Ng J, Zald DH. Relation of obesity to consummatory and anticipatory food reward. Physiol Behav. 2009;97(5):551–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Burger KS, Stice E. Variability in reward responsivity and obesity: evidence from brain imaging studies. Current Drug Abuse Rev. 2011;4(3):182.

    Article  Google Scholar 

  38. Parylak SL, Koob GF, Zorrilla EP. The dark side of food addiction. Physiol Behav. 2011;104(1):149–56.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Bromberg-Martin ES, Matsumoto M, Hikosaka O. Dopamine in motivational control: rewarding, aversive, and alerting. Neuron. 2010;68(5):815–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Lammel S, Ion Daniela I, Roeper J, Malenka RC. Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron. 2011;70(5):855–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Volkow ND, Wang G-J, Tomasi D, Baler RD. The addictive dimensionality of obesity. Biol Psychiatry. 2013;73(9):811–8.

    Article  PubMed  Google Scholar 

  42. Baik J-H. Dopamine signaling in reward-related behaviors. Frontiers Neural Circ. 2013;7.

  43. Beaulieu J-M, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011;63(1):182–217.

    Article  CAS  PubMed  Google Scholar 

  44. Dichter GS, Damiano CA, Allen JA. Reward circuitry dysfunction in psychiatric and neurodevelopmental disorders and genetic syndromes: animal models and clinical findings. J Neurodev Disord. 2012;4(1):19.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Hurley SW, Johnson AK. The role of the lateral hypothalamus and orexin in ingestive behavior: a model for the translation of past experience and sensed deficits into motivated behaviors. Front Syst Neurosci. 2014;8:216.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Havel PJ. Peripheral signals conveying metabolic information to the brain: short-term and long-term regulation of food intake and energy homeostasis. Exp Biol Med. 2001;226(11):963–77.

    CAS  Google Scholar 

  47. Woods SC. Gastrointestinal satiety signals I. An overview of gastrointestinal signals that influence food intake. Am J Physiol-Gastrointestinal Liver Physiol. 2004;286(1):G7–G13.

    Article  CAS  Google Scholar 

  48. Roth JD, Roland BL, Cole RL, Trevaskis JL, Weyer C, Koda JE, et al. Leptin responsiveness restored by amylin agonism in diet-induced obesity: evidence from nonclinical and clinical studies. Proc Natl Acad Sci. 2008;105(20):7257–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Wielinga PY, Löwenstein C, Muff S, Munz M, Woods SC, Lutz TA. Central amylin acts as an adiposity signal to control body weight and energy expenditure. Physiol Behav. 2010;101(1):45–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Woods SC, Seeley RJ. Adiposity signals and the control of energy homeostasis. Nutrition. 2000;16(10):894–902.

    Article  CAS  PubMed  Google Scholar 

  51. Geary N. Endocrine controls of eating: CCK, leptin, and ghrelin. Physiol Behav. 2004;81(5):719–33.

    Article  CAS  PubMed  Google Scholar 

  52. Schwartz MW, Woods SC, Seeley RJ, Barsh GS, Baskin DG, Leibel RL. Is the energy homeostasis system inherently biased toward weight gain? Diabetes. 2003;52(2):232–8.

    Article  CAS  PubMed  Google Scholar 

  53. Zigman JM, Elmquist JK. Minireview: from anorexia to obesity—the yin and yang of body weight control. Endocrinology. 2003;144(9):3749–56.

    Article  CAS  PubMed  Google Scholar 

  54. Opland DM, Leinninger GM, Myers Jr MG. Modulation of the mesolimbic dopamine system by leptin. Brain Res. 2010;1350:65–70.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Leinninger GM, Opland DM, Jo YH, Faouzi M, Christensen L, Cappellucci LA, et al. Leptin action via neurotensin neurons controls orexin, the mesolimbic dopamine system and energy balance. Cell Metab. 2011;14(3):313–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Mebel DM, Wong JC, Dong YJ, Borgland SL. Insulin in the ventral tegmental area reduces hedonic feeding and suppresses dopamine concentration via increased reuptake. Eur J Neurosci. 2012;36(3):2336–46.

    Article  PubMed  Google Scholar 

  57. Egecioglu E, Skibicka KP, Hansson C, Alvarez-Crespo M, Friberg PA, Jerlhag E, et al. Hedonic and incentive signals for body weight control. Rev Endocr Metab Disord. 2011;12(3):141–51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Cone JJ, McCutcheon JE, Roitman MF. Ghrelin acts as an interface between physiological state and phasic dopamine signaling. J Neurosci: Off J Soc Neurosci. 2014;34(14):4905–13.

    Article  CAS  Google Scholar 

  59. Volkow ND, Wang GJ, Baler RD. Reward, dopamine and the control of food intake: implications for obesity. Trends Cogn Sci. 2011;15(1):37–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Heber D, Carpenter CL. Addictive genes and the relationship to obesity and inflammation. Mol Neurobiol. 2011;44(2):160–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Sturgess JE, George TP, Kennedy JL, Heinz A, Muller DJ. Pharmacogenetics of alcohol, nicotine and drug addiction treatments. Addict Biol. 2011;16(3):357–76.

    Article  CAS  PubMed  Google Scholar 

  62. Nutt DJ, Lingford-Hughes A, Erritzoe D, Stokes PR. The dopamine theory of addiction: 40 years of highs and lows. Nat Rev Neurosci. 2015;16(5):305–12.

    Article  CAS  PubMed  Google Scholar 

  63. Michaelides M, Thanos PK, Volkow ND, Wang GJ. Dopamine-related frontostriatal abnormalities in obesity and binge-eating disorder: emerging evidence for developmental psychopathology. Int Rev Psychiatry (Abingdon, England). 2012;24(3):211–8.

    Article  Google Scholar 

  64. Thompson J, Thomas N, Singleton A, Piggot M, Lloyd S, Perry E, et al. D2 dopamine receptor gene (DRD2) Taql A polymorphism: reduced dopamine D2 receptor binding in the human striatum associated with the A1 allele. Pharmacogenet Genomics. 1997;7(6):479–84.

    Article  CAS  Google Scholar 

  65. Peciña M, Mickey BJ, Love T, Wang H, Langenecker SA, Hodgkinson C, et al. DRD2 polymorphisms modulate reward and emotion processing, dopamine neurotransmission and openness to experience. Cortex. 2013;49(3):877–90.

    Article  PubMed Central  PubMed  Google Scholar 

  66. Noble EP. Addiction and its reward process through polymorphisms of the D2 dopamine receptor gene: a review. Eur Psychiatry. 2000;15(2):79–89.

    Article  CAS  PubMed  Google Scholar 

  67. Chen AL, Blum K, Chen TJ, Giordano J, Downs BW, Han D, et al. Correlation of the Taq 1 dopamine D2 receptor gene and percent body fat in obese and screened control subjects: a preliminary report. Food Func. 2012;3(1):40–8.

    Article  CAS  Google Scholar 

  68. Davis C, Levitan RD, Kaplan AS, Carter J, Reid C, Curtis C, et al. Reward sensitivity and the D2 dopamine receptor gene: a case–control study of binge eating disorder. Prog Neuro-Psychopharmacol Biol Psychiatry. 2008;32(3):620–8.

    Article  CAS  Google Scholar 

  69. Epstein LH, Temple JL, Neaderhiser BJ, Salis RJ, Erbe RW, Leddy JJ. Food reinforcement, the dopamine D(2) receptor genotype, and energy intake in obese and nonobese humans. Behav Neurosci. 2007;121(5):877–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Lett TA, Wallace TJ, Chowdhury NI, Tiwari AK, Kennedy JL, Muller DJ. Pharmacogenetics of antipsychotic-induced weight gain: review and clinical implications. Mol Psychiatry. 2012;17(3):242–66.

    Article  CAS  PubMed  Google Scholar 

  71. Kao AC, Müller DJ. Genetics of antipsychotic-induced weight gain: update and current perspectives. Pharmacogenomics. 2013;14(16):2067–83.

    Article  CAS  PubMed  Google Scholar 

  72. Fuke S, Suo S, Takahashi N, Koike H, Sasagawa N, Ishiura S. The VNTR polymorphism of the human dopamine transporter (DAT1) gene affects gene expression. Pharmacogenomics J. 2001;1(2):152–6.

    Article  CAS  PubMed  Google Scholar 

  73. van Dyck CH, Malison RT, Jacobsen LK, Seibyl JP, Staley JK, Laruelle M, et al. Increased dopamine transporter availability associated with the 9-repeat allele of the SLC6A3 gene. J Nucl Med. 2005;46(5):745–51.

    PubMed  Google Scholar 

  74. van de Giessen EM, de Win MM, Tanck MW, van den Brink W, Baas F, Booij J. Striatal dopamine transporter availability associated with polymorphisms in the dopamine transporter gene SLC6A3. J Nucl Med. 2009;50(1):45–52.

    Article  PubMed  CAS  Google Scholar 

  75. Shumay E, Wang G-J, Volkow N, Telang F, Jayne M, Wong C, et al. Exploring the links between the brain dopamine transporter availability, DAT1 genotype and body mass index. J Nucl Med Meeting Abst. 2012;53(1_MeetingAbstracts):195.

    Google Scholar 

  76. Davis C, Levitan RD, Kaplan AS, Carter J, Reid C, Curtis C, et al. Dopamine transporter gene (DAT1) associated with appetite suppression to methylphenidate in a case–control study of binge eating disorder. Neuropsychopharmacology. 2007;32(10):2199–206.

    Article  CAS  PubMed  Google Scholar 

  77. Nathan PJ, Bullmore ET. From taste hedonics to motivational drive: central μ-opioid receptors and binge-eating behaviour. 7. 2009.

  78. Smith DG, Robbins TW. The neurobiological underpinnings of obesity and binge eating: a rationale for adopting the food addiction model. Biol Psychiatry. 2013;73(9):804–10.

    Article  PubMed  Google Scholar 

  79. Haerian BS, Haerian MS. OPRM1 rs1799971 polymorphism and opioid dependence: evidence from a meta-analysis. Pharmacogenomics. 2013;14(7):813–24.

    Article  CAS  PubMed  Google Scholar 

  80. Davis C, Zai C, Levitan RD, Kaplan AS, Carter JC, Reid-Westoby C, et al. Opiates, overeating and obesity: a psychogenetic analysis. Int J Obesity (2005). 2011;35(10):1347–54.

    Article  CAS  Google Scholar 

  81. Bach P, Vollsta Dt-Klein S, Kirsch M, Hoffmann S, Jorde A, Frank J et al. Increased mesolimbic cue-reactivity in carriers of the mu-opioid-receptor gene OPRM1 A118G polymorphism predicts drinking outcome: a functional imaging study in alcohol dependent subjects. European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology. 2015.

  82. Haghighi A, Melka MG, Bernard M, Abrahamowicz M, Leonard GT, Richer L, et al. Opioid receptor mu 1 gene, fat intake and obesity in adolescence. Mol Psychiatry. 2014;19(1):63–8.

    Article  CAS  PubMed  Google Scholar 

  83. Clarke TK, Crist RC, Kampman KM, Dackis CA, Pettinati HM, O’Brien CP, et al. Low frequency genetic variants in the mu-opioid receptor (OPRM1) affect risk for addiction to heroin and cocaine. Neurosci Lett. 2013;542:71–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Carpenter CL, Wong AM, Li Z, Noble EP, Heber D. Association of dopamine D2 receptor and leptin receptor genes with clinically severe obesity. Obesity. 2013;21(9):E467–E73.

    CAS  PubMed  Google Scholar 

  85. Hardman CA, Rogers PJ, Timpson NJ, Munafo MR. Lack of association between DRD2 and OPRM1 genotypes and adiposity. Int J Obes. 2014;38(5):730–6.

    Article  CAS  Google Scholar 

  86. Zhang Y, Picetti R, Butelman ER, Ho A, Blendy JA, Kreek MJ. Mouse model of the OPRM1 (A118G) polymorphism: differential heroin self-administration behavior compared with wild-type mice. Neuropsychopharmacology. 2015;40(5):1091–100.

    Article  CAS  PubMed  Google Scholar 

  87. Nogueiras R, Seeley RJ. Our evolving understanding of the interaction between leptin and dopamine system to regulate ingestive behaviors. Mol Metab. 2012;1(1–2):8–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  88. Kern A, Albarran-Zeckler R, Walsh HE, Smith RG. Apo-ghrelin receptor forms heteromers with DRD2 in hypothalamic neurons and is essential for anorexigenic effects of DRD2 agonism. Neuron. 2012;73(2):317–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Davis JF, Choi DL, Schurdak JD, Fitzgerald MF, Clegg DJ, Lipton JW, et al. Leptin regulates energy balance and motivation through action at distinct neural circuits. Biol Psychiatry. 2011;69(7):668–74.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. al’Absi M, Hooker S, Fujiwara K, Kiefer F, von der Goltz C, Cragin T, et al. Circulating leptin levels are associated with increased craving to smoke in abstinent smokers. Pharmacol Biochem Behav. 2011;97(3):509–13.

    Article  PubMed  CAS  Google Scholar 

  91. Morrison CD. Leptin signaling in brain: a link between nutrition and cognition? Biochim Biophys Acta (BBA) - Mol Basis Dis. 2009;1792(5):401–8.

    Article  CAS  Google Scholar 

  92. Davis JF. Adipostatic regulation of motivation and emotion. Discov Med. 2010;9(48):462–7.

    PubMed  Google Scholar 

  93. van Rossum CTM, Hoebee B, van Baak MA, Mars M, Saris WHM, Seidell JC. Genetic variation in the leptin receptor gene, leptin, and weight gain in young Dutch adults. Obes Res. 2003;11(3):377–86.

    Article  PubMed  Google Scholar 

  94. Voisey J, Carroll L, van Daal A. Melanocortins and their receptors and antagonists. Curr Drug Targets. 2003;4(7):586–97.

    Article  CAS  PubMed  Google Scholar 

  95. Cui H, Mason BL, Lee C, Nishi A, Elmquist JK, Lutter M. Melanocortin 4 receptor signaling in dopamine 1 receptor neurons is required for procedural memory learning. Physiol Behav. 2012;106(2):201–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Hsu R, Taylor JR, Newton SS, Alvaro JD, Haile C, Han G, et al. Blockade of melanocortin transmission inhibits cocaine reward. Eur J Neurosci. 2005;21(8):2233–42.

    Article  PubMed Central  PubMed  Google Scholar 

  97. Shelkar GP, Kale AD, Singh U, Singru PS, Subhedar NK, Kokare DM. Alpha-melanocyte stimulating hormone modulates ethanol self-administration in posterior ventral tegmental area through melanocortin-4 receptors. Addict Biol. 2015;20(2):302–15.

    Article  CAS  PubMed  Google Scholar 

  98. Thorleifsson G, Walters GB, Gudbjartsson DF, Steinthorsdottir V, Sulem P, Helgadottir A, et al. Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity. Nat Genet. 2009;41(1):18–24.

    Article  CAS  PubMed  Google Scholar 

  99. Xi B, Chandak GR, Shen Y, Wang Q, Zhou D. Association between common polymorphism near the MC4R gene and obesity risk: a systematic review and meta-analysis. PLoS One. 2012;7(9), e45731.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Yilmaz Z, Davis C, Loxton NJ, Kaplan AS, Levitan RD, Carter JC, et al. Association between MC4R rs17782313 polymorphism and overeating behaviors. Int J Obesity (2005). 2015;39(1):114–20.

    Article  CAS  Google Scholar 

  101. Porfirio MC, Giovinazzo S, Cortese S, Giana G, Lo-Castro A, Mouren MC, et al. Role of ADHD symptoms as a contributing factor to obesity in patients with MC4R mutations. Med Hypotheses. 2015;84(1):4–7.

    Article  CAS  PubMed  Google Scholar 

  102. Zheng H, Lenard N, Shin A, Berthoud H-R. Appetite control and energy balance regulation in the modern world: reward-driven brain overrides repletion signals. Int J Obes. 2009;33:S8–S13.

    Article  CAS  Google Scholar 

  103. Association AP. Diagnostic and statistical manual of mental disorders: DSM-5. ManMag; 2003.

  104. Cassin SE, von Ranson KM. Is binge eating experienced as an addiction? Appetite. 2007;49(3):687–90.

    Article  PubMed  Google Scholar 

  105. Gearhardt AN, Corbin WR, Brownell KD. Preliminary validation of the Yale food addiction scale. Appetite. 2009;52(2):430–6. This article reports the first validation of the Yale Food Addiction Scale (YFAS), developed to assess a ‘food addiction’ phenotype. In a sample of young adults, the YFAS predicted binge-eating behavior better than other psychometric tools.

    Article  PubMed  Google Scholar 

  106. Association AP, Association AP. Diagnostic and statistical manual-text revision (DSM-IV-TRim, 2000). Am Psych Assoc; 2000.

  107. Brunault P, Ballon N, Gaillard P, Réveillère C, Courtois R. Validation of the french version of the Yale food addiction scale: an examination of its factor structure, reliability, and construct validity in a nonclinical sample. Can J Psychiatry. 2014;59(5):276–84.

    PubMed Central  PubMed  Google Scholar 

  108. Chen G, Tang Z, Guo G, Liu X, Xiao S. The Chinese version of the Yale food addiction scale: an examination of its validation in a sample of female adolescents. Eat Behav. 2015;18:97–102.

    Article  PubMed  Google Scholar 

  109. Clark SM, Saules KK. Validation of the Yale food addiction scale among a weight-loss surgery population. Eat Behav. 2013;14(2):216–9.

    Article  PubMed  Google Scholar 

  110. Swendsen J, Conway KP, Degenhardt L, Glantz M, Jin R, Merikangas KR, et al. Mental disorders as risk factors for substance use, abuse and dependence: results from the 10‐year follow‐up of the national comorbidity survey. Addiction. 2010;105(6):1117–28.

    Article  PubMed Central  PubMed  Google Scholar 

  111. Eichen DM, Lent MR, Goldbacher E, Foster GD. Exploration of “food addiction” in overweight and obese treatment-seeking adults. Appetite. 2013;67:22–4.

    Article  PubMed Central  PubMed  Google Scholar 

  112. Gearhardt AN, Roberto CA, Seamans MJ, Corbin WR, Brownell KD. Preliminary validation of the Yale food addiction scale for children. Eat Behav. 2013;14(4):508–12.

    Article  PubMed  Google Scholar 

  113. Meule A, Hermann T, Kubler A. Food addiction in overweight and obese adolescents seeking weight-loss treatment. Eur Eating Disord Rev: J Eating Disord Assoc. 2015;23(3):193–8.

    Article  Google Scholar 

  114. Burrows T, Meule A. Food addiction’. What happens in childhood? Appetite. 2015;89:298–300.

    Article  CAS  PubMed  Google Scholar 

  115. Meule A. Food addiction and body-mass-index: a non-linear relationship. Med Hypotheses. 2012;79(4):508–11.

    Article  PubMed  Google Scholar 

  116. Davis C, Loxton NJ. A psycho-genetic study of hedonic responsiveness in relation to “food addiction. Nutrients. 2014;6(10):4338–53.

    Article  PubMed Central  PubMed  Google Scholar 

  117. Meule A, Gearhardt AN. Food addiction in the light of DSM-5. Nutrients. 2014;6(9):3653–71. This article provides a detailed comparison between currently proposed dimensions of ‘food addiction’ and new criteria for substance use disorders (SUDs) diagnoses according to the DSM-5.

    Article  PubMed Central  PubMed  Google Scholar 

  118. Meule A. How prevalent is “Food Addiction”? Frontiers Psych. 2011;2.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Müller.

Ethics declarations

Conflict of Interest

Nina Carlier, Victoria S. Marshe, Jana Cmorejova, Caroline Davis, and Daniel J. Müller declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Genetic Disorders

Nina Carlier and Victoria S. Marshe contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carlier, N., Marshe, V.S., Cmorejova, J. et al. Genetic Similarities between Compulsive Overeating and Addiction Phenotypes: A Case for “Food Addiction”?. Curr Psychiatry Rep 17, 96 (2015). https://doi.org/10.1007/s11920-015-0634-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-015-0634-5

Keywords

Navigation