Skip to main content
Log in

Update on the Role of Glucocorticoid Signaling in Osteoblasts and Bone Marrow Adipocytes During Aging

  • Bone Marrow and Adipose Tissue (B Lecka-Czernik and G Duque, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Bone marrow adipose tissue (BMAT) in the skeleton likely plays a variety of physiological and pathophysiological roles that are not yet fully understood. In elucidating the complex relationship between bone and BMAT, glucocorticoids (GCs) are positioned to play a key role, as they have been implicated in the differentiation of bone marrow mesenchymal stem cells (BMSCs) between osteogenic and adipogenic lineages. The purpose of this review is to illuminate aspects of both endogenous and exogenous GC signaling, including the influence of GC receptors, in mechanisms of bone aging including relationships to BMAT.

Recent Findings

Harmful effects of GCs on bone mass involve several cellular pathways and events that can include BMSC differentiation bias toward adipogenesis and the influence of mature BMAT on bone remodeling through crosstalk. Interestingly, BMAT involvement remains poorly explored in GC-induced osteoporosis and warrants further investigation.

Summary

This review provides an update on the current understanding of the role of glucocorticoids in the biology of osteoblasts and bone marrow adipocytes (BMAds).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of Cellular Senescence. Trends Cell Biol. 2018;28:436–53.

    Article  CAS  PubMed  Google Scholar 

  2. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The Hallmarks of Aging. Cell. 2013;153:1194–217.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lecot P, Alimirah F, Desprez PY, Campisi J, Wiley C. Context-dependent effects of cellular senescence in cancer development. Br J Cancer. 2016;114:1180–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Macías I, Alcorta-Sevillano N, Rodríguez CI, Infante A. Osteoporosis and the Potential of Cell-Based Therapeutic Strategies. Int J Mol Sci. 2020;21:1653.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhang Q, Cai W, Wang G, Shen X. Prevalence and contributing factors of osteoporosis in the elderly over 70 years old: an epidemiological study of several community health centers in Shanghai. Ann Palliat Med. 2020;9:231–8.

    Article  PubMed  Google Scholar 

  6. Raisz LG. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest. 2005;115:3318–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Russell RGG, Espina B, Hulley P. Bone biology and the pathogenesis of osteoporosis. Curr Opin Rheumatol. 2006;18:S3–S10.

    Article  PubMed  Google Scholar 

  8. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science. 1999;284:143–7.

    Article  CAS  PubMed  Google Scholar 

  9. Sharma AK, Shi X, Isales CM, McGee-Lawrence ME. Endogenous Glucocorticoid Signaling in the Regulation of Bone and Marrow Adiposity: Lessons from Metabolism and Cross Talk in Other Tissues. Curr Osteoporos Rep. 2019;17:438–45.

    Article  PubMed  Google Scholar 

  10. Paspaliaris V, Kolios G. Stem cells in Osteoporosis: From Biology to New Therapeutic Approaches. Stem Cells Int. 2019;2019:1730978–16.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Han L, Wang B, Wang R, Gong S, Chen G, Xu W. The shift in the balance between osteoblastogenesis and adipogenesis of mesenchymal stem cells mediated by glucocorticoid receptor. Stem Cell Res Ther. 2019;10:377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li J, Zhang N, Huang X, Xu J, Fernandes JC, Dai K, Zhang X. Dexamethasone shifts bone marrow stromal cells from osteoblasts to adipocytes by C/EBPalpha promoter methylation. Cell Death Dis. 2013;4:e832–2.

  13. Lecka-Czernik B, Rosen CJ, Kawai M. Skeletal aging and the adipocyte program: New insights from an "old" molecule. Cell Cycle. 2010;9:3648–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Veldhuis-Vlug AG, Rosen CJ. Clinical implications of bone marrow adiposity. J Intern Med. 2018;283:121–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bethel M, Chitteti BR, Srour EF, Kacena MA. The changing balance between osteoblastogenesis and adipogenesis in aging and its impact on hematopoiesis. Curr Osteoporos Rep. 2013;11:99–106.

    Article  PubMed  PubMed Central  Google Scholar 

  16. McGee-Lawrence ME, Carpio LR, Schulze RJ, Pierce JL, McNiven MA, Farr JN, Khosla S, Oursler MJ, Westendorf JJ. Hdac3 Deficiency Increases Marrow Adiposity and Induces Lipid Storage and Glucocorticoid Metabolism in Osteochondroprogenitor Cells. J Bone Mineral Res Official J Am Soc Bone Mineral Res. 2016;31:116–28.

    Article  CAS  Google Scholar 

  17. Razidlo DF, Whitney TJ, Casper ME, McGee-Lawrence ME, Stensgard BA, Li X, Secreto FJ, Knutson SK, Hiebert SW, Westendorf JJ. Histone deacetylase 3 depletion in osteo/chondroprogenitor cells decreases bone density and increases marrow fat. PLoS One. 2010;5:e11492.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Devlin MJ, Rosen CJ. The bone–fat interface: basic and clinical implications of marrow adiposity. Lancet Diab Endocrinol. 2015;3:141–7.

    Article  CAS  Google Scholar 

  19. Tikhonova AN, Dolgalev I, Hu H, Sivaraj KK, Hoxha E, Cuesta-Domínguez Á, Pinho S, Akhmetzyanova I, Gao J, Witkowski M, Guillamot M, Gutkin MC, Zhang Y, Marier C, Diefenbach C, Kousteni S, Heguy A, Zhong H, Fooksman DR, et al. The bone marrow microenvironment at single-cell resolution. Nature. 2019;569:222–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Baryawno N, Przybylski D, Kowalczyk MS, Kfoury Y, Severe N, Gustafsson K, Kokkaliaris KD, Mercier F, Tabaka M, Hofree M, Dionne D, Papazian A, Lee D, Ashenberg O, Subramanian A, Vaishnav ED, Rozenblatt-Rosen O, Regev A, Scadden DT. A Cellular Taxonomy of the Bone Marrow Stroma in Homeostasis and Leukemia. Cell. 2019;177:1915–1932.e1916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wolock SL, Krishnan I, Tenen DE, Matkins V, Camacho V, Patel S, Agarwal P, Bhatia R, Tenen DG, Klein AM, Welner RS. Mapping Distinct Bone Marrow Niche Populations and Their Differentiation Paths. Cell Rep. 2019;28:302–311.e305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dolgalev, I., and Tikhonova, A. N. Connecting the Dots: Resolving the Bone Marrow Niche Heterogeneity. Front Cell Dev Biol. 2021 Mar 12;9:622519. https://doi.org/10.3389/fcell.2021.622519

  23. Matsushita, Y., Ono, W., and Ono, N. Toward Marrow Adipocytes: Adipogenic Trajectory of the Bone Marrow Stromal Cell Lineage. Front Endocrinol. 2022 Apr 22;13:882297. https://doi.org/10.3389/fendo.2022.882297

  24. Trudel G, Payne M, Mädler B, Ramachandran N, Lecompte M, Wade C, Biolo G, Blanc S, Hughson R, Bear L, Uhthoff HK. Bone marrow fat accumulation after 60 days of bed rest persisted 1 year after activities were resumed along with hemopoietic stimulation: the Women International Space Simulation for Exploration study. J Appl Physiol. 2009;107:540–8.

    Article  PubMed  Google Scholar 

  25. Shen W, Chen J, Punyanitya M, Shapses S, Heshka S, Heymsfield SB. MRI-measured bone marrow adipose tissue is inversely related to DXA-measured bone mineral in Caucasian women. Osteoporos Int. 2007;18:641–7.

    Article  CAS  PubMed  Google Scholar 

  26. Cawthorn WP, Scheller EL, Learman BS, Parlee SD, Simon BR, Mori H, Ning X, Bree AJ, Schell B, Broome DT, Soliman SS, DelProposto JL, Lumeng CN, Mitra A, Pandit SV, Gallagher KA, Miller JD, Krishnan V, Hui SK, et al. Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction. Cell Metab. 2014;20:368–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Suchacki KJ, Tavares AAS, Mattiucci D, Scheller EL, Papanastasiou G, Gray C, Sinton MC, Ramage LE, McDougald WA, Lovdel A, Sulston RJ, Thomas BJ, Nicholson BM, Drake AJ, Alcaide-Corral CJ, Said D, Poloni A, Cinti S, Macpherson GJ, et al. Bone marrow adipose tissue is a unique adipose subtype with distinct roles in glucose homeostasis. Nat Commun. 2020;11:3097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li, Z., Bowers, E., Zhu, J., Yu, H., Hardij, J., Bagchi, D. P., Mori, H., Lewis, K. T., Granger, K., Schill, R. L., Romanelli, S. M., Abrishami, S., Hankenson, K. D., Singer, K., Rosen, C. J., and MacDougald, O. A. Lipolysis of bone marrow adipocytes is required to fuel bone and the marrow niche during energy deficits Elife. 2022 Jun 22;11:e78496. https://doi.org/10.7554/eLife.78496

  29. Schwartz AV, Sigurdsson S, Hue TF, Lang TF, Harris TB, Rosen CJ, Vittinghoff E, Siggeirsdottir K, Sigurdsson G, Oskarsdottir D, Shet K, Palermo L, Gudnason V, Li X. Vertebral Bone Marrow Fat Associated With Lower Trabecular BMD and Prevalent Vertebral Fracture in Older Adults. J Clin Endocrinol Metab. 2013;98:2294–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chandra A, Lagnado AB, Farr JN, Schleusner M, Monroe DG, Saul D, Passos JF, Khosla S, Pignolo RJ. Bone Marrow Adiposity in Models of Radiation- and Aging-Related Bone Loss Is Dependent on Cellular Senescence. J Bone Miner Res. 2022;37:997–1011.

    Article  CAS  PubMed  Google Scholar 

  31. Li J, Lu L, Liu Y, Yu X. Bone marrow adiposity during pathologic bone loss: molecular mechanisms underlying the cellular events. J Mol Med. 2022;100:167–83.

    Article  CAS  PubMed  Google Scholar 

  32. Bredella MA, Fazeli PK, Miller KK, Misra M, Torriani M, Thomas BJ, Ghomi RH, Rosen CJ, Klibanski A. Increased Bone Marrow Fat in Anorexia Nervosa. J Clin Endocrinol Metab. 2009;94:2129–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Devlin MJ, Cloutier AM, Thomas NA, Panus DA, Lotinun S, Pinz I, Baron R, Rosen CJ, Bouxsein ML. Caloric restriction leads to high marrow adiposity and low bone mass in growing mice. J Bone Mineral Res Official J Am Soc Bone Mineral Res. 2010;25:2078–88.

    Article  Google Scholar 

  34. Baum T, Yap SP, Karampinos DC, Nardo L, Kuo D, Burghardt AJ, Masharani UB, Schwartz AV, Li X, Link TM. Does vertebral bone marrow fat content correlate with abdominal adipose tissue, lumbar spine bone mineral density, and blood biomarkers in women with type 2 diabetes mellitus? J Magn Reson Imaging. 2012;35:117–24.

    Article  PubMed  Google Scholar 

  35. Gorgey AS, Poarch HJ, Adler RA, Khalil RE, Gater DR. Femoral bone marrow adiposity and cortical bone cross-sectional areas in men with motor complete spinal cord injury. PM & R : J Injury, Funct Rehab. 2013;5:939–48.

    Article  Google Scholar 

  36. Esche J, Shi L, Hartmann MF, Schonau E, Wudy SA, Remer T. Glucocorticoids and Body Fat Inversely Associate With Bone Marrow Density of the Distal Radius in Healthy Youths. J Clin Endocrinol Metab. 2019;104:2250–6.

    Article  PubMed  Google Scholar 

  37. Vande Berg BC, Malghem J, Lecouvet FE, Devogelaer JP, Maldague B, Houssiau FA. Fat conversion of femoral marrow in glucocorticoid-treated patients: A cross-sectional and longitudinal study with magnetic resonance imaging. Arthritis Rheum. 1999;42:1405–11.

    Article  CAS  PubMed  Google Scholar 

  38. Li Z, MacDougald OA. Preclinical models for investigating how bone marrow adipocytes influence bone and hematopoietic cellularity. Best Pract Res Clin Endocrinol Metab. 2021;35:101547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pierce JL, Sharma AK, Roberts RL, Yu K, Irsik DL, Choudhary V, Dorn JS, Bensreti H, Benson RD Jr, Kaiser H, Khayrullin A, Davis C, Wehrle CJ, Johnson MH, Bollag WB, Hamrick MW, Shi X, Isales CM, McGee-Lawrence ME. The Glucocorticoid Receptor in Osterix-Expressing Cells Regulates Bone Mass, Bone Marrow Adipose Tissue, and Systemic Metabolism in Female Mice During Aging. J Bone Miner Res. 2022;37:285–302.

    Article  CAS  PubMed  Google Scholar 

  40. Romacho T, Elsen M, Röhrborn D, Eckel J. Adipose tissue and its role in organ crosstalk. Acta Physiol (Oxford). 2014;210:733–53.

    Article  CAS  Google Scholar 

  41. Maurin AC, Chavassieux PM, Frappart L, Delmas PD, Serre CM, Meunier PJ. Influence of mature adipocytes on osteoblast proliferation in human primary cocultures. Bone. 2000;26:485–9.

    Article  CAS  PubMed  Google Scholar 

  42. Iwaniec UT, Turner RT. Failure to generate bone marrow adipocytes does not protect mice from ovariectomy-induced osteopenia. Bone. 2013;53:145–53.

    Article  PubMed  Google Scholar 

  43. Botolin S, McCabe LR. Inhibition of PPARgamma prevents type I diabetic bone marrow adiposity but not bone loss. J Cell Physiol. 2006;209:967–76.

    Article  CAS  PubMed  Google Scholar 

  44. Almeida M, Kim HN, Han L, Zhou D, Thostenson J, Porter RM, Ambrogini E, Manolagas SC, Jilka RL. Increased marrow adipogenesis does not contribute to age-dependent appendicular bone loss in female mice. Aging Cell. 2020;19:e13247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cawthorn WP, Scheller EL, Parlee SD, Pham HA, Learman BS, Redshaw CM, Sulston RJ, Burr AA, Das AK, Simon BR, Mori H, Bree AJ, Schell B, Krishnan V, MacDougald OA. Expansion of Bone Marrow Adipose Tissue During Caloric Restriction Is Associated With Increased Circulating Glucocorticoids and Not With Hypoleptinemia. Endocrinology. 2016;157:508–21.

    Article  CAS  PubMed  Google Scholar 

  46. Zhou H, Cooper MS, Seibel MJ. Endogenous Glucocorticoids and Bone. Bone Res. 2013;1:107–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Buttgereit F, Burmester GR, Straub RH, Seibel MJ, Zhou H. Exogenous and endogenous glucocorticoids in rheumatic diseases. Arthritis Rheum. 2011;63:1–9.

    Article  CAS  PubMed  Google Scholar 

  48. Meikle AW, Tyler FH. Potency and duration of action of glucocorticoids. Effects of hydrocortisone, prednisone and dexamethasone on human pituitary-adrenal function. Am J Med. 1977;63:200–7.

    Article  CAS  PubMed  Google Scholar 

  49. Parente L. Deflazacort: therapeutic index, relative potency and equivalent doses versus other corticosteroids. BMC Pharmacol Toxicol. 2017;18:1.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Caplan A, Fett N, Rosenbach M, Werth VP, Micheletti RG. Prevention and management of glucocorticoid-induced side effects: A comprehensive review: A review of glucocorticoid pharmacology and bone health. J Am Acad Dermatol. 2017;76:1–9.

    Article  PubMed  Google Scholar 

  51. Zoorob RJ, Cender D. A different look at corticosteroids. Am Fam Physician. 1998;58:443–50.

    CAS  PubMed  Google Scholar 

  52. Li, Z., Liu, C., Li, S., Li, T., Li, Y., Wang, N., Bao, X., Xue, P., and Liu, S. (2021) BMSC-Derived Exosomes Inhibit Dexamethasone-Induced Muscle Atrophy via the miR-486-5p/FoxO1 Axis. Front Endocrinol (Lausanne). 2021 Oct 1;12:681267. https://doi.org/10.3389/fendo.2021.681267

  53. Tauchmanova L, Pivonello R, Di Somma C, Rossi R, De Martino MC, Camera L, Klain M, Salvatore M, Lombardi G, Colao A. Bone demineralization and vertebral fractures in endogenous cortisol excess: role of disease etiology and gonadal status. J Clin Endocrinol Metab. 2006;91:1779–84.

    Article  CAS  PubMed  Google Scholar 

  54. O'Brien CA, Jia D, Plotkin LI, Bellido T, Powers CC, Stewart SA, Manolagas SC, Weinstein RS. Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology. 2004;145:1835–41.

    Article  CAS  PubMed  Google Scholar 

  55. Sui B, Hu C, Liao L, Chen Y, Zhang X, Fu X, Zheng C, Li M, Wu L, Zhao X, Jin Y. Mesenchymal progenitors in osteopenias of diverse pathologies: differential characteristics in the common shift from osteoblastogenesis to adipogenesis. Sci Rep. 2016;6:30186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rogatsky I, Trowbridge JM, Garabedian MJ. Glucocorticoid receptor-mediated cell cycle arrest is achieved through distinct cell-specific transcriptional regulatory mechanisms. Mol Cell Biol. 1997;17:3181–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chang JK, Li CJ, Liao HJ, Wang CK, Wang GJ, Ho ML. Anti-inflammatory drugs suppress proliferation and induce apoptosis through altering expressions of cell cycle regulators and pro-apoptotic factors in cultured human osteoblasts. Toxicology. 2009;258:148–56.

    Article  CAS  PubMed  Google Scholar 

  58. Li H, Qian W, Weng X, Wu Z, Li H, Zhuang Q, Feng B, Bian Y. Glucocorticoid receptor and sequential P53 activation by dexamethasone mediates apoptosis and cell cycle arrest of osteoblastic MC3T3-E1 cells. PLoS One. 2012;7:e37030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gado M, Baschant U, Hofbauer LC, Henneicke H. Bad to the Bone: The Effects of Therapeutic Glucocorticoids on Osteoblasts and Osteocytes. Front Endocrinol (Lausanne). 2022;13:835720.

    Article  PubMed  Google Scholar 

  60. Lane NE, Yao W, Balooch M, Nalla RK, Balooch G, Habelitz S, Kinney JH, Bonewald LF. Glucocorticoid-treated mice have localized changes in trabecular bone material properties and osteocyte lacunar size that are not observed in placebo-treated or estrogen-deficient mice. J Bone Mineral Res Official J Am Soc Bone Mineral Res. 2006;21:466–76.

    Article  CAS  Google Scholar 

  61. Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Invest. 1998;102:274–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sato AY, Tu X, McAndrews KA, Plotkin LI, Bellido T. Prevention of glucocorticoid induced-apoptosis of osteoblasts and osteocytes by protecting against endoplasmic reticulum (ER) stress in vitro and in vivo in female mice. Bone. 2015;73:60–8.

    Article  PubMed  Google Scholar 

  63. Jia J, Yao W, Guan M, Dai W, Shahnazari M, Kar R, Bonewald L, Jiang JX, Lane NE. Glucocorticoid dose determines osteocyte cell fate. FASEB J. 2011;25:3366–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rauch A, Seitz S, Baschant U, Schilling AF, Illing A, Stride B, Kirilov M, Mandic V, Takacz A, Schmidt-Ullrich R, Ostermay S, Schinke T, Spanbroek R, Zaiss MM, Angel PE, Lerner UH, David JP, Reichardt HM, Amling M, et al. Glucocorticoids suppress bone formation by attenuating osteoblast differentiation via the monomeric glucocorticoid receptor. Cell Metab. 2010;11:517–31.

    Article  CAS  PubMed  Google Scholar 

  65. Zhang S, Liu Y, Liang Q. Low-dose dexamethasone affects osteoblast viability by inducing autophagy via intracellular ROS. Mol Med Rep. 2018;17:4307–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Yao W, Dai W, Jiang L, Lay EY, Zhong Z, Ritchie RO, Li X, Ke H, Lane NE. Sclerostin-antibody treatment of glucocorticoid-induced osteoporosis maintained bone mass and strength. Osteoporosis International : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2016;27:283–94.

    Article  CAS  PubMed  Google Scholar 

  67. Krishnan V, Bryant HU, Macdougald OA. Regulation of bone mass by Wnt signaling. J Clin Invest. 2006;116:1202–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fairfield H, Falank C, Harris E, Demambro V, McDonald M, Pettitt JA, Mohanty ST, Croucher P, Kramer I, Kneissel M, Rosen CJ, Reagan MR. The skeletal cell-derived molecule sclerostin drives bone marrow adipogenesis. J Cell Physiol. 2018;233:1156–67.

    Article  CAS  PubMed  Google Scholar 

  69. Kim SP, Da H, Wang L, Taketo MM, Wan M, Riddle RC. Bone-derived sclerostin and Wnt/beta-catenin signaling regulate PDGFRalpha(+) adipoprogenitor cell differentiation. FASEB J. 2021;35:e21957.

    Article  CAS  PubMed  Google Scholar 

  70. Balani DH, Trinh S, Xu M, Kronenberg HM. Sclerostin Antibody Administration Increases the Numbers of Sox9creER+ Skeletal Precursors and Their Progeny. J Bone Miner Res. 2021;36:757–67.

    Article  CAS  PubMed  Google Scholar 

  71. Gao J, Cheng TS, Qin A, Pavlos NJ, Wang T, Song K, Wang Y, Chen L, Zhou L, Jiang Q, Takayanagi H, Yan S, Zheng M. Glucocorticoid impairs cell-cell communication by autophagy-mediated degradation of connexin 43 in osteocytes. Oncotarget. 2016;7:26966–78.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Abdallah BM, Kassem M. New factors controlling the balance between osteoblastogenesis and adipogenesis. Bone. 2012;50:540–5.

    Article  CAS  PubMed  Google Scholar 

  73. Maurin AC, Chavassieux PM, Vericel E, Meunier PJ. Role of polyunsaturated fatty acids in the inhibitory effect of human adipocytes on osteoblastic proliferation. Bone. 2002;31:260–6.

    Article  CAS  PubMed  Google Scholar 

  74. Wang D, Haile A, Jones LC. Dexamethasone-induced lipolysis increases the adverse effect of adipocytes on osteoblasts using cells derived from human mesenchymal stem cells. Bone. 2013;53:520–30.

    Article  CAS  PubMed  Google Scholar 

  75. Elbaz A, Wu X, Rivas D, Gimble JM, Duque G. Inhibition of fatty acid biosynthesis prevents adipocyte lipotoxicity on human osteoblasts in vitro. J Cell Mol Med. 2010;14:982–91.

    Article  CAS  PubMed  Google Scholar 

  76. Martel D, Leporq B, Saxena A, Belmont HM, Turyan G, Honig S, Regatte RR, Chang G. 3T chemical shift-encoded MRI: Detection of altered proximal femur marrow adipose tissue composition in glucocorticoid users and validation with magnetic resonance spectroscopy. J Magn Reson Imaging. 2019;50:490–6.

    Article  PubMed  Google Scholar 

  77. Liu K, Jing Y, Zhang W, Fu X, Zhao H, Zhou X, Tao Y, Yang H, Zhang Y, Zen K, Zhang C, Li D, Shi Q. Silencing miR-106b accelerates osteogenesis of mesenchymal stem cells and rescues against glucocorticoid-induced osteoporosis by targeting BMP2. Bone. 2017;97:130–8.

    Article  CAS  PubMed  Google Scholar 

  78. Li CJ, Cheng P, Liang MK, Chen YS, Lu Q, Wang JY, Xia ZY, Zhou HD, Cao X, Xie H, Liao EY, Luo XH. MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation. J Clin Invest. 2015;125:1509–22.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Kang H, Chen H, Huang P, Qi J, Qian N, Deng L, Guo L. Glucocorticoids impair bone formation of bone marrow stromal stem cells by reciprocally regulating microRNA-34a-5p. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2016;27:1493–505.

    Article  CAS  PubMed  Google Scholar 

  80. Wang G, Wang F, Zhang L, Yan C, Zhang Y. miR-133a silencing rescues glucocorticoid-induced bone loss by regulating the MAPK/ERK signaling pathway. Stem Cell Res Ther. 2021;12:215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Shen GY, Ren H, Shang Q, Zhao WH, Zhang ZD, Yu X, Huang JJ, Tang JJ, Yang ZD, Liang D, Jiang XB. Let-7f-5p regulates TGFBR1 in glucocorticoid-inhibited osteoblast differentiation and ameliorates glucocorticoid-induced bone loss. Int J Biol Sci. 2019;15:2182–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kalluri R, LeBleu Valerie S. The biology, function, and biomedical applications of exosomes. Sci. 2020;367:eaau6977.

    Article  CAS  Google Scholar 

  83. Liu Y, Wang C, Wei M, Yang G, Yuan L. Multifaceted Roles of Adipose Tissue-Derived Exosomes in Physiological and Pathological Conditions. Front Physiol. 2021;12:669429.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Quan M, Kuang S. Exosomal Secretion of Adipose Tissue during Various Physiological States. Pharm Res. 2020;37:221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tao SC, Yuan T, Rui BY, Zhu ZZ, Guo SC, Zhang CQ. Exosomes derived from human platelet-rich plasma prevent apoptosis induced by glucocorticoid-associated endoplasmic reticulum stress in rat osteonecrosis of the femoral head via the Akt/Bad/Bcl-2 signal pathway. Theranostics. 2017;7:733–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Nan K, Zhang Y, Zhang X, Li D, Zhao Y, Jing Z, Liu K, Shang D, Geng Z, Fan L. Exosomes from miRNA-378-modified adipose-derived stem cells prevent glucocorticoid-induced osteonecrosis of the femoral head by enhancing angiogenesis and osteogenesis via targeting miR-378 negatively regulated suppressor of fused (Sufu). Stem Cell Res Ther. 2021;12:331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kadmiel M, Cidlowski JA. Glucocorticoid receptor signaling in health and disease. Trends Pharmacol Sci. 2013;34:518–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fudulu DP, Horn G, Hazell G, Lefrançois-Martinez AM, Martinez A, Angelini GD, Lightman SL, Spiga F. Co-culture of monocytes and zona fasciculata adrenal cells: An in vitro model to study the immune-adrenal cross-talk. Mol Cell Endocrinol. 2021;526:111195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Pon LA, Hartigan JA, Orme-Johnson NR. Acute ACTH regulation of adrenal corticosteroid biosynthesis. Rapid Accum Phosphoprotein J Biol Chem. 1986;261:13309–16.

    Article  CAS  Google Scholar 

  90. Tomlinson JW, Walker EA, Bujalska IJ, Draper N, Lavery GG, Cooper MS, Hewison M, Stewart PM. 11beta-hydroxysteroid dehydrogenase type 1: a tissue-specific regulator of glucocorticoid response. Endocr Rev. 2004;25:831–66.

    Article  CAS  PubMed  Google Scholar 

  91. Almanzar G, Mayerl C, Seitz JC, Hofner K, Brunner A, Wild V, Jahn D, Geier A, Fassnacht M, Prelog M. Expression of 11beta-hydroxysteroid-dehydrogenase type 2 in human thymus. Steroids. 2016;110:35–40.

    Article  CAS  PubMed  Google Scholar 

  92. Albiston AL, Obeyesekere VR, Smith RE, Krozowski ZS. Cloning and tissue distribution of the human 11 beta-hydroxysteroid dehydrogenase type 2 enzyme. Mol Cell Endocrinol. 1994;105:R11–7.

    Article  CAS  PubMed  Google Scholar 

  93. Luft FC. 11beta-Hydroxysteroid Dehydrogenase-2 and Salt-Sensitive Hypertension. Circulation. 2016;133:1335–7.

    Article  PubMed  Google Scholar 

  94. Salvante KG, Milano K, Kliman HJ, Nepomnaschy PA. Placental 11 beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2) expression very early during human pregnancy. J Dev Orig Health Dis. 2017;8:149–54.

    Article  CAS  PubMed  Google Scholar 

  95. Whorwood CB, Ricketts ML, Stewart PM. Epithelial cell localization of type 2 11 beta-hydroxysteroid dehydrogenase in rat and human colon. Endocrinology. 1994;135:2533–41.

    Article  CAS  PubMed  Google Scholar 

  96. Justesen J, Mosekilde L, Holmes M, Stenderup K, Gasser J r, Mullins JJ, Seckl JR, Kassem M. Mice Deficient in 11β-Hydroxysteroid Dehydrogenase Type 1 Lack Bone Marrow Adipocytes, but Maintain Normal Bone Formation. Endocrinology. 2004;145:1916–25.

    Article  CAS  PubMed  Google Scholar 

  97. Boucher E, Provost PR, Tremblay Y. Ontogeny of adrenal-like glucocorticoid synthesis pathway and of 20alpha-hydroxysteroid dehydrogenase in the mouse lung. BMC Res Notes. 2014;7:119.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Chapman K, Holmes M, Seckl J. 11β-hydroxysteroid dehydrogenases: intracellular gate-keepers of tissue glucocorticoid action. Physiol Rev. 2013;93:1139–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Gilmour JS, Coutinho AE, Cailhier JF, Man TY, Clay M, Thomas G, Harris HJ, Mullins JJ, Seckl JR, Savill JS, Chapman KE. Local amplification of glucocorticoids by 11 beta-hydroxysteroid dehydrogenase type 1 promotes macrophage phagocytosis of apoptotic leukocytes. J Immunol. 2006;176:7605–11.

    Article  CAS  PubMed  Google Scholar 

  100. Ramamoorthy S, Cidlowski JA. Corticosteroids: Mechanisms of Action in Health and Disease. Rheum Dis Clin N Am. 2016;42(15-31):vii.

    Google Scholar 

  101. Sher LB, Woitge HW, Adams DJ, Gronowicz GA, Krozowski Z, Harrison JR, Kream BE. Transgenic expression of 11beta-hydroxysteroid dehydrogenase type 2 in osteoblasts reveals an anabolic role for endogenous glucocorticoids in bone. Endocrinology. 2004;145:922–9.

    Article  CAS  PubMed  Google Scholar 

  102. Zhou H, Mak W, Kalak R, Street J, Fong-Yee C, Zheng Y, Dunstan CR, Seibel MJ. Glucocorticoid-dependent Wnt signaling by mature osteoblasts is a key regulator of cranial skeletal development in mice. Development. 2009;136:427–36.

    Article  CAS  PubMed  Google Scholar 

  103. Kalak R, Zhou H, Street J, Day RE, Modzelewski JR, Spies CM, Liu PY, Li G, Dunstan CR, Seibel MJ. Endogenous glucocorticoid signalling in osteoblasts is necessary to maintain normal bone structure in mice. Bone. 2009;45:61–7.

    Article  CAS  PubMed  Google Scholar 

  104. Yang M, Trettel LB, Adams DJ, Harrison JR, Canalis E, Kream BE. Col3.6-HSD2 transgenic mice: a glucocorticoid loss-of-function model spanning early and late osteoblast differentiation. Bone. 2010;47:573–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Sher LB, Harrison JR, Adams DJ, Kream BE. Impaired cortical bone acquisition and osteoblast differentiation in mice with osteoblast-targeted disruption of glucocorticoid signaling. Calcif Tissue Int. 2006;79:118–25.

    Article  CAS  PubMed  Google Scholar 

  106. Zhou H, Mak W, Zheng Y, Dunstan CR, Seibel MJ. Osteoblasts directly control lineage commitment of mesenchymal progenitor cells through Wnt signaling. J Biol Chem. 2008;283:1936–45.

    Article  CAS  PubMed  Google Scholar 

  107. Bentley L, Esapa CT, Nesbit MA, Head RA, Evans H, Lath D, Scudamore CL, Hough TA, Podrini C, Hannan FM, Fraser WD, Croucher PI, Brown MA, Brown SD, Cox RD, Thakker RV. An N-ethyl-N-nitrosourea induced corticotropin-releasing hormone promoter mutation provides a mouse model for endogenous glucocorticoid excess. Endocrinology. 2014;155:908–22.

    Article  PubMed  Google Scholar 

  108. Belaya ZE, Grebennikova TA, Melnichenko GA, Nikitin AG, Solodovnikov AG, Brovkina OI, Grigoriev AU, Rozhinskaya LY, Dedov II. Effects of endogenous hypercortisolism on bone mRNA and microRNA expression in humans. Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA. 2018;29:211–21.

    Article  CAS  PubMed  Google Scholar 

  109. Vestergaard P, Lindholm J, Jorgensen JO, Hagen C, Hoeck HC, Laurberg P, Rejnmark L, Brixen K, Kristensen LO, Feldt-Rasmussen U, Mosekilde L. Increased risk of osteoporotic fractures in patients with Cushing’s syndrome. Eur J Endocrinol. 2002;146:51–6.

    Article  CAS  PubMed  Google Scholar 

  110. Hartmann K, Koenen M, Schauer S, Wittig-Blaich S, Ahmad M, Baschant U, Tuckermann JP. Molecular Actions of Glucocorticoids in Cartilage and Bone During Health, Disease, and Steroid Therapy. Physiol Rev. 2016;96:409–47.

    Article  CAS  PubMed  Google Scholar 

  111. Zhao ZY, Lu FH, Xie Y, Fu YR, Bogdan A, Touitou Y. Cortisol secretion in the elderly. Influence of age, sex and cardiovascular disease in a Chinese population. Steroids. 2003;68:551–5.

    Article  CAS  PubMed  Google Scholar 

  112. Reynolds RM, Dennison EM, Walker BR, Syddall HE, Wood PJ, Andrew R, Phillips DI, Cooper C. Cortisol secretion and rate of bone loss in a population-based cohort of elderly men and women. Calcif Tissue Int. 2005;77:134–8.

    Article  CAS  PubMed  Google Scholar 

  113. Johar H, Emeny RT, Bidlingmaier M, Reincke M, Thorand B, Peters A, Heier M, Ladwig KH. Blunted diurnal cortisol pattern is associated with frailty: a cross-sectional study of 745 participants aged 65 to 90 years. J Clin Endocrinol Metab. 2014;99:E464–8.

    Article  CAS  PubMed  Google Scholar 

  114. Weinstein RS, Wan C, Liu Q, Wang Y, Almeida M, O'Brien CA, Thostenson J, Roberson PK, Boskey AL, Clemens TL, Manolagas SC. Endogenous glucocorticoids decrease skeletal angiogenesis, vascularity, hydration, and strength in aged mice. Aging Cell. 2010;9:147–61.

    Article  CAS  PubMed  Google Scholar 

  115. Henneicke H, Kim S, Swarbrick MM, Li J, Gasparini SJ, Thai J, Foong D, Cavanagh LL, Fong-Yee C, Karsten E, Lin RCY, Cooper MS, Zhou H, Seibel MJ. Skeletal glucocorticoid signalling determines leptin resistance and obesity in aging mice. Mol Metabol. 2020;42:101098.

    Article  CAS  Google Scholar 

  116. Vandewalle J, Luypaert A, De Bosscher K, Libert C. Therapeutic Mechanisms of Glucocorticoids. Trends Endocrinol Metab. 2018;29:42–54.

    Article  CAS  PubMed  Google Scholar 

  117. Timmermans, S., Souffriau, J., and Libert, C. (2019) A General Introduction to Glucocorticoid Biology. Front Immunol. 2019 Jul 4;10:1545. https://doi.org/10.3389/fimmu.2019.01545

  118. Ratman D, Vanden Berghe W, Dejager L, Libert C, Tavernier J, Beck IM, De Bosscher K. How glucocorticoid receptors modulate the activity of other transcription factors: a scope beyond tethering. Mol Cell Endocrinol. 2013;380:41–54.

    Article  CAS  PubMed  Google Scholar 

  119. Porter, B. A., Ortiz, M. A., Bratslavsky, G., and Kotula, L. (2019) Structure and Function of the Nuclear Receptor Superfamily and Current Targeted Therapies of Prostate Cancer. Cancers (Basel). 2019 Nov 23;11(12):1852. https://doi.org/10.3390/cancers11121852

  120. Mitsis T, Papageorgiou L, Efthimiadou A, Bacopoulou F, Vlachakis D, Chrousos GP, Eliopoulos E, Mitsis T, Papageorgiou L, Efthimiadou A, Bacopoulou F, Vlachakis D, Chrousos GP, Eliopoulos E. A comprehensive structural and functional analysis of the ligand binding domain of the nuclear receptor superfamily reveals highly conserved signaling motifs and two distinct canonical forms through evolution. World Acad Sci J. 2019;1:264–74.

    Google Scholar 

  121. Meijer OC, Buurstede JC, Schaaf MJM. Corticosteroid Receptors in the Brain: Transcriptional Mechanisms for Specificity and Context-Dependent Effects. Cell Mol Neurobiol. 2019;39:539–49.

    Article  CAS  PubMed  Google Scholar 

  122. Koning A, Buurstede JC, van Weert L, Meijer OC. Glucocorticoid and Mineralocorticoid Receptors in the Brain: A Transcriptional Perspective. J Endocr Soc. 2019;3:1917–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Rapp AE, Hachemi Y, Kemmler J, Koenen M, Tuckermann J, Ignatius A. Induced global deletion of glucocorticoid receptor impairs fracture healing. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2018;32:2235–45.

    Article  CAS  PubMed  Google Scholar 

  124. Pierce, J. L., Ding, K. H., Xu, J., Sharma, A. K., Yu, K., Del Mazo Arbona, N., Rodriguez-Santos, Z., Bernard, P., Bollag, W. B., Johnson, M. H., Hamrick, M. W., Begun, D. L., Shi, X. M., Isales, C. M., and McGee-Lawrence, M. E. (2019) The glucocorticoid receptor in osteoprogenitors regulates bone mass and marrow fat. J Endocrinol. 2019 Jul 1;JOE-19-0230.R1. https://doi.org/10.1530/JOE-19-0230

  125. Fumoto T, Ishii KA, Ito M, Berger S, Schutz G, Ikeda K. Mineralocorticoid receptor function in bone metabolism and its role in glucocorticoid-induced osteopenia. Biochem Biophys Res Commun. 2014;447:407–12.

    Article  CAS  PubMed  Google Scholar 

  126. Castinetti F, Conte-Devolx B, Brue T. Medical Treatment of Cushing’s Syndrome: Glucocorticoid Receptor Antagonists and Mifepristone. Neuroendocrinology. 2010;92(suppl 1):125–30.

    Article  CAS  PubMed  Google Scholar 

  127. Mahajan DK, London SN. Mifepristone (RU486): a review. Fertil Steril. 1997;68:967–76.

    Article  CAS  PubMed  Google Scholar 

  128. Adashi EY, Rajan RS, O'Mahony DP, Cohen IG. The next two decades of mifepristone at FDA: History as destiny. Contraception. 2022;109:1–7.

    Article  CAS  PubMed  Google Scholar 

  129. Beaman J, Prifti C, Schwarz EB, Sobota M. Medication to Manage Abortion and Miscarriage. J Gen Intern Med. 2020;35:2398–405.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Molitch ME. Glucocorticoid receptor blockers. Pituitary. 2022;25:733–6.

    Article  CAS  PubMed  Google Scholar 

  131. Meijer OC, Koorneef LL, Kroon J. Glucocorticoid receptor modulators. Ann Endocrinol (Paris). 2018;79:107–11.

    Article  PubMed  Google Scholar 

  132. Spitz IM, Grunberg SM, Chabbert-Buffet N, Lindenberg T, Gelber H, Sitruk-Ware R. Management of patients receiving long-term treatment with mifepristone. Fertil Steril. 2005;84:1719–26.

    Article  CAS  PubMed  Google Scholar 

  133. Morice C, Baker DG, Patel MM, Nolen TL, Nowak K, Hirsch S, Kosten TR, Verrico CD. A randomized trial of safety and pharmacodynamic interactions between a selective glucocorticoid receptor antagonist, PT150, and ethanol in healthy volunteers. Sci Rep. 2021;11:9876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Rocha SM, Fagre AC, Latham AS, Cummings JE, Aboellail TA, Reigan P, Aldaz DA, McDermott CP, Popichak KA, Kading RC, Schountz T, Theise ND, Slayden RA, Tjalkens RB. A Novel Glucocorticoid and Androgen Receptor Modulator Reduces Viral Entry and Innate Immune Inflammatory Responses in the Syrian Hamster Model of SARS-CoV-2 Infection. Front Immunol. 2022;13:811430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Tatman P, Fringuello A, Graner M, Lillehei K, Parasido E, Albanese C, Tewari AK, Chakravarty D, Nair S, Theise N. Pan-cancer analysis to identify a novel class of glucocorticoid and androgen receptor antagonists with potent anti-tumor activity. J Clin Oncol. 2020;38:e15663–3.

  136. Hunt HJ, Belanoff JK, Walters I, Gourdet B, Thomas J, Barton N, Unitt J, Phillips T, Swift D, Eaton E. Identification of the Clinical Candidate (R)-(1-(4-Fluorophenyl)-6-((1-methyl-1H-pyrazol-4-yl)sulfonyl)-4,4a,5,6,7,8-hexahydro-1H-pyrazolo[3,4-g]isoquinolin-4a-yl)(4-(trifluoromethyl)pyridin-2-yl)methanone (CORT125134): A Selective Glucocorticoid Receptor (GR) Antagonist. J Med Chem. 2017;60:3405–21.

  137. Rew Y, Du X, Eksterowicz J, Zhou H, Jahchan N, Zhu L, Yan X, Kawai H, McGee LR, Medina JC, Huang T, Chen C, Zavorotinskaya T, Sutimantanapi D, Waszczuk J, Jackson E, Huang E, Ye Q, Fantin VR, Sun D. Discovery of a Potent and Selective Steroidal Glucocorticoid Receptor Antagonist (ORIC-101). J Med Chem. 2018;61:7767–84.

    Article  CAS  PubMed  Google Scholar 

  138. Khom S, Rodriguez L, Gandhi P, Kirson D, Bajo M, Oleata CS, Vendruscolo LF, Mason BJ, Roberto M. Alcohol dependence and withdrawal increase sensitivity of central amygdalar GABAergic synapses to the glucocorticoid receptor antagonist mifepristone in male rats. Neurobiol Dis. 2022;164:105610.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Buurstede JC, Umeoka EHL, da Silva MS, Krugers HJ, Joëls M, Meijer OC. Application of a pharmacological transcriptome filter identifies a shortlist of mouse glucocorticoid receptor target genes associated with memory consolidation. Neuropharmacology. 2022;216:109186.

    Article  CAS  PubMed  Google Scholar 

  140. Pivonello R, Bancos I, Feelders RA, Kargi AY, Kerr JM, Gordon MB, Mariash CN, Terzolo M, Ellison N, Moraitis AG. Relacorilant, a Selective Glucocorticoid Receptor Modulator, Induces Clinical Improvements in Patients With Cushing Syndrome: Results From A Prospective, Open-Label Phase 2 Study. Front Endocrinol (Lausanne). 2021;12:662865.

    Article  PubMed  Google Scholar 

  141. Leng Y, Sun Y, Huang W, Lv C, Cui J, Li T, Wang Y. Identification of dicyclohexyl phthalate as a glucocorticoid receptor antagonist by molecular docking and multiple in vitro methods. Mol Biol Rep. 2021;48:3145–54.

    Article  CAS  PubMed  Google Scholar 

  142. Xu X, Chen Y, Zhu D, Zhao T, Xu R, Wang J, Hu L, Shen X. FX5 as a non-steroidal GR antagonist improved glucose homeostasis in type 2 diabetic mice via GR/HNF4α/miR-122-5p pathway. Aging (Albany NY). 2020;13:2436–58.

    Article  PubMed  Google Scholar 

  143. Feger M, Ewendt F, Strotmann J, Schäffler H, Kempe-Teufel D, Glosse P, Stangl GI, Föller M. Glucocorticoids dexamethasone and prednisolone suppress fibroblast growth factor 23 (FGF23). J Mol Med (Berl). 2021;99:699–711.

    Article  CAS  PubMed  Google Scholar 

  144. Jacobson L, Ansari T, Potts J, McGuinness OP. Glucocorticoid-deficient corticotropin-releasing hormone knockout mice maintain glucose requirements but not autonomic responses during repeated hypoglycemia. Am J Physiol Endocrinol Metab. 2006;291:E15–22.

    Article  CAS  PubMed  Google Scholar 

  145. Li, Z., Bagchi, D. P., Zhu, J., Bowers, E., Yu, H., Hardij, J., Mori, H., Granger, K., Skjaerlund, J. D., Mandair, G. S., Abrishami, S., Singer, K., Hankenson, K. D., Rosen, C. J., and MacDougald, O. A. (2022) Constitutive bone marrow adipocytes suppress local bone formation. JCI Insight, Constitutive bone marrow adipocytes suppress local bone formation

  146. Rendina-Ruedy E, Rosen CJ. Lipids in the Bone Marrow: An Evolving Perspective. Cell Metab. 2020 Feb 4;31(2):219–231. https://doi.org/10.1016/j.cmet.2019.09.015

  147. Kim, S. P., Li, Z., Zoch, M. L., Frey, J. L., Bowman, C. E., Kushwaha, P., Ryan, K. A., Goh, B. C., Scafidi, S., Pickett, J. E., Faugere, M. C., Kershaw, E. E., Thorek, D. L. J., Clemens, T. L., Wolfgang, M. J., and Riddle, R. C. (2017) Fatty acid oxidation by the osteoblast is required for normal bone acquisition in a sex- and diet-dependent manner JCI Insight 2

  148. Dirckx N, Moorer MC, Clemens TL, Riddle RC. The role of osteoblasts in energy homeostasis. Nat Rev Endocrinol. 2019 Nov;15(11):651–665. https://doi.org/10.1038/s41574-019-0246-y

  149. Kushwaha P, Alekos NS, Kim SP, Li Z, Wolfgang MJ, Riddle RC. Mitochondrial fatty acid beta-oxidation is important for normal osteoclast formation in growing female mice. Front Physiol. 2022;13:997358.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Phinney DG. Functional heterogeneity of mesenchymal stem cells: implications for cell therapy. J Cell Biochem. 2012;113:2806–12.

    Article  CAS  PubMed  Google Scholar 

  151. Li J, Zuo B, Zhang L, Dai L, Zhang X. Osteoblast versus Adipocyte: Bone Marrow Microenvironment-Guided Epigenetic Control. Case Rep Orthop Res. 2018;1:2–18.

    Article  Google Scholar 

  152. Flehr A, Källgård J, Alvén J, Lagerstrand K, Papalini E, Wheeler M, Vandenput L, Kahl F, Axelsson KF, Sundh D, Mysore RS, Lorentzon M. Development of a novel method to measure bone marrow fat fraction in older women using high-resolution peripheral quantitative computed tomography. Osteoporos Int. 2022;33:1545–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. He HP, Gu S. The PPAR-γ/SFRP5/Wnt/β-catenin signal axis regulates the dexamethasone-induced osteoporosis. Cytokine. 2021;143:155488.

    Article  CAS  PubMed  Google Scholar 

  154. Wiper-Bergeron N, Wu D, Pope L, Schild-Poulter C, Haché RJ. Stimulation of preadipocyte differentiation by steroid through targeting of an HDAC1 complex. EMBO J. 2003;22:2135–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Song LN, Coghlan M, Gelmann EP. Antiandrogen effects of mifepristone on coactivator and corepressor interactions with the androgen receptor. Mol Endocrinol. 2004;18:70–85.

    Article  CAS  PubMed  Google Scholar 

  156. Mammi C, Marzolla V, Armani A, Feraco A, Antelmi A, Maslak E, Chlopicki S, Cinti F, Hunt H, Fabbri A, Caprio M. A novel combined glucocorticoid-mineralocorticoid receptor selective modulator markedly prevents weight gain and fat mass expansion in mice fed a high-fat diet. Int J Obes. 2016;40:964–72.

    Article  CAS  Google Scholar 

Download references

Funding

The authors are supported by funding provided by the National Institute on Aging (NIA P01 AG036675, R01 AG 067510 and T35 AG 067577).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meghan E. McGee-Lawrence.

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of interest

The contents of this publication do not represent the views of the Department of Veterans Affairs or the US Government. The authors state that they do not have existing conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Bone Marrow and Adipose Tissue

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bensreti, H., Alhamad, D.W., Gonzalez, A.M. et al. Update on the Role of Glucocorticoid Signaling in Osteoblasts and Bone Marrow Adipocytes During Aging. Curr Osteoporos Rep 21, 32–44 (2023). https://doi.org/10.1007/s11914-022-00772-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-022-00772-5

Keywords

Navigation