Skip to main content

Advertisement

Log in

Denosumab Discontinuation

  • Therapeutics and Medical Management (S Jan De Beur and B Clarke, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To review the pathophysiology, the clinical consequences as well as way of mitigating the effects of denosumab discontinuation.

Recent Findings

Treatment with denosumab (DMAB) is reversible and upon discontinuation there is a rapid increase in bone turnover and a subsequent bone loss. During this phase of high bone turnover, an increased risk of fractures has been reported. Therefore, treatment with DMAB could be considered life-long. However, side-effects may prompt the need for discontinuation and moreover, treatment with DMAB may have increased BMD to levels where continuing treatment does not provide further fracture risk reduction. Patients stopping DMAB should be offered subsequent antiresorptive treatment with an intense monitoring regimen during the initial year as most of the bone loss occurs within these initial 12 months.

Summary

In this review, we evaluated the literature published over the past 1 to 3 years investigating DMAB withdrawal with focus on bone turnover markers, bone mineral density, and fracture risk and the transition to other anti-osteoporosis therapies. Furthermore, we summarized the current recommendations of international guidelines.

Mini Abstract

In this review, we evaluated the literature published over the past 1 to 3 years investigating denosumab (DMAB) discontinuation and the transition to other anti-osteoporosis therapies. Additionally, we summarized the current recommendations of international guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Lacey DL, Boyle WJ, Simonet WS, Kostenuik PJ, Dougall WC, Sullivan JK, Martin JS, Dansey R. Bench to bedside: elucidation of the OPG-RANK-RANKL pathway and the development of denosumab. Nat. Rev. Drug Discov. 2012;11(5):401–19.

    Article  CAS  PubMed  Google Scholar 

  2. Bone HG, Wagman RB, Brandi ML, Brown JP, Chapurlat R, Cummings SR, Czerwiński E, Fahrleitner-Pammer A, Kendler DL, Lippuner K, Reginster JY, Roux C, Malouf J, Bradley MN, Daizadeh NS, Wang A, Dakin P, Pannacciulli N, Dempster DW, Papapoulos S. 10 years of denosumab treatment in postmenopausal women with osteoporosis: results from the phase 3 randomised FREEDOM trial and open-label extension. Lancet Diabetes Endocrinol. 2017;5(7):513–23.

    Article  CAS  PubMed  Google Scholar 

  3. Miller PD, Bolognese MA, Lewiecki EM, McClung MR, Ding B, Austin M, Liu Y, San Martin J. Effect of denosumab on bone density and turnover in postmenopausal women with low bone mass after long-term continued, discontinued, and restarting of therapy: A randomized blinded phase 2 clinical trial. Bone. 2008;43(2):222–9.

    Article  CAS  PubMed  Google Scholar 

  4. • Bone HG, et al. Effects of denosumab treatment and discontinuation on bone mineral density and bone turnover markers in postmenopausal women with low bone mass. J Clin Endocrinol Metab. 2011;96(4):972–80. Describes the overshoot bone turnover and bone loss following discontinuation of denosumab

    Article  CAS  PubMed  Google Scholar 

  5. Anastasilakis AD, Polyzos SA, Makras P, Aubry-Rozier B, Kaouri S, Lamy O. Clinical Features of 24 Patients With Rebound-Associated Vertebral Fractures After Denosumab Discontinuation: Systematic Review and Additional Cases. J Bone Min. Res. 2017;32(6):1291–6.

    Article  CAS  Google Scholar 

  6. • Cummings SR, et al. Vertebral Fractures After Discontinuation of Denosumab: A Post Hoc Analysis of the Randomized Placebo-Controlled FREEDOM Trial and Its Extension. J Bone Min. Res. 2018;33(2):190–8. Describes the increased risk of multiple vertebral fractures after discontinuing denosumab compared to discontinuing placebo in the FREEDOM trial

    Article  CAS  Google Scholar 

  7. Ferrari S, Libanati C, Lin CJF, Brown JP, Cosman F, Czerwiński E, Gregόrio LH, Malouf-Sierra J, Reginster JY, Wang A, Wagman RB, Lewiecki EM. Relationship Between Bone Mineral Density T-Score and Nonvertebral Fracture Risk Over 10 Years of Denosumab Treatment. J Bone Min. Res. 2019;34(6):1033–40.

    Article  CAS  Google Scholar 

  8. Lyu H, Yoshida K, Zhao SS, Wei J, Zeng C, Tedeschi SK, Leder BZ, Lei G, Tang P, Solomon DH. Delayed Denosumab Injections and Fracture Risk Among Patients With Osteoporosis. Ann. Intern. Med. 2020;173(7):516–26.

    Article  PubMed  Google Scholar 

  9. Tripto-Shkolnik L, Fund N, Rovach V, Chodick G, Shalev V, Goldshtein I. Fracture incidence after denosumab discontinuation: Real-world data from a large healthcare provider. Bone. 2020;130:115150.

  10. Burckhardt P, Faouzi M, Buclin T, Lamy O, and the Swiss Denosumab Study Group. Fractures After Denosumab Discontinuation: A Retrospective Study of 797 Cases. J. Bone Miner. Res. 2021;36(9):1717–28.

    Article  CAS  PubMed  Google Scholar 

  11. Everts-Graber J, Reichenbach S, Gahl B, Ziswiler HR, Studer U, Lehmann T. Risk factors for vertebral fractures and bone loss after denosumab discontinuation: A real-world observational study. Bone. 2021;144:115830.

    Article  CAS  PubMed  Google Scholar 

  12. • McDonald M, et al. Osteoclasts recycle via osteomorphs during RANKL-stimulated bone resorption. Cell. 2021;184(7):1940. Preclinical study demonstrating recycling of osteoclasts during RANKL-stimulated bone resorption

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sølling AS, et al. Changes in RANKL and TRAcP 5b after discontinuation of denosumab suggest RANKL mediated recruitment of osteoclasts, ECTS 2022 Annual. Meeting. Abstract number 212, 2022.

  14. Kendler D, et al. Bone Mineral Density After Transitioning From Denosumab to Alendronate. J. Clin. Endocrinol. Metab. 2020;105(3):e255–64.

    Article  PubMed  Google Scholar 

  15. Zanchetta MB, et al. Bisphosphonates Prevent Bone Loss Associated with Denosumab Treatment Discontinuation. J. Endocr. Soc. 2019;3, no. Supplement_1:SAT-532.

    Article  Google Scholar 

  16. Ha J, et al. Effect of follow-up raloxifene therapy after denosumab discontinuation in postmenopausal women. Osteoporos. Int. 2022;33(7):1591–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hong N, et al. Raloxifene Use After Denosumab Discontinuation Partially Attenuates Bone Loss in the Lumbar Spine in Postmenopausal Osteoporosis. Calcif. Tissue Int. 2022;111(1):47–55.

    Article  CAS  PubMed  Google Scholar 

  18. Ebina K, Hashimoto J, Kashii M, Hirao M, Miyama A, Nakaya H, Tsuji S, Takahi K, Tsuboi H, Okamura G, Etani Y, Takami K, Yoshikawa H. Effects of follow-on therapy after denosumab discontinuation in patients with postmenopausal osteoporosis. Mod. Rheumatol. 2020;31(2):485–92.

    Article  PubMed  Google Scholar 

  19. Kondo H, et al. Zoledronic acid sequential therapy could avoid disadvantages due to the discontinuation of less than 3-year denosumab treatment. J Bone Min. Res. 2020;38(6):894–902.

    CAS  Google Scholar 

  20. Anastasilakis AD, Papapoulos SE, Polyzos SA, Appelman-Dijkstra NM, Makras P. Zoledronate for the Prevention of Bone Loss in Women Discontinuing Denosumab Treatment. A Prospective 2-year Clinical Trial. J Bone Min. Res. 2019;34(12):2220–8.

    Article  CAS  Google Scholar 

  21. Makras P, Papapoulos SE, Polyzos SA, Appelman-Dijkstra NM, Anastasilakis AD. The three-year effect of a single zoledronate infusion on bone mineral density and bone turnover markers following denosumab discontinuation in women with postmenopausal osteoporosis. Bone. 2020;138:115478.

    Article  CAS  PubMed  Google Scholar 

  22. Ramchand SK, David NL, Lee H, Eastell R, Tsai JN, Leder BZ. Efficacy of Zoledronic Acid in Maintaining Areal and Volumetric Bone Density After Combined Denosumab and Teriparatide Administration: DATA-HD Study Extension’. J. Bone Miner. Res. 2021;36(5):921–30.

    Article  CAS  PubMed  Google Scholar 

  23. Reid IR, Horne AM, Mihov B, Gamble GD. Bone Loss After Denosumab: Only Partial Protection with Zoledronate. Calcif Tissue Int. 2017;101(4):371–4.

    Article  CAS  PubMed  Google Scholar 

  24. Everts-Graber J, Reichenbach S, Ziswiler HR, Studer U, Lehmann T. A Single Infusion of Zoledronate in Postmenopausal Women Following Denosumab Discontinuation Results in Partial Conservation of Bone Mass Gains. J Bone Min. Res. 2020;35(7):1207–15.

    Article  CAS  Google Scholar 

  25. Everts-Graber J, Reichenbach S, Gahl B, Häuselmann HJ, Ziswiler HR, Studer U, Lehmann T. Effects of zoledronate on bone mineral density and bone turnover after long-term denosumab therapy: Observations in a real-world setting. Bone. 2022;163:116498.

    Article  CAS  PubMed  Google Scholar 

  26. • Sølling AS, et al. Treatment with zoledronate subsequent to denosumab in osteoporosis: a randomized trial. J Bone Min. Res. 2020;35(10):1858–70. Randomised clinical trial investigating different regime for administration of zoledronate after long-term denosumab treatment

    Article  Google Scholar 

  27. Sølling AS, Harsløf T, Langdahl B. Treatment With Zoledronate Subsequent to Denosumab in Osteoporosis: A 2-Year Randomized Study. J Bone Min. Res. 2021;36(7):1245–54.

    Article  Google Scholar 

  28. Gonzalez-Rodriguez LO, et al. Clinical features of 35 patients with 172 spontaneous vertebral fractures after denosumab discontinuation: a single center observational study’, ASBMR 2018 Annual Meeting. Abstract number 1008.

  29. Aubry-Rozier B, et al. Can we avoid the loss of bone mineral density one year after denosumab discontinuation? The Reolaus bone project. Ann. Rheum. Dis. 2019;12(1):115.

    Google Scholar 

  30. Popp AW, Varathan N, Buffat H, Senn C, Perrelet R, Lippuner K. Bone Mineral Density Changes After 1 Year of Denosumab Discontinuation in Postmenopausal Women with Long-Term Denosumab Treatment for Osteoporosis. Calcif Tissue Int. 2018;103(1):50–4.

    Article  CAS  PubMed  Google Scholar 

  31. Aubry-Rozier OLB, et al. Severe spontaneous vertebral fractures after denosumab discontinuation: three case reports. Osteoporos Int. 2016;27:1923–5.

    Article  CAS  PubMed  Google Scholar 

  32. Anagnostis P, et al. Spontaneous Vertebral Fractures in Males with Osteoporosis After Denosumab Discontinuation: A Report of Two Cases. J. Clin. Rheumatol. 2021;1(27(8S)):581–4.

    Article  Google Scholar 

  33. Sosa Henríquez M, Gómez de Tejada Romero MJ, Escudero-Socorro M, Torregrosa Suau O. Hip fractures following denosumab discontinuation: three clinical cases reports. J R Soc Med. 2019;112(11):472–5.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Fontalis A, Gossiel F, Schini M, Walsh J, Eastell R. The effect of denosumab treatment on osteoclast precursor cells in postmenopausal osteoporosis’. Bone Reports. 2020;13:100457.

    Article  Google Scholar 

  35. Fassio A, Adami G, Benini C, Vantaggiato E, Saag KG, Giollo A, Lippolis I, Viapiana O, Idolazzi L, Orsolini G, Rossini M, Gatti D. Changes in Dkk-1, sclerostin, and RANKL serum levels following discontinuation of long-term denosumab treatment in postmenopausal women. Bone. 2019;123:191–5.

    Article  CAS  PubMed  Google Scholar 

  36. Anastasilakis AD, Yavropoulou MP, Makras P, Sakellariou GT, Papadopoulou F, Gerou S, Papapoulos SE. Increased osteoclastogenesis in patients with vertebral fractures following discontinuation of denosumab treatment. Eur. J. Endocrinol. 2017;176(6):677–83.

    Article  CAS  PubMed  Google Scholar 

  37. Cawley KM, et al. Local Production of Osteoprotegerin by Osteoblasts Suppresses Bone Resorption. Cell Rep. 2020;32(10):108052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bonnet N, Gerbaix M, Ominsky M, Ammann P, Kostenuik PJ, Ferrari SL. Influence of Fatigue Loading and Bone Turnover on Bone Strength and Pattern of Experimental Fractures of the Tibia in Mice. Calcif. Tissue Int. 2016;99(1):99–109.

    Article  CAS  PubMed  Google Scholar 

  39. Jähn-Rickert K, et al. Elevated Bone Hardness Under Denosumab Treatment, With Persisting Lower Osteocyte Viability During Discontinuation. Front. Endocrinol. (Lausanne). 2020;11(250)

  40. Sugiyama T, Kim YT, Oda H. Osteoporosis therapy: a novel insight from natural homeostatic system in the skeleton. Osteoporos. Int. 2015;26(2):443–7.

    Article  CAS  PubMed  Google Scholar 

  41. Langdahl B, Ferrari S, Dempster DW. Bone modeling and remodeling: potential as therapeutic targets for the treatment of osteoporosis. Ther. Adv. Musculoskelet. Dis. 2016;8(6):225–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ominsky MS, Libanati C, Niu QT, Boyce RW, Kostenuik PJ, Wagman RB, Baron R, Dempster DW. Sustained Modeling-Based Bone Formation During Adulthood in Cynomolgus Monkeys May Contribute to Continuous BMD Gains With Denosumab. J Bone Min. Res. 2015;30(7):1280–9.

    Article  CAS  Google Scholar 

  43. Dempster DW, Chines A, Bostrom MP, Nieves JW, Zhou H, Chen L, Pannacciulli N, Wagman RB, Cosman F. Modeling-Based Bone Formation in the Human Femoral Neck in Subjects Treated With Denosumab. J. Bone Miner. Res. 2020;35(7):1282–8.

    Article  CAS  PubMed  Google Scholar 

  44. Ikebuchi Y, Aoki S, Honma M, Hayashi M, Sugamori Y, Khan M, Kariya Y, Kato G, Tabata Y, Penninger JM, Udagawa N, Aoki K, Suzuki H. Coupling of bone resorption and formation by RANKL reverse signalling. Nature. 2018;561(7722):195–200.

    Article  CAS  PubMed  Google Scholar 

  45. Bonnet N, Douni E, Perréard Lopreno G, Besse M, Biver E, Ferrari S. RANKL-Induced Increase in Cathepsin K Levels Restricts Cortical Expansion in a Periostin-Dependent Fashion: A Potential New Mechanism of Bone Fragility. J. Bone Miner. Res. 2021;36(8):1636–45.

    Article  CAS  PubMed  Google Scholar 

  46. Kendler DL, Cosman F, Stad RK, Ferrari S. Denosumab in the Treatment of Osteoporosis: 10 Years Later: A Narrative Review. Adv. Ther. 2022;39(1):58–74.

    Article  PubMed  Google Scholar 

  47. Kendler DL, Bone HG, Massari F, Gielen E, Palacios S, Maddox J, Yan C, Yue S, Dinavahi RV, Libanati C, Grauer A. Bone mineral density gains with a second 12-month course of romosozumab therapy following placebo or denosumab. Osteoporos Int. 2019;30(12):2437–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. McClung MR, Bolognese MA, Brown JP, Reginster J-Y, Langdahl BL, Shi Y, Timoshanko J, Libanati C, Chines A, Oates MK. Skeletal responses to romosozumab after 12 months of denosumab. JBMR Plus 2021 5(7):e10512

  49. Grassi G, et al. Bisphosphonates after denosumab withdrawal reduce the vertebral fractures incidence, 2021.

  50. Lehmann T, Aeberli D. Possible protective effect of switching from denosumab to zoledronic acid on vertebral fractures. Osteoporos Int. 2017;28(10):3067–8.

    Article  CAS  PubMed  Google Scholar 

  51. Davidoff D, Girgis C. Failure of Oral Risedronate Therapy to Prevent Spontaneous Vertebral Fracture in a Patient Ceasing Denosumab: A Cautionary Case. JBMR Plus. 2020;4(10):e10396.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Gonzalez-Rodriguez E, et al. Raloxifene Has No Efficacy in Reducing the High Bone Turnover and the Risk of Spontaneous Vertebral Fractures after Denosumab Discontinuation. Case Rep. Rheumatol. 2018;5432751

  53. Lamy O, Fernández-Fernández E, Monjo-Henry I, Stoll D, Aubry-Rozier B, Benavent-Núñez D, Aguado P, Gonzalez-Rodriguez E. Alendronate after denosumab discontinuation in women previously exposed to bisphosphonates was not effective in preventing the risk of spontaneous multiple vertebral fractures: two case reports. Osteoporos Int. 2019;30(5):1111–5.

    Article  CAS  PubMed  Google Scholar 

  54. • Tsourdi E, et al. Discontinuation of Denosumab therapy for osteoporosis: A systematic review and position statement by ECTS. Bone. 2017;105:11–7. A systematic review and position statement by ECTS providing guidelines for management of patients discontinuing denosumab

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The corresponding author attests that all listed authors meet the authorship criteria and that no others meeting the criteria have been omitted.

Corresponding author

Correspondence to Bente L Langdahl.

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of interest

Torben Harsløf received lecture fees from Amgen, Astra Zeneca, UCB, and Eli Lilly.

Bente Langdahl received research funding to her institution from Amgen and Novo Nordisk. Bente Langdahl serves on advisory boards and speaker’s bureau for Amgen, UCB, Gilead, Astra-Zenica, Astellas, and Gedeon-Richter.

Elena Tsourdi received research funding from MSD, honoraria for lectures from Amgen, UCB, Shire, Kyowa Kirin, and educational grants from Shire and UCB.

Anne Sophie Sølling received lecture fees from Amgen and Gedeon-Richter.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Therapeutics and Medical Management

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sølling, A.S., Tsourdi, E., Harsløf, T. et al. Denosumab Discontinuation. Curr Osteoporos Rep 21, 95–103 (2023). https://doi.org/10.1007/s11914-022-00771-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-022-00771-6

Keywords

Navigation