Skip to main content

Advertisement

Log in

Understanding Bone Disease in Patients with Diabetic Kidney Disease: a Narrative Review

  • Bone and Diabetes (A Schwartz and P Vestergaard, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Both diabetes and kidney disease associate with the development of bone disease and an increased risk of fragility fractures. The etiologies of bone disease in patients with diabetic kidney disease (DKD) are multiple and complex. This review explores the association between DKD and bone disease and discusses how the presence of both diabetes and kidney disease may impair bone quality and increase fracture risk. Diagnostic tools as well as future research areas are also discussed.

Recent Findings

Patients with DKD have an increased risk of fragility fracture, most pronounced in patients with type 1 diabetes, and in DKD a high prevalence of adynamic bone disease is found. Recent studies have demonstrated disturbances in the interplay between bone regulating factors in DKD, such as relative hypoparathyroidism and alterations of bone-derived hormones including fibroblast growth factor-23 (FGF-23), sclerostin and klotho, which lead to bone disease.

Summary

This review examines the current knowledge on bone disease in patients with DKD, clinical considerations for patient care, as well as subjects for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Winocour PH. Diabetes and chronic kidney disease: an increasingly common multi-morbid disease in need of a paradigm shift in care. Diabet Med. Blackwell Publishing Ltd. 2018;35:300–5.

    CAS  PubMed  Google Scholar 

  2. Jepson C, Hsu JY, Fischer MJ, Kusek JW, Lash JP, Ricardo AC, et al. Incident type 2 diabetes among individuals with CKD: findings from the chronic renal insufficiency cohort (CRIC) study. Am J Kidney Dis WB Saunders. 2019;73:72–81.

    PubMed  Google Scholar 

  3. Nephrology TDS of. Danish Nephrology Registry Annual Report 2017 [Internet]. 2018-08-23. 2018 [cited 2020 Apr 28]. Available from: http://nephrology.dk/wp-content/uploads/2018/10/Årsrapport-2017.pdf

  4. Starup-Linde J, Frost M, Vestergaard P, Abrahamsen B. Epidemiology of fractures in diabetes. Calcif Tissue Int. 2017;100:109–21.

    CAS  PubMed  Google Scholar 

  5. Shah VN, Shah CS, Snell-Bergeon JK. Type 1 diabetes and risk of fracture: meta-analysis and review of the literature. Diabet Med Blackwell Publishing Ltd. 2015;32:1134–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Fan Y, Wei F, Lang Y, Liu Y. Diabetes mellitus and risk of hip fractures: a meta-analysis. Osteoporos Int Springer-Verlag London Ltd. 2016;27:219–28.

    CAS  PubMed  Google Scholar 

  7. Janghorbani M, Van Dam RM, Willett WC, Hu FB. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol. 2007:495–505.

  8. Vestergaard P. Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes--a meta-analysis. Osteoporos Int. 2007;18:427–44.

    CAS  PubMed  Google Scholar 

  9. Lipscombe LL, Jamal SA, Booth GL, Hawker GA. The risk of hip fractures in older individuals with diabetes: a population-based study. Diabetes Care. 2007;30:835–41.

    PubMed  Google Scholar 

  10. Tuominen JT, Impivaara O, Puukka P, Rönnemaa T. Bone mineral density in patients with type 1 and type 2 diabetes. Diabetes Care. 1999;22:1196–200.

    CAS  PubMed  Google Scholar 

  11. Starup-Linde J, Hygum K, Langdahl BL. Skeletal fragility in type 2 diabetes mellitus. Endocrinol Metab (Seoul). 2018;33:339–51.

    CAS  Google Scholar 

  12. Shanbhogue VV, Hansen S, Frost M, Jørgensen NR, Hermann AP, Henriksen JE, et al. Bone geometry, volumetric density, microarchitecture, and estimated bone strength assessed by HR-pQCT in adult patients with type 1 diabetes mellitus. J Bone Miner Res. 2015;30:2188–99.

    CAS  PubMed  Google Scholar 

  13. Shu A, Yin MT, Stein E, Cremers S, Dworakowski E, Ives R, et al. Bone structure and turnover in type 2 diabetes mellitus. Osteoporos Int. 2012;23:635–41.

    CAS  PubMed  Google Scholar 

  14. Farr JN, Drake MT, Amin S, Melton LJ, McCready LK, Khosla S. In vivo assessment of bone quality in postmenopausal women with type 2 diabetes. J Bone Miner Res. John Wiley and Sons Inc. 2014;29:787–95.

    PubMed  Google Scholar 

  15. Starup-Linde J, Lykkeboe S, Gregersen S, Hauge EM, Langdahl BL, Handberg A, et al. Bone structure and predictors of fracture in type 1 and type 2 diabetes. J Clin Endocrinol Metab. 2016;101:928–36.

    CAS  PubMed  Google Scholar 

  16. Patsch JM, Burghardt AJ, Yap SP, Baum T, Schwartz AV, Joseph GB, et al. Increased cortical porosity in type 2 diabetic postmenopausal women with fragility fractures. J Bone Miner Res. 2013;28:313–24.

    PubMed  Google Scholar 

  17. Ballesta S, Güerri-Fernández RC, Chillarón JJ, Güell A, Herrera S, Torres E, et al. The use of microindentation for the study of bone properties in type 1 diabetes mellitus patients. Osteoporos Int. 2020;31:175–80.

    CAS  PubMed  Google Scholar 

  18. Nilsson AG, Sundh D, Johansson L, Nilsson M, Mellström D, Rudäng R, et al. Type 2 diabetes mellitus is associated with better bone microarchitecture but lower bone material strength and poorer physical function in elderly women: a population-based study. J Bone Miner Res. John Wiley and Sons Inc. 2017;32:1062–71.

    PubMed  Google Scholar 

  19. Samakkarnthai P, Sfeir JG, Atkinson EJ, Achenbach SJ, Wennberg PW, Dyck PJ, et al. Determinants of bone material strength and cortical porosity in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. The Endocrine Society. 2020;105.

  20. Manavalan JS, Cremers S, Dempster DW, Zhou H, Dworakowski E, Kode A, et al. Circulating osteogenic precursor cells in type 2 diabetes mellitus. J Clin Endocrinol Metab. 2012;97:3240–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Krakauer JC, McKenna MJ, Buderer NF, Sudhaker Rao D, Whitehouse FW, Michael PA. Bone loss and bone turnover in diabetes. Diabetes. 1995;44:775–82.

    CAS  PubMed  Google Scholar 

  22. Leite Duarte ME, da Silva RD. Histomorphometric analysis of the bone tissue in patients with non-insulin-dependent diabetes (DMNID). Rev Hosp Clin Fac Med Sao Paulo. 1996;51:7–11.

    CAS  PubMed  Google Scholar 

  23. Hygum K, Starup-Linde J, Harsløf T, Vestergaard P, Langdahl BL. Mechanisms in endocrinology: diabetes mellitus, a state of low bone turnover - a systematic review and meta-analysis. Eur J Endocrinol. BioScientifica Ltd. 2017;176:R137–57.

    CAS  PubMed  Google Scholar 

  24. Starup-Linde J, Lykkeboe S, Gregersen S, Hauge E-M, Langdahl BL, Handberg A, et al. Differences in biochemical bone markers by diabetes type and the impact of glucose. Bone. Elsevier Inc. 2016;83:149–55.

  25. Heilmeier U, Hackl M, Skalicky S, Weilner S, Schroeder F, Vierlinger K, et al. Serum miRNA signatures are indicative of skeletal fractures in postmenopausal women with and without type 2 diabetes and influence osteogenic and adipogenic differentiation of adipose tissue-derived mesenchymal stem cells in vitro. J Bone Miner Res. John Wiley and Sons Inc. 2016;31:2173–92.

    CAS  PubMed  Google Scholar 

  26. Wongdee K, Charoenphandhu N. Osteoporosis in diabetes mellitus: possible cellular and molecular mechanisms. World J Diabetes. Baishideng Publishing Group Inc. 2011;2:41–8.

    PubMed  PubMed Central  Google Scholar 

  27. Bortolin RH, Freire Neto FP, Arcaro CA, Bezerra JF, da Silva FS, Ururahy MAG, et al. Anabolic effect of insulin therapy on the bone: osteoprotegerin and osteocalcin up-regulation in Streptozotocin-induced diabetic rats. Basic Clin Pharmacol Toxicol. Blackwell Publishing Ltd. 2017;120:227–34.

    CAS  PubMed  Google Scholar 

  28. Jackuliak P, Payer J. Osteoporosis, fractures, and diabetes. Int J Endocrinol. 2014;2014:820615.

    PubMed  PubMed Central  Google Scholar 

  29. Yakar S, Rosen CJ, Beamer WG, Ackert-Bicknell CL, Wu Y, Liu J-L, et al. Circulating levels of IGF-1 directly regulate bone growth and density. J Clin Invest. 2002;110:771–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Starup-Linde J. Diabetes, biochemical markers of bone turnover, diabetes control, and bone. Front Endocrinol (Lausanne). 2013;4:21.

    Google Scholar 

  31. Zhukouskaya VV, Eller-Vainicher C, Shepelkevich AP, Dydyshko Y, Cairoli E, Chiodini I. Bone health in type 1 diabetes: focus on evaluation and treatment in clinical practice. J Endocrinol Investig. 2015;38:941–50.

    CAS  Google Scholar 

  32. Holst JJ, Albrechtsen NJW, Rosenkilde MM, Deacon CF. Physiology of the incretin hormones, GIP and GLP-1—regulation of release and posttranslational modifications. Compr Physiol. 2019;9:1339–81.

    PubMed  Google Scholar 

  33. Nauck M, Stöckmann F, Ebert R, Creutzfeldt W. Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia. 1986;29:46–52.

    CAS  PubMed  Google Scholar 

  34. Bollag RJ, Zhong Q, Phillips P, Min L, Zhong L, Cameron R, et al. Osteoblast-derived cells express functional glucose-dependent insulinotropic peptide receptors. Endocrinology. 2000;141:1228–35.

    CAS  PubMed  Google Scholar 

  35. Zhong Q, Itokawa T, Sridhar S, Ding KH, Xie D, Kang B, et al. Effects of glucose-dependent insulinotropic peptide on osteoclast function. Am J Physiol Endocrinol Metab. 2007;292:E543–8.

    CAS  PubMed  Google Scholar 

  36. Pacheco-Pantoja EL, Ranganath LR, Gallagher JA, Wilson PJ, Fraser WD. Receptors and effects of gut hormones in three osteoblastic cell lines. BMC Physiol. 2011;11:12.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Hansen MSS, Tencerova M, Frølich J, Kassem M, Frost M. Effects of gastric inhibitory polypeptide, glucagon-like peptide-1 and glucagon-like peptide-1 receptor agonists on Bone Cell Metabolism. Basic Clin Pharmacol Toxicol. 2018;122:25–37.

    CAS  PubMed  Google Scholar 

  38. Thrailkill KM, Fowlkes JL. The role of vitamin d in the metabolic homeostasis of diabetic bone. Clin Rev Bone Miner Metab. 2013;11:28–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Napoli N, Chandran M, Pierroz DD, Abrahamsen B, Schwartz AV, Ferrari SL, et al. Mechanisms of diabetes mellitus-induced bone fragility. Nat Rev Endocrinol. Nat Publ Group. 2017;13:208–19.

    CAS  PubMed  Google Scholar 

  40. Shanbhogue VV, Hansen S, Frost M, Brixen K, Hermann AP. Bone disease in diabetes: another manifestation of microvascular disease? Lancet Diabetes Endocrinol. Lancet Publishing Group. 2017;5:827–38.

    PubMed  Google Scholar 

  41. Ueland T, Aukrust P, Aakhus S, Smith C, Endresen K, Birkeland KI, et al. Activin a and cardiovascular disease in type 2 diabetes mellitus. Diab Vasc Dis Res. 2012;9:234–7.

    PubMed  Google Scholar 

  42. Morley JE, Malmstrom TK, Rodriguez-Mañas L, Sinclair AJ. Frailty, Sarcopenia and Diabetes. J Am Med Dir Assoc. 2014;40:853–9.

    Google Scholar 

  43. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48:601.

    PubMed  PubMed Central  Google Scholar 

  44. Bischoff-Ferrari HA, Orav JE, Kanis JA, Rizzoli R, Schlögl M, Staehelin HB, et al. Comparative performance of current definitions of sarcopenia against the prospective incidence of falls among community-dwelling seniors age 65 and older. Osteoporos Int. Springer-Verlag London Ltd. 2015;26:2793–802.

    CAS  PubMed  Google Scholar 

  45. Viégas M, Costa C, Lopes A, Griz L, Medeiro MA, Bandeira F. Prevalence of osteoporosis and vertebral fractures in postmenopausal women with type 2 diabetes mellitus and their relationship with duration of the disease and chronic complications. J Diabetes Complicat. 2011;25:216–21.

    Google Scholar 

  46. Lee RH, Sloane R, Pieper C, Lyles KW, Adler RA, Van Houtven C, et al. Clinical fractures among older men with diabetes are mediated by diabetic complications. J Clin Endocrinol Metab. Oxford University Press. 2018;103:281–7.

    PubMed  Google Scholar 

  47. Johnston SS, Conner C, Aagren M, Ruiz K, Bouchard J. Association between hypoglycaemic events and fall-related fractures in Medicare-covered patients with type 2 diabetes. Diabetes Obes Metab Blackwell Publishing Ltd. 2012;14:634–43.

    CAS  PubMed  Google Scholar 

  48. Vestergaard P, Rejnmark L, Mosekilde L. Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia. 2005;48:1292–9.

    CAS  PubMed  Google Scholar 

  49. Søgaard AJ, Holvik K, Omsland TK, Tell GS, Dahl C, Schei B, et al. Abdominal obesity increases the risk of hip fracture. A population-based study of 43,000 women and men aged 60-79 years followed for 8 years. Cohort of Norway. J Intern Med. Blackwell Publishing Ltd. 2015;277:306–17.

    PubMed  Google Scholar 

  50. Tang X, Liu G, Kang J, Hou Y, Jiang F, Yuan W, et al. Obesity and risk of hip fracture in adults: a meta-analysis of prospective cohort studies. PLoS One. 2013;8:e55077.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Compston JE, Watts NB, Chapurlat R, Cooper C, Boonen S, Greenspan S, et al. Obesity is not protective against fracture in postmenopausal women. Glow Am J Med. Elsevier Inc. 2011;124:1043–50.

    PubMed  Google Scholar 

  52. Naylor KL, McArthur E, Leslie WD, Fraser LA, Jamal SA, Cadarette SM, et al. The three-year incidence of fracture in chronic kidney disease. Kidney Int. 2014;86:810–8.

    PubMed  Google Scholar 

  53. KDIGO. Clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl. 2009;2009:S1–S130.

    Google Scholar 

  54. Moe S, Drueke T, Cunningham J, Goodman W, Martin K, Olgaard K, et al. Definition, evaluation, and classification of renal osteodystrophy: a position statement from kidney Disease: improving global outcomes (KDIGO). Kidney Int. 2006;69:1945–53.

    CAS  PubMed  Google Scholar 

  55. Goldsmith DJ, Covic A, Fouque D, Locatelli F, Olgaard K, Rodriguez M, et al. Endorsement of the kidney Disease improving global outcomes (KDIGO) chronic kidney Disease-mineral and bone disorder (CKD-MBD) guidelines: a European renal best practice (ERBP) commentary statement. Nephrol Dial Transplant. 2010;25:3823–31.

    PubMed  Google Scholar 

  56. Hansen D, Olesen JB, Gislason GH, Abrahamsen B, Hommel K. Risk of fracture in adults on renal replacement therapy: a Danish national cohort study. Nephrol Dial Transplant. 2016;31:1654–62.

    PubMed  Google Scholar 

  57. Tentori F, McCullough K, Kilpatrick RD, Bradbury BD, Robinson BM, Kerr PG, et al. High rates of death and hospitalization follow bone fracture among hemodialysis patients. Kidney Int. 2014;85:166–73.

    PubMed  Google Scholar 

  58. Ferro CJ, Arnold J, Bagnall D, Ray D, Sharif A. Fracture risk and mortality post-kidney transplantation. Clin Transpl. 2015;29:1004–12.

    Google Scholar 

  59. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group. KDIGO 2017 Clinical Practice Guideline Update for the Diagnosis, Evaluation, Prevention, and Treatment of Chronic Kidney Disease–Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl. Elsevier B.V.; 2017;7:1–59.

  60. • Salam S, Gallagher O, Gossiel F, Paggiosi M, Khwaja A, Eastell R. Diagnostic accuracy of biomarkers and imaging for bone turnover in renal Osteodystrophy. J Am Soc Nephrol. 2018;29:1557–65. Evaluates bone turnover markers, HR-pQCT and DXA against bone histomorphometric findings in CKD patients.

  61. Holloway-Kew KL, Rufus-Membere P, Anderson KB, Betson A, Gaston J, Kotowicz MA, et al. Bone material strength index is associated with prior fracture in men with and without moderate chronic kidney disease. Bone. 2020;133:115241.

    CAS  PubMed  Google Scholar 

  62. Keronen S, Martola L, Finne P, Burton IS, Kröger H, Honkanen E. Changes in bone histomorphometry after kidney transplantation. Clin J Am Soc Nephrol American Society of Nephrology. 2019;14:894–903.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Sprague SM, Bellorin-Font E, Jorgetti V, Carvalho AB, Malluche HH, Ferreira A, et al. Diagnostic accuracy of bone turnover markers and bone histology in patients with CKD treated by Dialysis. Am J Kidney Dis. WB Saunders. 2016;67:559–66.

    PubMed  Google Scholar 

  64. Hansen D. A randomised clinical study of alfacalcidol and paricalcitol. Dan Med J. 2012;59:B4400.

    PubMed  Google Scholar 

  65. Lewin E, Rodriguez M. Abnormal parathyroid gland function in CKD. In: Olgaard K, Salusky IB, Silver J, editors. The spectrum of Mineral and Bone Disorders in Chronic Kidney Disease. Oxford: Oxford Clin Nephrol Ser Second Oxford Univ Press; 2010. p. 77–107.

    Google Scholar 

  66. Moester MJC, Papapoulos SE, Löwik CWGM, Van Bezooijen RL. Sclerostin: Current knowledge and future perspectives. Calcif Tissue Int. 2010;87:99–107.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Cejka D, Jäger-Lansky A, Kieweg H, Weber M, Bieglmayer C, Haider DG, et al. Sclerostin serum levels correlate positively with bone mineral density and microarchitecture in haemodialysis patients. Nephrol Dial Transplant. 2012;27:226–30.

    CAS  PubMed  Google Scholar 

  68. Geng S, Kuang Z, Peissig PL, Page D, Maursetter L, Hansen KE. Parathyroid hormone independently predicts fracture, vascular events, and death in patients with stage 3 and 4 chronic kidney disease. Osteoporos Int Springer London. 2019;30:2019–25.

    CAS  PubMed  Google Scholar 

  69. Desbiens L-C, Sidibé A, Ung R-V, Fortier C, Munger M, Wang Y-P, et al. FGF23-klotho axis, bone fractures, and arterial stiffness in dialysis: a case-control study. Osteoporos Int. Springer London. 2018;29:2345–53.

    CAS  PubMed  Google Scholar 

  70. Hu MC, Kuro-O M, Moe OW. Klotho and chronic kidney disease. Contrib Nephrol. 2013;180:47–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. • Kuro-o M. The Klotho proteins in health and disease. Nat Rev Nephrol. 2019;15:27–44. Extensive review on the Klotho proteins, which is the anti-aging protein discovered by the author Kuro-o.

  72. Lima F, Mawad H, El-Husseini AA, Davenport DL, Malluche HH. Serum bone markers in ROD patients across the spectrum of decreases in GFR: Activin a increases before all other markers. Clin Nephrol. 2019;91:222–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. • Williams MJ, Sugatani T, Agapova OA, Fang Y, Gaut JP, Faugere M-C, et al. The activin receptor is stimulated in the skeleton, vasculature, heart, and kidney during chronic kidney disease. Kidney Int. Elsevier B.V. 2018;93:147–58. Demonstrates how inhibition of the activin receptor signaling can reverse CKD-induced bone disease.

  74. McElderry J-DP, Zhao G, Khmaladze A, Wilson CG, Franceschi RT, Morris MD. Tracking circadian rhythms of bone mineral deposition in murine calvarial organ cultures. J Bone Miner Res. 2013;28:1846–54.

    CAS  PubMed  Google Scholar 

  75. Nordholm A, Egstrand S, Gravesen E, Mace ML, Morevati M, Olgaard K, et al. Circadian rhythm of activin a and related parameters of mineral metabolism in normal and uremic rats. Pflugers Arch Springer Verlag. 2019;471:1079–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Lai S, Muscaritoli M, Andreozzi P, Sgreccia A, De Leo S, Mazzaferro S, et al. Sarcopenia and cardiovascular risk indices in patients with chronic kidney disease on conservative and replacement therapy. Nutrition. Elsevier Inc. 2019;62:108–14.

    PubMed  Google Scholar 

  77. Kraut JA, Madias NE. Metabolic Acidosis of CKD: An Update. Am J Kidney Dis. 2016;67:307–17.

    CAS  PubMed  Google Scholar 

  78. Vestergaard P, Rejnmark L, Mosekilde L. Diabetes and its complications and their relationship with risk of fractures in type 1 and 2 diabetes. Calcif Tissue Int. 2009;84:45–55.

    CAS  PubMed  Google Scholar 

  79. Miao J, Brismar K, Nyŕen O, Ugarph-Morawski A, Ye W. Elevated hip fracture risk in type 1 diabetic patients: a population-based cohort study in Sweden. Diabetes Care. 2005;28:2850–5.

    PubMed  Google Scholar 

  80. Huang P-H, Chen T-H, Lin Y-S, Lin S-J, Kuo L-T, Chen C-L, et al. Chronic Kidney Disease Worsens Health Outcomes in Diabetic Patients After Hip Fracture Surgery: An Asian Nationwide Population-Based Cohort Study. J Bone Miner Res. John Wiley and Sons Inc. 2019;34:849–58.

    CAS  PubMed  Google Scholar 

  81. Clausen P, Feldt-Rasmussen B, Jacobsen P, Rossing K, Parving HH, Nielsen PK, et al. Microalbuminuria as an early indicator of osteopenia in male insulin-dependent diabetic patients. Diabet Med. 1997;14:1038–43.

    CAS  PubMed  Google Scholar 

  82. Goliat E, Marusza W, Ostrowski K, Lipinska A. Microalbuminuria as a risk factor for diabetic osteopathy in patients with IDDM and renal sufficiency. Pol Arch Med Wewn. 1998;100:111–8.

    CAS  PubMed  Google Scholar 

  83. Kratochvílová S, Brunová J, Wohl P, Lánská V, Saudek F. Retrospective analysis of bone metabolism in patients on waiting list for simultaneous pancreas-kidney transplantation. J Diabetes Res. 2019;2019:5143021.

    PubMed  PubMed Central  Google Scholar 

  84. Pei Y, Hercz G, Greenwood C, Segre G, Manuel A, Saiphoo C, et al. Renal osteodystrophy in diabetic patients. Kidney Int. Blackwell Publishing Inc. 1993;44:159–64.

    CAS  PubMed  Google Scholar 

  85. Malluche HH, Mawad HW, Monier-Faugere M-C. Renal osteodystrophy in the first decade of the new millennium: analysis of 630 bone biopsies in black and white patients. J Bone Miner Res. 2011;26:1368–76.

    PubMed  Google Scholar 

  86. Murakami R, Murakami S, Tsushima R, Ueda C, Mikami K, Ebina T, et al. Glycaemic control and serum intact parathyroid hormone levels in diabetic patients on haemodialysis therapy. Nephrol Dial Transplant. 2008;23:315–20.

    CAS  PubMed  Google Scholar 

  87. Moreira CA, Barreto FC, Dempster DW. New insights on diabetes and bone metabolism. J Bras Nefrol. 2015;37:490–5.

    PubMed  Google Scholar 

  88. Jara A, Bover J, Felsenfeld AJ. Development of secondary hyperparathyroidism and bone disease in diabetic rats with renal failure. Kidney Int Nature Publishing Group. 1995;47:1746–51.

    CAS  PubMed  Google Scholar 

  89. Ribeiro AL, Mendes F, Carias E, Rato F, Santos N, Neves PL, et al. FGF23-klotho axis as predictive factors of fractures in type 2 diabetics with early chronic kidney disease. J Diabetes Complicat. Elsevier Inc. 2020;34:107476.

    Google Scholar 

  90. Daniele G, Winnier D, Mari A, Bruder J, Fourcaudot M, Pengou Z, et al. Sclerostin and insulin resistance in prediabetes: Evidence of a cross talk between bone and glucose metabolism. Diabetes Care. American Diabetes Association Inc. 2015;38:1509–17.

    CAS  PubMed  Google Scholar 

  91. Hygum K, Starup-Linde J, Harsløf T, Jørgensen NR, Hartmann B, Holst JJ, et al. The diurnal variation of bone formation is attenuated in adult patients with type 2 diabetes. Eur J Endocrinol. BioScientifica Ltd. 2019;181:221–31.

    CAS  PubMed  Google Scholar 

  92. Nikkel LE, Hollenbeak CS, Fox EJ, Uemura T, Ghahramani N. Risk of fractures after renal transplantation in the United States. Transplantation. 2009;87:1846–51.

    PubMed  Google Scholar 

  93. Nikkel LE, Mohan S, Zhang A, McMahon DJ, Boutroy S, Dube G, et al. Reduced fracture risk with early corticosteroid withdrawal after kidney transplant. Am J Transplant. 2012;12:649–59.

    CAS  PubMed  Google Scholar 

  94. Mori K, Nishide K, Okuno S, Shoji T, Emoto M, Tsuda A, et al. Impact of diabetes on sarcopenia and mortality in patients undergoing hemodialysis. BMC Nephrol. BioMed Central Ltd. 2019:20.

  95. Johnell O, Kanis JA, Oden A, Johansson H, De Laet C, Delmas P, et al. Predictive value of BMD for hip and other fractures. J Bone Miner Res American Society for Bone and Mineral Research. 2005;20:1185–94.

    PubMed  Google Scholar 

  96. Frost ML, Moore AE, Siddique M, Blake GM, Laurent D, Borah B, et al. 18F-fluoride PET as a noninvasive imaging biomarker for determining treatment efficacy of bone active agents at the hip: a prospective, randomized, controlled clinical study. J Bone Miner Res. 2013;28:1337–47.

    CAS  PubMed  Google Scholar 

  97. Messa C, Goodman WG, Hoh CK, Choi Y, Nissenson AR, Salusky IB, et al. Bone metabolic activity measured with positron emission tomography and [18F]fluoride ion in renal osteodystrophy: correlation with bone histomorphometry. J Clin Endocrinol Metab. 1993;77:949–55.

    CAS  PubMed  Google Scholar 

  98. Miller PD, Schwartz EN, Chen P, Misurski DA, Krege JH. Teriparatide in postmenopausal women with osteoporosis and mild or moderate renal impairment. Osteoporos Int. 2007;18:59–68.

    CAS  PubMed  Google Scholar 

  99. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344:1434–41.

    CAS  PubMed  Google Scholar 

  100. Sumida K, Ubara Y, Hoshino J, Mise K, Hayami N, Suwabe T, et al. Once-weekly teriparatide in hemodialysis patients with hypoparathyroidism and low bone mass: a prospective study. Osteoporos Int. 2016;27:1441–50.

    CAS  PubMed  Google Scholar 

  101. Drake MT, Srinivasan B, Mödder UI, Peterson JM, McCready LK, Riggs BL, et al. Effects of parathyroid hormone treatment on circulating Sclerostin levels in postmenopausal women. J Clin Endocrinol Metab. 2010;95:5056–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Iolascon G, Moretti A, Toro G, Gimigliano F, Liguori S, Paoletta M. Pharmacological therapy of osteoporosis: What’s new? Clin Interv Aging. 2020;15:485–91.

    PubMed  PubMed Central  Google Scholar 

  103. Hamann C, Rauner M, Höhna Y, Bernhardt R, Mettelsiefen J, Goettsch C, et al. Sclerostin antibody treatment improves bone mass, bone strength, and bone defect regeneration in rats with type 2 diabetes mellitus. J Bone Miner Res. 2013;28:627–38.

    CAS  PubMed  Google Scholar 

  104. Moe SM, Chen NX, Newman CL, Organ JM, Kneissel M, Kramer I, et al. Anti-sclerostin antibody treatment in a rat model of progressive renal osteodystrophy. J Bone Miner Res. John Wiley and Sons Inc. 2015;30:499–509.

    PubMed  Google Scholar 

  105. Shigematsu T, Muraoka R, Sugimoto T, Nishizawa Y. Risedronate therapy in patients with mild-to-moderate chronic kidney disease with osteoporosis: post-hoc analysis of data from the risedronate phase III clinical trials. BMC Nephrol. 2017;18:66.

    PubMed  PubMed Central  Google Scholar 

Download references

Availability of Data and Material

Not applicable.

Funding

No funding was granted.

Author information

Authors and Affiliations

Authors

Contributions

The literature search and the draft of the review was performed by Sabina Chaudhary Hauge, the work was revised by Morten Frost and Ditte Hansen. All three approved the final paper.

Corresponding author

Correspondence to Sabina Chaudhary Hauge.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

Not applicable.

Consent to Participate and Consent for Publication

Not applicable.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Bone and Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hauge, S.C., Frost, M. & Hansen, D. Understanding Bone Disease in Patients with Diabetic Kidney Disease: a Narrative Review. Curr Osteoporos Rep 18, 727–736 (2020). https://doi.org/10.1007/s11914-020-00630-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-020-00630-2

Keywords

Navigation