Skip to main content

Advertisement

Log in

Hypoxia and Bone Metastatic Disease

  • Cancer-induced Musculoskeletal Diseases (M Reagan and E Keller, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review highlights our current knowledge of oxygen tensions in the bone marrow, and how low oxygen tensions (hypoxia) regulate tumor metastasis to and colonization of the bone marrow.

Recent Findings

The bone marrow is a relatively hypoxic microenvironment, but oxygen tensions fluctuate throughout the marrow cavity and across the endosteal and periosteal surfaces. Recent advances in imaging have made it possible to better characterize these fluctuations in bone oxygenation, but technical challenges remain. We have compiled evidence from multiple groups that suggests that hypoxia or hypoxia inducible factor (HIF) signaling may induce spontaneous metastasis to the bone and promote tumor colonization of bone, particularly in the case of breast cancer dissemination to the bone marrow.

Summary

We are beginning to understand oxygenation patterns within the bone compartment and the role for hypoxia and HIF signaling in tumor cell dissemination to the bone marrow, but further studies are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Brown JM, Giaccia AJ. The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer res. 1998;58(7):1408–16.

    CAS  PubMed  Google Scholar 

  2. Schindl M, Schoppmann SF, Samonigg H, Hausmaninger H, Kwasny W, Gnant M, et al. Overexpression of hypoxia-inducible factor 1alpha is associated with an unfavorable prognosis in lymph node-positive breast cancer. Clinical Cancer Research: an Official Journal of the American Association for Cancer Research. 2002;8(6):1831–7.

    CAS  Google Scholar 

  3. Bos R, van der Groep P, Greijer AE, Shvarts A, Meijer S, Pinedo HM, et al. Levels of hypoxia-inducible factor-1alpha independently predict prognosis in patients with lymph node negative breast carcinoma. Cancer. 2003;97(6):1573–81. doi:10.1002/cncr.11246.

    Article  PubMed  Google Scholar 

  4. Dales JP, Garcia S, Meunier-Carpentier S, Andrac-Meyer L, Haddad O, Lavaut MN, et al. Overexpression of hypoxia-inducible factor HIF-1alpha predicts early relapse in breast cancer: retrospective study in a series of 745 patients. International Journal of Cancer Journal International du Cancer. 2005;116(5):734–9. doi:10.1002/ijc.20984.

    Article  CAS  PubMed  Google Scholar 

  5. Generali D, Berruti A, Brizzi MP, Campo L, Bonardi S, Wigfield S, et al. Hypoxia-inducible factor-1alpha expression predicts a poor response to primary chemoendocrine therapy and disease-free survival in primary human breast cancer. Clinical Cancer Research : an Official Journal of the American Association for Cancer Research. 2006;12(15):4562–8. doi:10.1158/1078-0432.CCR-05-2690.

    Article  CAS  Google Scholar 

  6. Yamamoto Y, Ibusuki M, Okumura Y, Kawasoe T, Kai K, Iyama K, et al. Hypoxia-inducible factor 1alpha is closely linked to an aggressive phenotype in breast cancer. Breast Cancer res Treat. 2008;110(3):465–75. doi:10.1007/s10549-007-9742-1.

    Article  CAS  PubMed  Google Scholar 

  7. Jin Y, Wang H, Ma X, Liang X, Liu X, Wang Y. Clinicopathological characteristics of gynecological cancer associated with hypoxia-inducible factor 1alpha expression: a meta-analysis including 6,612 subjects. PLoS One. 2015;10(5):e0127229. doi:10.1371/journal.pone.0127229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Matsuo Y, Ding Q, Desaki R, Maemura K, Mataki Y, Shinchi H, et al. Hypoxia inducible factor-1 alpha plays a pivotal role in hepatic metastasis of pancreatic cancer: an immunohistochemical study. J Hepatobiliary Pancreat Sci. 2014;21(2):105–12. doi:10.1002/jhbp.6.

    Article  PubMed  Google Scholar 

  9. Ping W, Sun W, Zu Y, Chen W, Fu X. Clinicopathological and prognostic significance of hypoxia-inducible factor-1alpha in esophageal squamous cell carcinoma: a meta-analysis. Tumour Biol. 2014;35(5):4401–9. doi:10.1007/s13277-013-1579-0.

    Article  CAS  PubMed  Google Scholar 

  10. Luan Y, Gao C, Miao Y, Li Y, Wang Z, Qiu X. Clinicopathological and prognostic significance of HIF-1alpha and HIF-2alpha expression in small cell lung cancer. Pathol res Pract. 2013;209(3):184–9. doi:10.1016/j.prp.2012.10.017.

    Article  CAS  PubMed  Google Scholar 

  11. Wang HX, Qin C, Han FY, Wang XH, Li N. HIF-2alpha as a prognostic marker for breast cancer progression and patient survival. Genet Mol res. 2014;13(2):2817–26. doi:10.4238/2014.January.22.6.

    Article  CAS  PubMed  Google Scholar 

  12. Weilbaecher KN, Guise TA, McCauley LK. Cancer to bone: a fatal attraction. Nat rev Cancer. 2011;11(6):411–25. doi:10.1038/nrc3055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J, Mole DR, et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell. 2001;107(1):43–54.

    Article  CAS  PubMed  Google Scholar 

  14. Bruick RK, McKnight SL. A conserved family of prolyl-4-hydroxylases that modify HIF. Science. 2001;294(5545):1337–40. doi:10.1126/science.1066373.

    Article  CAS  PubMed  Google Scholar 

  15. Ivan M, Haberberger T, Gervasi DC, Michelson KS, Gunzler V, Kondo K, et al. Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proc Natl Acad Sci U S a. 2002;99(21):13459–64. doi:10.1073/pnas.192342099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature. 1999;399(6733):271–5. doi:10.1038/20459.

    Article  CAS  PubMed  Google Scholar 

  17. Tanimoto K, Makino Y, Pereira T, Poellinger L. Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein. EMBO j. 2000;19(16):4298–309. doi:10.1093/emboj/19.16.4298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science. 2001;292(5516):468–72. doi:10.1126/science.1059796.

    Article  CAS  PubMed  Google Scholar 

  19. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science. 2001;292(5516):464–8. doi:10.1126/science.1059817.

    Article  CAS  PubMed  Google Scholar 

  20. Maynard MA, Qi H, Chung J, Lee EH, Kondo Y, Hara S, et al. Multiple splice variants of the human HIF-3 alpha locus are targets of the von Hippel-Lindau E3 ubiquitin ligase complex. J Biol Chem. 2003;278(13):11032–40. doi:10.1074/jbc.M208681200.

    Article  CAS  PubMed  Google Scholar 

  21. Schodel J, Oikonomopoulos S, Ragoussis J, Pugh CW, Ratcliffe PJ, Mole DR. High-resolution genome-wide mapping of HIF-binding sites by ChIP-seq. Blood. 2011;117(23):e207–17. doi:10.1182/blood-2010-10-314427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang GL, Semenza GL. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci U S a. 1993;90(9):4304–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S a. 1995;92(12):5510–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rankin EB, Giaccia AJ. Hypoxic control of metastasis. Science. 2016;352(6282):175–80. doi:10.1126/science.aaf4405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mundy GR. Mechanisms of bone metastasis. Cancer. 1997;80(8 Suppl):1546–56.

    Article  CAS  PubMed  Google Scholar 

  26. Xiong J, O'Brien CA. Osteocyte RANKL: new insights into the control of bone remodeling. Journal of Bone and Mineral Research : the Official Journal of the American Society for Bone and Mineral Research. 2012;27(3):499–505. doi:10.1002/jbmr.1547.

    Article  CAS  Google Scholar 

  27. Sottnik JL, Dai J, Zhang H, Campbell B, Keller ET. Tumor-induced pressure in the bone microenvironment causes osteocytes to promote the growth of prostate cancer bone metastases. Cancer res. 2015;75(11):2151–8. doi:10.1158/0008-5472.CAN-14-2493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. • Croucher PI, McDonald MM, Martin TJ. Bone metastasis: the importance of the neighbourhood. Nat rev Cancer. 2016;16(6):373–86. doi:10.1038/nrc.2016.44. A nice recent review of tumor metastasis and dormancy in the bone marrow.

    Article  CAS  PubMed  Google Scholar 

  29. Mohyeldin A, Garzon-Muvdi T, Quinones-Hinojosa A. Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell. 2010;7(2):150–61. doi:10.1016/j.stem.2010.07.007.

    Article  CAS  PubMed  Google Scholar 

  30. •• Spencer JA, Ferraro F, Roussakis E, Klein A, Wu J, Runnels JM, et al. Direct measurement of local oxygen concentration in the bone marrow of live animals. Nature. 2014;508(7495):269–73. doi:10.1038/nature13034. Showed quantitatively for the first time differences in oxygen tensions within different regions of the calvaria.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chow DC, Wenning LA, Miller WM, Papoutsakis ET. Modeling pO2 distributions in the bone marrow hematopoietic compartment. I. Krogh’s model. Biophys J. 2001;81(2):675–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Harrison JS, Rameshwar P, Chang V, Bandari P. Oxygen saturation in the bone marrow of healthy volunteers. Blood. 2002;99(1):394.

    Article  CAS  PubMed  Google Scholar 

  33. Rankin EB, Giaccia AJ, Schipani E. A central role for hypoxic signaling in cartilage, bone, and hematopoiesis. Current Osteoporosis Reports. 2011;9(2):46–52. doi:10.1007/s11914-011-0047-2.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Branemark P-I. Experimental investigation of microcirculation in bone marrow. Angiology. 1961;12(7):293–305.

    Article  Google Scholar 

  35. • Kusumbe AP, Ramasamy SK, Adams RH. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature. 2014;507(7492):323–8. doi:10.1038/nature13145. Identified different vessel types in the bone, which link angiogenesis and osteogenesis, and show that these blood vessels decline with age.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Parmar K, Mauch P, Vergilio JA, Sackstein R, Down JD. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci U S a. 2007;104(13):5431–6. doi:10.1073/pnas.0701152104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Eliasson P, Jonsson JI. The hematopoietic stem cell niche: low in oxygen but a nice place to be. J Cell Physiol. 2010;222(1):17–22. doi:10.1002/jcp.21908.

    Article  CAS  PubMed  Google Scholar 

  38. Ramasamy SK, Kusumbe AP, Wang L, Adams RH. Endothelial notch activity promotes angiogenesis and osteogenesis in bone. Nature. 2014;507(7492):376–80. doi:10.1038/nature13146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rankin EB, Wu C, Khatri R, Wilson TL, Andersen R, Araldi E, et al. The HIF signaling pathway in osteoblasts directly modulates erythropoiesis through the production of EPO. Cell. 2012;149(1):63–74. doi:10.1016/j.cell.2012.01.051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Marenzana M, Arnett TR. The key role of the blood supply to bone. Bone res. 2013;1(3):203–15. doi:10.4248/BR201303001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nombela-Arrieta C, Pivarnik G, Winkel B, Canty KJ, Harley B, Mahoney JE, et al. Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol. 2013;15(5):533–43. doi:10.1038/ncb2730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Winkler IG, Barbier V, Wadley R, Zannettino AC, Williams S, Levesque JP. Positioning of bone marrow hematopoietic and stromal cells relative to blood flow in vivo: serially reconstituting hematopoietic stem cells reside in distinct nonperfused niches. Blood. 2010;116(3):375–85. doi:10.1182/blood-2009-07-233437.

    Article  CAS  PubMed  Google Scholar 

  43. Lassailly F, Foster K, Lopez-Onieva L, Currie E, Bonnet D. Multimodal imaging reveals structural and functional heterogeneity in different bone marrow compartments: functional implications on hematopoietic stem cells. Blood. 2013;122(10):1730–40. doi:10.1182/blood-2012-11-467498.

    Article  CAS  PubMed  Google Scholar 

  44. Zahm AM, Bucaro MA, Ayyaswamy PS, Srinivas V, Shapiro IM, Adams CS, et al. Numerical modeling of oxygen distributions in cortical and cancellous bone: oxygen availability governs osteonal and trabecular dimensions. Am J Physiol Cell Physiol. 2010;299(5):C922–9. doi:10.1152/ajpcell.00465.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Morrison SJ, Scadden DT. The bone marrow niche for haematopoietic stem cells. Nature. 2014;505(7483):327–34. doi:10.1038/nature12984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lo Celso C, Fleming HE, Wu JW, Zhao CX, Miake-Lye S, Fujisaki J, et al. Live-animal tracking of individual haematopoietic stem/progenitor cells in their niche. Nature. 2009;457(7225):92–6. doi:10.1038/nature07434.

    Article  CAS  PubMed  Google Scholar 

  47. Guezguez B, Campbell CJ, Boyd AL, Karanu F, Casado FL, Di Cresce C, et al. Regional localization within the bone marrow influences the functional capacity of human HSCs. Cell Stem Cell. 2013;13(2):175–89. doi:10.1016/j.stem.2013.06.015.

    Article  CAS  PubMed  Google Scholar 

  48. Yang MH, Wu MZ, Chiou SH, Chen PM, Chang SY, Liu CJ, et al. Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol. 2008;10(3):295–305. doi:10.1038/ncb1691.

    Article  CAS  PubMed  Google Scholar 

  49. Finger EC, Castellini L, Rankin EB, Vilalta M, Krieg AJ, Jiang D, et al. Hypoxic induction of AKAP12 variant 2 shifts PKA-mediated protein phosphorylation to enhance migration and metastasis of melanoma cells. Proc Natl Acad Sci U S A. 2015;112(14):4441–6. doi:10.1073/pnas.1418164112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Erler JT, Bennewith KL, Nicolau M, Dornhofer N, Kong C, Le QT, et al. Lysyl oxidase is essential for hypoxia-induced metastasis. Nature. 2006;440(7088):1222–6. doi:10.1038/nature04695.

    Article  CAS  PubMed  Google Scholar 

  51. Chaturvedi P, Gilkes DM, Wong CC, Kshitiz LW, Zhang H, et al. Hypoxia-inducible factor-dependent breast cancer-mesenchymal stem cell bidirectional signaling promotes metastasis. J Clin Invest. 2013;123(1):189–205. doi:10.1172/JCI64993.

    Article  CAS  PubMed  Google Scholar 

  52. Woelfle U, Cloos J, Sauter G, Riethdorf L, Janicke F, van Diest P, et al. Molecular signature associated with bone marrow micrometastasis in human breast cancer. Cancer res. 2003;63(18):5679–84.

    CAS  PubMed  Google Scholar 

  53. Liao D, Corle C, Seagroves TN, Johnson RS. Hypoxia-inducible factor-1alpha is a key regulator of metastasis in a transgenic model of cancer initiation and progression. Cancer res. 2007;67(2):563–72. doi:10.1158/0008-5472.CAN-06-2701.

    Article  CAS  PubMed  Google Scholar 

  54. Husemann Y, Geigl JB, Schubert F, Musiani P, Meyer M, Burghart E, et al. Systemic spread is an early step in breast cancer. Cancer Cell. 2008;13(1):58–68. doi:10.1016/j.ccr.2007.12.003.

    Article  CAS  PubMed  Google Scholar 

  55. Hiraga T, Kizaka-Kondoh S, Hirota K, Hiraoka M, Yoneda T. Hypoxia and hypoxia-inducible factor-1 expression enhance osteolytic bone metastases of breast cancer. Cancer res. 2007;67(9):4157–63. doi:10.1158/0008-5472.CAN-06-2355.

    Article  CAS  PubMed  Google Scholar 

  56. Dunn LK, Mohammad KS, Fournier PG, McKenna CR, Davis HW, Niewolna M, et al. Hypoxia and TGF-beta drive breast cancer bone metastases through parallel signaling pathways in tumor cells and the bone microenvironment. PLoS One. 2009;4(9):e6896. doi:10.1371/journal.pone.0006896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Muz B, de la Puente P, Azab F, Luderer M, Azab AK. Hypoxia promotes stem cell-like phenotype in multiple myeloma cells. Blood Cancer J. 2014;4:e262. doi:10.1038/bcj.2014.82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Azab AK, Hu J, Quang P, Azab F, Pitsillides C, Awwad R, et al. Hypoxia promotes dissemination of multiple myeloma through acquisition of epithelial to mesenchymal transition-like features. Blood. 2012;119(24):5782–94. doi:10.1182/blood-2011-09-380410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Imai T, Muz B, Yeh CH, Yao J, Zhang R, Azab AK, et al. Direct measurement of hypoxia in a xenograft multiple myeloma model by optical-resolution photoacoustic microscopy. Cancer Biol Ther. 2017;18(2):101–5. doi:10.1080/15384047.2016.1276137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Erler JT, Bennewith KL, Cox TR, Lang G, Bird D, Koong A, et al. Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell. 2009;15(1):35–44. doi:10.1016/j.ccr.2008.11.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Graham CH, Forsdike J, Fitzgerald CJ, Macdonald-Goodfellow S. Hypoxia-mediated stimulation of carcinoma cell invasiveness via upregulation of urokinase receptor expression. International Journal of Cancer Journal International du Cancer. 1999;80(4):617–23.

    Article  CAS  PubMed  Google Scholar 

  62. Buchler P, Reber HA, Tomlinson JS, Hankinson O, Kallifatidis G, Friess H, et al. Transcriptional regulation of urokinase-type plasminogen activator receptor by hypoxia-inducible factor 1 is crucial for invasion of pancreatic and liver cancer. Neoplasia. 2009;11(2):196–206.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Allgayer H, Heiss MM, Riesenberg R, Grutzner KU, Tarabichi A, Babic R, et al. Urokinase plasminogen activator receptor (uPA-R): one potential characteristic of metastatic phenotypes in minimal residual tumor disease. Cancer res. 1997;57(7):1394–9.

    CAS  PubMed  Google Scholar 

  64. Heiss MM, Allgayer H, Gruetzner KU, Funke I, Babic R, Jauch KW, et al. Individual development and uPA-receptor expression of disseminated tumour cells in bone marrow: a reference to early systemic disease in solid cancer. Nat med. 1995;1(10):1035–9.

    Article  CAS  PubMed  Google Scholar 

  65. Allgayer H, Heiss MM, Riesenberg R, Babic R, Jauch KW, Schildberg FW. Immunocytochemical phenotyping of disseminated tumor cells in bone marrow by uPA receptor and CK18: investigation of sensitivity and specificity of an immunogold/alkaline phosphatase double staining protocol. J Histochem Cytochem. 1997;45(2):203–12.

    Article  CAS  PubMed  Google Scholar 

  66. Allgayer H, Aguirre-Ghiso JA. The urokinase receptor (u-PAR)—a link between tumor cell dormancy and minimal residual disease in bone marrow? APMIS. 2008;116(7–8):602–14. doi:10.1111/j.1600-0463.2008.00997.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Yu W, Kim J, Ossowski L. Reduction in surface urokinase receptor forces malignant cells into a protracted state of dormancy. J Cell Biol. 1997;137(3):767–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. • Johnson RW, Finger EC, Olcina MM, Vilalta M, Aguilera T, Miao Y, et al. Induction of LIFR confers a dormancy phenotype in breast cancer cells disseminated to the bone marrow. Nat Cell Biol. 2016;18(10):1078–89. doi:10.1038/ncb3408. Identified a hypoxia-dependent role for LIFR in breast cancer dormancy in the bone marrow.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C, et al. Stat3 as an oncogene. Cell. 1999;98(3):295–303.

    Article  CAS  PubMed  Google Scholar 

  70. Bromberg JF, Horvath CM, Besser D, Lathem WW, Darnell JE Jr. Stat3 activation is required for cellular transformation by v-src. Mol Cell Biol. 1998;18(5):2553–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Watson CJ, Miller WR. Elevated levels of members of the STAT family of transcription factors in breast carcinoma nuclear extracts. Br J Cancer. 1995;71(4):840–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Garcia R, Bowman TL, Niu G, Yu H, Minton S, Muro-Cacho CA, et al. Constitutive activation of Stat3 by the Src and JAK tyrosine kinases participates in growth regulation of human breast carcinoma cells. Oncogene. 2001;20(20):2499–513. doi:10.1038/sj.onc.1204349.

    Article  CAS  PubMed  Google Scholar 

  73. Wake MS, Watson CJ. STAT3 the oncogene—still eluding therapy? FEBS j. 2015;282(14):2600–11. doi:10.1111/febs.13285.

    Article  CAS  PubMed  Google Scholar 

  74. Bragado P, Sosa MS, Keely P, Condeelis J, Aguirre-Ghiso JA. Microenvironments dictating tumor cell dormancy. Recent Results Cancer res. 2012;195:25–39. doi:10.1007/978-3-642-28160-0_3.

    Article  PubMed  PubMed Central  Google Scholar 

  75. • Fluegen G, Avivar-Valderas A, Wang Y, Padgen MR, Williams JK, Nobre AR, et al. Phenotypic heterogeneity of disseminated tumour cells is preset by primary tumour hypoxic microenvironments. Nat Cell Biol. 2017;19(2):120–32. doi:10.1038/ncb3465. Found that tumor hypoxia creates a distinct population of DTCs that are resistant to chemotherapy and may give rise to distant metastases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sosa MS, Parikh F, Maia AG, Estrada Y, Bosch A, Bragado P, et al. NR2F1 controls tumour cell dormancy via SOX9- and RARbeta-driven quiescence programmes. Nat Commun. 2015;6:6170. doi:10.1038/ncomms7170.

    Article  CAS  PubMed  Google Scholar 

  77. Ghajar CM, Peinado H, Mori H, Matei IR, Evason KJ, Brazier H, et al. The perivascular niche regulates breast tumour dormancy. Nat Cell Biol. 2013;15(7):807–17. doi:10.1038/ncb2767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Gao H, Chakraborty G, Lee-Lim AP, Mo Q, Decker M, Vonica A, et al. The BMP inhibitor coco reactivates breast cancer cells at lung metastatic sites. Cell. 2012;150(4):764–79. doi:10.1016/j.cell.2012.06.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bragado P, Estrada Y, Parikh F, Krause S, Capobianco C, Farina HG, et al. TGF-beta2 dictates disseminated tumour cell fate in target organs through TGF-beta-RIII and p38alpha/beta signalling. Nat Cell Biol. 2013;15(11):1351–61. doi:10.1038/ncb2861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. • Dasgupta A, Lim AR, Ghajar CM. Circulating and disseminated tumor cells: harbingers or initiators of metastasis? Mol Oncol. 2017;11(1):40–61. doi:10.1002/1878-0261.12022. A nice recent review of tumor dormancy across multiple tumor types and tissues.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge Ms. Lauren Holtslander for the graphic design in Fig. 1. This manuscript was supported by R00CA194198 (RWJ) and CA67166, CA198291, and CA197713 (AJG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachelle W. Johnson.

Ethics declarations

Conflict of Interest

Miranda Sowder, Rachelle Johnson, and Amato Giaccia declare no conflicts of interests.

Human and Animal Rights

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki Declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

This article is part of the Topical Collection on Cancer-induced Musculoskeletal Diseases

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson, R.W., Sowder, M.E. & Giaccia, A.J. Hypoxia and Bone Metastatic Disease. Curr Osteoporos Rep 15, 231–238 (2017). https://doi.org/10.1007/s11914-017-0378-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-017-0378-8

Keywords

Navigation