Skip to main content

Advertisement

Log in

Effects of Type 1 Diabetes on Osteoblasts, Osteocytes, and Osteoclasts

  • Bone and Diabetes (A Schwartz and P Vestergaard, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To describe the effects of type 1 diabetes on bone cells.

Recent findings

Type 1 diabetes (T1D) is associated with low bone mineral density, increased risk of fractures, and poor fracture healing. Its effects on the skeleton were primarily attributed to impaired bone formation, but recent data suggests that bone remodeling and resorption are also compromised. The hyperglycemic and inflammatory environment associated with T1D impacts osteoblasts, osteocytes, and osteoclasts. The mechanisms involved are complex; insulinopenia, pro-inflammatory cytokine production, and alterations in gene expression are a few of the contributing factors leading to poor osteoblast activity and survival and, therefore, poor bone formation. In addition, the observed sclerostin level increase accompanied by decreased osteocyte number and enhanced osteoclast activity in T1D results in uncoupling of bone remodeling.

Summary

T1D negatively impacts osteoblasts and osteocytes, whereas its effects on osteoclasts are not well characterized, although the limited studies available indicate increased osteoclast activity, favoring bone resorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Masse PG, Pacifique MB, Tranchant CC, Arjmandi BH, Ericson KL, Donovan SM, et al. Bone metabolic abnormalities associated with well-controlled type 1 diabetes (IDDM) in young adult women: a disease complication often ignored or neglected. J Am Coll Nutr. 2010;29(4):419–29.

    Article  CAS  PubMed  Google Scholar 

  2. Loureiro MB, Ururahy MA, Freire-Neto FP, Oliveira GH, Duarte VM, Luchessi AD, et al. Low bone mineral density is associated to poor glycemic control and increased OPG expression in children and adolescents with type 1 diabetes. Diabetes Res Clin Pract. 2014;103(3):452–7. doi:10.1016/j.diabres.2013.12.018.

    Article  CAS  PubMed  Google Scholar 

  3. Khan TS, Fraser LA. Type 1 diabetes and osteoporosis: from molecular pathways to bone phenotype. 2015;2015:174186. doi:10.1155/2015/174186.

  4. Lu H, Kraut D, Gerstenfeld LC, Graves DT. Diabetes interferes with the bone formation by affecting the expression of transcription factors that regulate osteoblast differentiation. Endocrinology. 2003;144(1):346–52. doi:10.1210/en.2002-220072.

    Article  CAS  PubMed  Google Scholar 

  5. Fowlkes JL, Bunn RC, Liu L, Wahl EC, Coleman HN, Cockrell GE, et al. Runt-related transcription factor 2 (RUNX2) and RUNX2-related osteogenic genes are down-regulated throughout osteogenesis in type 1 diabetes mellitus. Endocrinology. 2008;149(4):1697–704. doi:10.1210/en.2007-1408.

    Article  CAS  PubMed  Google Scholar 

  6. Komori T. Regulation of osteoblast differentiation by transcription factors. J Cell Biochem. 2006;99(5):1233–9. doi:10.1002/jcb.20958.

    Article  CAS  PubMed  Google Scholar 

  7. Wu H, Whitfield TW, Gordon JA, Dobson JR, Tai PW, van Wijnen AJ, et al. Genomic occupancy of Runx2 with global expression profiling identifies a novel dimension to control of osteoblastogenesis. Genome Biol. 2014;15(3):R52. doi:10.1186/gb-2014-15-3-r52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Botolin S, Faugere MC, Malluche H, Orth M, Meyer R, McCabe LR. Increased bone adiposity and peroxisomal proliferator-activated receptor-gamma2 expression in type I diabetic mice. Endocrinology. 2005;146(8):3622–31. doi:10.1210/en.2004-1677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Botolin S, McCabe LR. Bone loss and increased bone adiposity in spontaneous and pharmacologically induced diabetic mice. Endocrinology. 2007;148(1):198–205. doi:10.1210/en.2006-1006. This study demonstrated the beneficial effects of zinc supplementation on bone morphology and strength as well as on bone formation parameters.

    Article  CAS  PubMed  Google Scholar 

  10. Hie M, Iitsuka N, Otsuka T, Tsukamoto I. Insulin-dependent diabetes mellitus decreases osteoblastogenesis associated with the inhibition of Wnt signaling through increased expression of Sost and Dkk1 and inhibition of Akt activation. Int J Mol Med. 2011;28(3):455–62. doi:10.3892/ijmm.2011.697.

    CAS  PubMed  Google Scholar 

  11. Bortolin RH, da Graca Azevedo Abreu BJ, Abbott Galvao Ururahy M, de Souza KS C, Bezerra JF, Loureiro MB, et al. Protection against T1DM-induced bone loss by zinc supplementation: biomechanical, histomorphometric, and molecular analyses in STZ-induced diabetic rats. PloS one. 2015;10(5):e0125349. doi:10.1371/journal.pone.0125349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Iitsuka N, Hie M, Tsukamoto I. Zinc supplementation inhibits the increase in osteoclastogenesis and decrease in osteoblastogenesis in streptozotocin-induced diabetic rats. Eur J Pharmacol. 2013;714(1–3):41–7. doi:10.1016/j.ejphar.2013.05.020.

    Article  CAS  PubMed  Google Scholar 

  13. Botolin S, McCabe LR. Inhibition of PPARgamma prevents type I diabetic bone marrow adiposity but not bone loss. J Cell Physiol. 2006;209(3):967–76. doi:10.1002/jcp.20804.

    Article  CAS  PubMed  Google Scholar 

  14. Palta M, LeCaire TJ, Sadek-Badawi M, Herrera VM, Danielson KK. The trajectory of IGF-1 across age and duration of type 1 diabetes. Diabet/Metab Res Rev. 2014;30(8):777–83. doi:10.1002/dmrr.2554. This longitudinal study followed IGF-1 levels in patients with Type 1 diabetes and confirmed lower IGF-1 levels compared to normal individuals with a delayed peak of IGF-1 in adolecent females with Type 1 diabetes and highlighted the effect of glycemic control during adolecense on IGF-1 levels.

    Article  CAS  Google Scholar 

  15. Zhao YF, Zeng DL, Xia LG, Zhang SM, Xu LY, Jiang XQ, et al. Osteogenic potential of bone marrow stromal cells derived from streptozotocin-induced diabetic rats. Int J Mol Med. 2013;31(3):614–20. doi:10.3892/ijmm.2013.1227.

    CAS  PubMed  Google Scholar 

  16. Xian L, Wu X, Pang L, Lou M, Rosen CJ, Qiu T, et al. Matrix IGF-1 maintains bone mass by activation of mTOR in mesenchymal stem cells. Nat Med. 2012;18(7):1095–101. doi:10.1038/nm.2793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Crane JL, Zhao L, Frye JS, Xian L, Qiu T, Cao X. IGF-1 Signaling is Essential for Differentiation of Mesenchymal Stem Cells for Peak Bone Mass. Bone Res. 2013;1(2):186–94. doi:10.4248/BR201302007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bouillon R. Diabetic bone disease. Low turnover osteoporosis related to decreased IGF-I production. Verh K Acad Geneeskd Belg. 1992;54(4):365–91. discussion 91–2.

    CAS  PubMed  Google Scholar 

  19. Zhang M, Xuan S, Bouxsein ML, von Stechow D, Akeno N, Faugere MC, et al. Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. J Biol Chem. 2002;277(46):44005–12. doi:10.1074/jbc.M208265200.

    Article  CAS  PubMed  Google Scholar 

  20. Centrella M, McCarthy TL, Canalis E. Receptors for insulin-like growth factors-I and -II in osteoblast-enriched cultures from fetal rat bone. Endocrinology. 1990;126(1):39–44. doi:10.1210/endo-126-1-39.

    Article  CAS  PubMed  Google Scholar 

  21. Pun KK, Lau P, Ho PW. The characterization, regulation, and function of insulin receptors on osteoblast-like clonal osteosarcoma cell line. J Bone Min Res. 1989;4(6):853–62. doi:10.1002/jbmr.5650040610.

    Article  CAS  Google Scholar 

  22. Kream BE, Smith MD, Canalis E, Raisz LG. Characterization of the effect of insulin on collagen synthesis in fetal rat bone. Endocrinology. 1985;116(1):296–302. doi:10.1210/endo-116-1-296.

    Article  CAS  PubMed  Google Scholar 

  23. Fulzele K, Riddle RC, DiGirolamo DJ, Cao X, Wan C, Chen D, et al. Insulin receptor signaling in osteoblasts regulates postnatal bone acquisition and body composition. Cell. 2010;142(2):309–19. doi:10.1016/j.cell.2010.06.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Thrailkill K, Bunn RC, Lumpkin C, Jr., Wahl E. Loss of insulin receptor in osteoprogenitor cells impairs structural strength of bone. 2014;2014:703589. doi:10.1155/2014/703589

  25. Peng J, Hui K, Hao C, Peng Z, Gao QX, Jin Q et al. Low bone turnover and reduced angiogenesis in streptozotocin-induced osteoporotic mice. Connective tissue research. 2016:1–13. doi:10.3109/03008207.2016.1171858.

  26. Hamada Y, Kitazawa S, Kitazawa R, Fujii H, Kasuga M, Fukagawa M. Histomorphometric analysis of diabetic osteopenia in streptozotocin-induced diabetic mice: a possible role of oxidative stress. Bone. 2007;40(5):1408–14. doi:10.1016/j.bone.2006.12.057.

    Article  CAS  PubMed  Google Scholar 

  27. Weinberg E, Maymon T, Moses O, Weinreb M. Streptozotocin-induced diabetes in rats diminishes the size of the osteoprogenitor pool in bone marrow. Diabetes Res Clin Pract. 2014;103(1):35–41. doi:10.1016/j.diabres.2013.11.015. This study examined the effect of oxidative stress in the function and survival of osteoprogenitor cells of an STZ-induced diabetes model.

    Article  CAS  PubMed  Google Scholar 

  28. Hamed EA, Faddan NH, Elhafeez HA, Sayed D. Parathormone--25(OH)-vitamin D axis and bone status in children and adolescents with type 1 diabetes mellitus. Pediatr Diabetes. 2011;12(6):536–46. doi:10.1111/j.1399-5448.2010.00739.x.

    CAS  PubMed  Google Scholar 

  29. Motyl KJ, McCauley LK, McCabe LR. Amelioration of type I diabetes-induced osteoporosis by parathyroid hormone is associated with improved osteoblast survival. J Cell Physiol. 2012;227(4):1326–34. doi:10.1002/jcp.22844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Verhaeghe J, Van Herck E, van Bree R, Moermans K, Bouillon R. Decreased osteoblast activity in spontaneously diabetic rats. In vivo studies on the pathogenesis. Endocrine. 1997;7(2):165–75. doi:10.1007/bf02778138.

    Article  CAS  PubMed  Google Scholar 

  31. Horcajada-Molteni MN, Chanteranne B, Lebecque P, Davicco MJ, Coxam V, Young A, et al. Amylin and bone metabolism in streptozotocin-induced diabetic rats. J Bone Min Res. 2001;16(5):958–65. doi:10.1359/jbmr.2001.16.5.958.

    Article  CAS  Google Scholar 

  32. Bouillon R, Bex M, Van Herck E, Laureys J, Dooms L, Lesaffre E, et al. Influence of age, sex, and insulin on osteoblast function: osteoblast dysfunction in diabetes mellitus. J Clin Endocrinol Metab. 1995;80(4):1194–202. doi:10.1210/jcem.80.4.7714089.

    CAS  PubMed  Google Scholar 

  33. Lumachi F, Camozzi V, Tombolan V, Luisetto G. Bone mineral density, osteocalcin, and bone-specific alkaline phosphatase in patients with insulin-dependent diabetes mellitus. Ann N Y Acad Sci. 2009;1173 Suppl 1:E64–7. doi:10.1111/j.1749-6632.2009.04955.x.

    Article  CAS  PubMed  Google Scholar 

  34. Maddaloni E, D’Onofrio L, Lauria A, et al. Osteocalcin levels are inversely associated with Hba1c and BMI in adult subjects with long-standing type 1 diabetes. J Diabetes Res. 2014;37(7):661–6. doi:10.1155/2014/703589.

    CAS  Google Scholar 

  35. Starup-Linde J. Diabetes, biochemical markers of bone turnover, diabetes control, and bone. Front Endocrinol. 2013;4:21. doi:10.3389/fendo.2013.00021.

    Article  Google Scholar 

  36. Brenner RE, Riemenschneider B, Blum W, Morike M, Teller WM, Pirsig W, et al. Defective stimulation of proliferation and collagen biosynthesis of human bone cells by serum from diabetic patients. Acta Endocrinol. 1992;127(6):509–14.

    CAS  PubMed  Google Scholar 

  37. Cunha JS, Ferreira VM, Maquigussa E, Naves MA, Boim MA. Effects of high glucose and high insulin concentrations on osteoblast function in vitro. Cell Tissue Res. 2014;358(1):249–56. doi:10.1007/s00441-014-1913-x.

    Article  CAS  PubMed  Google Scholar 

  38. Zayzafoon M, Stell C, Irwin R, McCabe LR. Extracellular glucose influences osteoblast differentiation and c-Jun expression. J Cell Biochem. 2000;79(2):301–10.

    Article  CAS  PubMed  Google Scholar 

  39. Botolin S, McCabe LR. Chronic hyperglycemia modulates osteoblast gene expression through osmotic and non-osmotic pathways. J Cell Biochem. 2006;99(2):411–24. doi:10.1002/jcb.20842.

    Article  CAS  PubMed  Google Scholar 

  40. Santana RB, Xu L, Chase HB, Amar S, Graves DT, Trackman PC. A role for advanced glycation end products in diminished bone healing in type 1 diabetes. Diabetes. 2003;52(6):1502–10.

    Article  CAS  PubMed  Google Scholar 

  41. Ogawa N, Yamaguchi T, Yano S, Yamauchi M, Yamamoto M, Sugimoto T. The combination of high glucose and advanced glycation end-products (AGEs) inhibits the mineralization of osteoblastic MC3T3-E1 cells through glucose-induced increase in the receptor for AGEs. Horm Metab Res. 2007;39(12):871–5. doi:10.1055/s-2007-991157.

    Article  CAS  PubMed  Google Scholar 

  42. Weinberg E, Maymon T, Weinreb M. AGEs induce caspase-mediated apoptosis of rat BMSCs via TNFalpha production and oxidative stress. J Mol Endocrinol. 2014;52(1):67–76. doi:10.1530/JME-13-0229.

    CAS  PubMed  Google Scholar 

  43. Rachon D, Mysliwska J, Suchecka-Rachon K, Semetkowska-Jurkiewicz B, Zorena K, Lysiak-Szydlowska W. Serum interleukin-6 levels and bone mineral density at the femoral neck in post-menopausal women with Type 1 diabetes. Diabet Med. 2003;20(6):475–80.

    Article  CAS  PubMed  Google Scholar 

  44. Jin Y, Sharma A, Carey C, Hopkins D, Wang X, Robertson DG, et al. The expression of inflammatory genes is upregulated in peripheral blood of patients with type 1 diabetes. Diabetes Care. 2013;36(9):2794–802. doi:10.2337/dc12-1986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. AboElAsrar MA, Elbarbary NS, Elshennawy DE, Omar AM. Insulin-like growth factor-1 cytokines cross-talk in type 1 diabetes mellitus: relationship to microvascular complications and bone mineral density. Cytokine. 2012;59(1):86–93. doi:10.1016/j.cyto.2012.03.019.

    Article  CAS  PubMed  Google Scholar 

  46. Motyl KJ, Botolin S, Irwin R, Appledorn DM, Kadakia T, Amalfitano A, et al. Bone inflammation and altered gene expression with type I diabetes early onset. J Cell Physiol. 2009;218(3):575–83. doi:10.1002/jcp.21626.

    Article  CAS  PubMed  Google Scholar 

  47. Perrien DS, Liu Z, Wahl EC, Bunn RC, Skinner RA, Aronson J, et al. Chronic ethanol exposure is associated with a local increase in TNF-alpha and decreased proliferation in the rat distraction gap. Cytokine. 2003;23(6):179–89.

    Article  CAS  PubMed  Google Scholar 

  48. Perrien DS, Brown EC, Fletcher TW, Irby DJ, Aronson J, Gao GG, et al. Interleukin-1 and tumor necrosis factor antagonists attenuate ethanol-induced inhibition of bone formation in a rat model of distraction osteogenesis. J Pharmacol Exp Ther. 2002;303(3):904–8. doi:10.1124/jpet.102.039636.

    Article  CAS  PubMed  Google Scholar 

  49. Gilbert LC, Chen H, Lu X, Nanes MS. Chronic low dose tumor necrosis factor-alpha (TNF) suppresses early bone accrual in young mice by inhibiting osteoblasts without affecting osteoclasts. Bone. 2013;56(1):174–83. doi:10.1016/j.bone.2013.06.002.

    Article  CAS  PubMed  Google Scholar 

  50. Gilbert L, He X, Farmer P, Boden S, Kozlowski M, Rubin J, et al. Inhibition of osteoblast differentiation by tumor necrosis factor-alpha. Endocrinology. 2000;141(11):3956–64. doi:10.1210/endo.141.11.7739.

    CAS  PubMed  Google Scholar 

  51. Kayal RA, Siqueira M, Alblowi J, McLean J, Krothapalli N, Faibish D, et al. TNF-alpha mediates diabetes-enhanced chondrocyte apoptosis during fracture healing and stimulates chondrocyte apoptosis through FOXO1. J Bone Min Res. 2010;25(7):1604–15. doi:10.1002/jbmr.59.

    Article  CAS  Google Scholar 

  52. Coe LM, Irwin R, Lippner D, McCabe LR. The bone marrow microenvironment contributes to type I diabetes induced osteoblast death. J Cell Physiol. 2011;226(2):477–83. doi:10.1002/jcp.22357.

    Article  CAS  PubMed  Google Scholar 

  53. Scheller EL, Cawthorn WP, Burr AA, Horowitz MC, MacDougald OA. Marrow adipose tissue: trimming the fat. Trends Endocrinol Metab TEM. 2016;27(6):392–403. doi:10.1016/j.tem.2016.03.016.

    Article  CAS  PubMed  Google Scholar 

  54. Liu LF, Shen WJ, Ueno M, Patel S, Kraemer FB. Characterization of age-related gene expression profiling in bone marrow and epididymal adipocytes. BMC Genomics. 2011;12:212. doi:10.1186/1471-2164-12-212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Slade JM, Coe LM, Meyer RA, McCabe LR. Human bone marrow adiposity is linked with serum lipid levels not T1-diabetes. J Diabetes Complicat. 2012;26(1):1–9. doi:10.1016/j.jdiacomp.2011.11.001.

    Article  PubMed  Google Scholar 

  56. Clarke B. Normal bone anatomy and physiology. Clin J Am Soc Nephrol CJASN. 2008;3 Suppl 3:S131–9. doi:10.2215/cjn.04151206.

    Article  CAS  PubMed  Google Scholar 

  57. Robling AG, Bellido T, Turner CH. Mechanical stimulation in vivo reduces osteocyte expression of sclerostin. J Musculoskelet Neuronal Interac. 2006;6(4):354.

    CAS  Google Scholar 

  58. Bellido T, Ali AA, Gubrij I, Plotkin LI, Fu Q, O’Brien CA, et al. Chronic elevation of parathyroid hormone in mice reduces expression of sclerostin by osteocytes: a novel mechanism for hormonal control of osteoblastogenesis. Endocrinology. 2005;146(11):4577–83. doi:10.1210/en.2005-0239.

    Article  CAS  PubMed  Google Scholar 

  59. Ardawi MS, Al-Sibiany AM, Bakhsh TM, Rouzi AA, Qari MH. Decreased serum sclerostin levels in patients with primary hyperparathyroidism: a cross-sectional and a longitudinal study. Osteoporos Int. 2012;23(6):1789–97. doi:10.1007/s00198-011-1806-8.

    Article  CAS  PubMed  Google Scholar 

  60. Amrein K, Amrein S, Drexler C, Dimai HP, Dobnig H, Pfeifer K, et al. Sclerostin and its association with physical activity, age, gender, body composition, and bone mineral content in healthy adults. J Clin Endocrinol Metab. 2012;97(1):148–54. doi:10.1210/jc.2011-2152.

    Article  CAS  PubMed  Google Scholar 

  61. Honasoge M, Rao AD, Rao SD. Sclerostin: recent advances and clinical implications. Curr Opin Endocrinol Diabetes Obes. 2014;21(6):437–46. doi:10.1097/med.0000000000000114.

    Article  CAS  PubMed  Google Scholar 

  62. Spatz JM, Fields EE, Yu EW, Divieti Pajevic P, Bouxsein ML, Sibonga JD, et al. Serum sclerostin increases in healthy adult men during bed rest. J Clin Endocrinol Metab. 2012;97(9):E1736–40. doi:10.1210/jc.2012-1579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Clarke BL, Drake MT. Clinical utility of serum sclerostin measurements. BoneKE y reports. 2013;2:361. doi:10.1038/bonekey.2013.95.

    Google Scholar 

  64. Mabilleau G, Chappard D, Basle MF. Cellular and molecular effects of thiazolidinediones on bone cells: a review. Int J Biochem Mol Biol. 2011;2(3):240–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Kim JH, Lee DE, Woo GH, Cha JH, Bak EJ, Yoo YJ. Osteocytic Sclerostin Expression in Alveolar Bone in Rats With Diabetes Mellitus and Ligature-Induced Periodontitis. J Periodontol. 2015;86(8):1005–11. doi:10.1902/jop.2015.150083.

    Article  CAS  PubMed  Google Scholar 

  66. Tanaka K, Yamaguchi T, Kanazawa I, Sugimoto T. Effects of high glucose and advanced glycation end products on the expressions of sclerostin and RANKL as well as apoptosis in osteocyte-like MLO-Y4-A2 cells. Biochem Biophys Res Commun. 2015;461(2):193–9. doi:10.1016/j.bbrc.2015.02.091.

    Article  CAS  PubMed  Google Scholar 

  67. Kim JY, Lee SK, Jo KJ, Song DY, Lim DM, Park KY, et al. Exendin-4 increases bone mineral density in type 2 diabetic OLETF rats potentially through the down-regulation of SOST/sclerostin in osteocytes. Life Sci. 2013;92(10):533–40. doi:10.1016/j.lfs.2013.01.001.

    Article  CAS  PubMed  Google Scholar 

  68. Yee CS, Xie L, Hatsell S, Hum N, Murugesh D, Economides AN, et al. Sclerostin antibody treatment improves fracture outcomes in a Type I diabetic mouse model. Bone. 2016;82:122–34. doi:10.1016/j.bone.2015.04.048. This study demonstrated that treatment of diabetic mice with anabolic doses of sclerostin antibody improves fracture healing, enhances bone mineral content of the fracture callus and alleviates the impaired osteoblastogenesis characteristic of diabetic bone.

    Article  CAS  PubMed  Google Scholar 

  69. Clarke BL. Anti-sclerostin antibodies: utility in treatment of osteoporosis. Maturitas. 2014;78(3):199–204. doi:10.1016/j.maturitas.2014.04.016.

    Article  CAS  PubMed  Google Scholar 

  70. Neumann T, Hofbauer LC, Rauner M, Lodes S, Kastner B, Franke S, et al. Clinical and endocrine correlates of circulating sclerostin levels in patients with type 1 diabetes mellitus. Clin Endocrinol. 2014;80(5):649–55. doi:10.1111/cen.12364. This study demonstrates the age-related increase in serum sclerostin levels in adults with long-standing T1D, relative to healthy non-diabetic subjects.

  71. Catalano A, Pintaudi B, Morabito N, Di Vieste G, Giunta L, Bruno ML, et al. Gender differences in sclerostin and clinical characteristics in type 1 diabetes mellitus. Euro J Endocrinol Eur Fed Endocrine Soc. 2014;171(3):293–300. doi:10.1530/eje-14-0106.

    Article  CAS  Google Scholar 

  72. Gennari L, Merlotti D, Valenti R, Ceccarelli E, Ruvio M, Pietrini MG, et al. Circulating sclerostin levels and bone turnover in type 1 and type 2 diabetes. J Clin Endocrinol Metab. 2012;97(5):1737–44. doi:10.1210/jc.2011-2958.

    Article  CAS  PubMed  Google Scholar 

  73. Tsentidis C, Gourgiotis D, Kossiva L, Marmarinos A, Doulgeraki A, Karavanaki K. Sclerostin distribution in children and adolescents with type 1 diabetes mellitus and correlation with bone metabolism and bone mineral density. Pediatr Diabetes. 2016;17(4):289–99. doi:10.1111/pedi.12288.

    Article  CAS  PubMed  Google Scholar 

  74. Zhou YJ, Li A, Song YL, Zhou H, Li Y, Tang YS. Role of sclerostin in the bone loss of postmenopausal chinese women with type 2 diabetes. Chin Med Sci J. 2013;28(3):135–9.

    Article  CAS  PubMed  Google Scholar 

  75. Gaudio A, Privitera F, Battaglia K, Torrisi V, Sidoti MH, Pulvirenti I, et al. Sclerostin levels associated with inhibition of the Wnt/beta-catenin signaling and reduced bone turnover in type 2 diabetes mellitus. J Clin Endocrinol Metab. 2012;97(10):3744–50. doi:10.1210/jc.2012-1901.

    Article  CAS  PubMed  Google Scholar 

  76. Garcia-Martin A, Rozas-Moreno P, Reyes-Garcia R, Morales-Santana S, Garcia-Fontana B, Garcia-Salcedo JA, et al. Circulating levels of sclerostin are increased in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2012;97(1):234–41. doi:10.1210/jc.2011-2186.

    Article  CAS  PubMed  Google Scholar 

  77. Daniele G, Winnier D, Mari A, Bruder J, Fourcaudot M, Pengou Z, et al. Sclerostin and insulin resistance in prediabetes: evidence of a cross talk between bone and glucose metabolism. Diabetes Care. 2015;38(8):1509–17. doi:10.2337/dc14-2989.

    Article  CAS  PubMed  Google Scholar 

  78. Arasu A, Cawthon PM, Lui LY, Do TP, Arora PS, Cauley JA, et al. Serum sclerostin and risk of hip fracture in older Caucasian women. J Clin Endocrinol Metab. 2012;97(6):2027–32. doi:10.1210/jc.2011-3419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ardawi MS, Rouzi AA, Al-Sibiani SA, Al-Senani NS, Qari MH, Mousa SA. High serum sclerostin predicts the occurrence of osteoporotic fractures in postmenopausal women: the Center of Excellence for Osteoporosis Research Study. J Bone Min Res. 2012;27(12):2592–602. doi:10.1002/jbmr.1718.

    Article  CAS  Google Scholar 

  80. Starup-Linde J, Lykkeboe S, Gregersen S, Hauge EM, Langdahl BL, Handberg A, et al. Bone Structure and Predictors of Fracture in Type 1 and Type 2 Diabetes. J Clin Endocrinol Metab. 2016;101(3):928–36. doi:10.1210/jc.2015-3882.

    Article  CAS  PubMed  Google Scholar 

  81. Llaurado G, Megia A, Cano A, Gimenez-Palop O, Simon I, Gonzalez-Sastre M, et al. FGF-23/Vitamin D axis in type 1 diabetes: the potential role of mineral metabolism in arterial stiffness. PLoS One. 2015;10(10):e0140222. doi:10.1371/journal.pone.0140222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Ito N, Wijenayaka AR, Prideaux M, Kogawa M, Ormsby RT, Evdokiou A, et al. Regulation of FGF23 expression in IDG-SW3 osteocytes and human bone by pro-inflammatory stimuli. Mol Cell Endocrinol. 2015;399:208–18. doi:10.1016/j.mce.2014.10.007.

    Article  CAS  PubMed  Google Scholar 

  83. Lai X, Price C, Modla S, Thompson WR, Caplan J, Kirn-Safran CB et al. The dependences of osteocyte network on bone compartment, age, and disease. Bone research. 2015;3.

  84. Villarino ME, Sanchez LM, Bozal CB, Ubios AM. Influence of short-term diabetes on osteocytic lacunae of alveolar bone. A histomorphometric study. Acta Odontol Latinoam. 2006;19(1):23–8.

    PubMed  Google Scholar 

  85. Portal-Nunez S, Lozano D, de Castro LF, de Gortazar AR, Nogues X, Esbrit P. Alterations of the Wnt/beta-catenin pathway and its target genes for the N- and C-terminal domains of parathyroid hormone-related protein in bone from diabetic mice. FEBS Lett. 2010;584(14):3095–100. doi:10.1016/j.febslet.2010.05.047.

    Article  CAS  PubMed  Google Scholar 

  86. Fu YW, He HB. Apoptosis of periodontium cells in streptozototocin- and ligature-induced experimental diabetic periodontitis in rats. Acta Odontol Scand. 2013;71(5):1206–15. doi:10.3109/00016357.2012.757638.

    Article  PubMed  Google Scholar 

  87. Tolosa MJ, Chuguransky SR, Sedlinsky C, Schurman L, McCarthy AD, Molinuevo MS, et al. Insulin-deficient diabetes-induced bone microarchitecture alterations are associated with a decrease in the osteogenic potential of bone marrow progenitor cells: preventive effects of metformin. Diabetes Res Clin Pract. 2013;101(2):177–86. doi:10.1016/j.diabres.2013.05.016.

    Article  CAS  PubMed  Google Scholar 

  88. Parajuli A, Liu C, Li W, Gu X, Lai X, Pei S, et al. Bone’s responses to mechanical loading are impaired in type 1 diabetes. Bone. 2015;81:152–60. doi:10.1016/j.bone.2015.07.012. Utilizing both in vitro and in vivo investigation, these researchers demonstrate that conditions of hyperglycemia impair the mechanosensing capabilities of osteocytes and diminished the anabolic response of bone to mechanical loading.

    Article  CAS  PubMed  Google Scholar 

  89. Seref-Ferlengez Z, Maung S, Schaffler MB, Spray DC, Suadicani SO, Thi MM. P2X7R-Panx1 Complex Impairs Bone Mechanosignaling under High Glucose Levels Associated with Type-1 Diabetes. PLoS One. 2016;11(5):e0155107. doi:10.1371/journal.pone.0155107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Guanabens N, Gifre L, Peris P. The role of Wnt signaling and sclerostin in the pathogenesis of glucocorticoid-induced osteoporosis. Curr osteoporos Rep. 2014;12(1):90–7. doi:10.1007/s11914-014-0197-0.

    Article  PubMed  Google Scholar 

  91. Krakauer JC, McKenna MJ, Buderer NF, Rao DS, Whitehouse FW, Parfitt AM. Bone loss and bone turnover in diabetes. Diabetes. 1995;44(7):775–82.

    Article  CAS  PubMed  Google Scholar 

  92. Horowitz MC, Xi Y, Wilson K, Kacena MA. Control of osteoclastogenesis and bone resorption by members of the TNF family of receptors and ligands. Cytokine Growth Factor Rev. 2001;12(1):9–18.

    Article  CAS  PubMed  Google Scholar 

  93. Tsentidis C, Gourgiotis D, Kossiva L, Doulgeraki A, Marmarinos A, Galli-Tsinopoulou A, et al. Higher levels of s-RANKL and osteoprotegerin in children and adolescents with type 1 diabetes mellitus may indicate increased osteoclast signaling and predisposition to lower bone mass: a multivariate cross-sectional analysis. Osteoporos Int. 2016;27(4):1631–43. doi:10.1007/s00198-015-3422-5.

    Article  CAS  PubMed  Google Scholar 

  94. Mabilleau G, Petrova NL, Edmonds ME, Sabokbar A. Increased osteoclastic activity in acute Charcot’s osteoarthropathy: the role of receptor activator of nuclear factor-kappaB ligand. Diabetologia. 2008;51(6):1035–40. doi:10.1007/s00125-008-0992-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wittrant Y, Gorin Y, Woodruff K, Horn D, Abboud HE, Mohan S, et al. High d(+)glucose concentration inhibits RANKL-induced osteoclastogenesis. Bone. 2008;42(6):1122–30. doi:10.1016/j.bone.2008.02.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Valcourt U, Merle B, Gineyts E, Viguet-Carrin S, Delmas PD, Garnero P. Non-enzymatic glycation of bone collagen modifies osteoclastic activity and differentiation. J Biol Chem. 2007;282(8):5691–703. doi:10.1074/jbc.M610536200.

    Article  CAS  PubMed  Google Scholar 

  97. Hie M, Shimono M, Fujii K, Tsukamoto I. Increased cathepsin K and tartrate-resistant acid phosphatase expression in bone of streptozotocin-induced diabetic rats. Bone. 2007;41(6):1045–50. doi:10.1016/j.bone.2007.08.030.

    Article  CAS  PubMed  Google Scholar 

  98. Thrailkill KM, Clay Bunn R, Nyman JS, Rettiganti MR, Cockrell GE, Wahl EC, et al. SGLT2 inhibitor therapy improves blood glucose but does not prevent diabetic bone disease in diabetic DBA/2J male mice. Bone. 2016;82:101–7. doi:10.1016/j.bone.2015.07.025.

    Article  CAS  PubMed  Google Scholar 

  99. Catalfamo DL, Calderon NL, Harden SW, Sorenson HL, Neiva KG, Wallet SM. Augmented LPS responsiveness in type 1 diabetes-derived osteoclasts. J Cell Physiol. 2013;228(2):349–61. doi:10.1002/jcp.24138. This study demonstrated that osteoclasts from NOD mice are hyperresponsive to RANKL stimulation resulting in increased cathepsin K and MMP9 and increased bone degradation and, at the same time, they are unresponsive to bone resorption inhibition by LPS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Motyl K, McCabe LR. Streptozotocin, type I diabetes severity and bone. Biol Proc Online. 2009;11:296–315. doi:10.1007/s12575-009-9000-5.

    Article  CAS  Google Scholar 

  101. Roszer T. Inflammation as death or life signal in diabetic fracture healing. Inflamm Res. 2011;60(1):3–10. doi:10.1007/s00011-010-0246-9.

    Article  CAS  PubMed  Google Scholar 

  102. Coe LM, Tekalur SA, Shu Y, Baumann MJ, McCabe LR. Bisphosphonate treatment of type I diabetic mice prevents early bone loss but accentuates suppression of bone formation. J Cell Physiol. 2015;230(8):1944–53. doi:10.1002/jcp.24929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelia Kalaitzoglou.

Ethics declarations

Conflict of Interest

Iuliana Popescu, Kathryn Thrailkill, Robert Bunn, John Fowlkes, and Evangelia Kalaitzoglou declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Funding

This work was supported in part by National Institutes of Health Grants R01DK055653 (to J.L.F.) and R21AR070620 (to K.M.T). Additional funding was provided by the University of Kentucky Barnstable Brown Diabetes Center Endowment.

Additional information

This article is part of the Topical Collection on Bone and Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalaitzoglou, E., Popescu, I., Bunn, R.C. et al. Effects of Type 1 Diabetes on Osteoblasts, Osteocytes, and Osteoclasts. Curr Osteoporos Rep 14, 310–319 (2016). https://doi.org/10.1007/s11914-016-0329-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-016-0329-9

Keywords

Navigation