Skip to main content
Log in

SOXC Genes and the Control of Skeletogenesis

  • Skeletal Development (E Schipani and E Zelzer, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

The SOXC group of transcription factors, composed of SOX4, SOX11, and SOX12, has evolved to fulfill key functions in cell fate determination. Expressed in many types of progenitor/stem cells, including skeletal progenitors, SOXC proteins potentiate pathways critical for cell survival and differentiation. As skeletogenesis unfolds, SOXC proteins ensure cartilage primordia delineation by amplifying canonical WNT signaling and antagonizing the chondrogenic action of SOX9 in perichondrium and presumptive articular joint cells. They then ensure skeletal elongation by inducing growth plate formation via enabling non-canonical WNT signaling. Human studies have associated SOX4 with bone mineral density and fracture risk in osteoporotic patients, and SOX11 with Coffin-Siris, a syndrome that includes skeletal dysmorphism. Meanwhile, in vitro and mouse studies have suggested important cell-autonomous roles for SOXC proteins in osteoblastogenesis. We here review current knowledge and gaps in understanding of SOXC protein functions, with an emphasis on the skeleton and possible links to osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Rachner TD, Khosla S, Hofbauer LC. Osteoporosis: now and the future. Lancet. 2011;377(9773):1276–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Binkley N, Adler R, Bilezikian JP. Osteoporosis diagnosis in men: the T-score controversy revisited. Curr Osteoporos Rep. 2014;12(4):403–9.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Jackson RD, Mysiw WJ. Insights into the epidemiology of postmenopausal osteoporosis: the Women’s Health Initiative. Semin Reprod Med. 2014;32(6):454–62.

    Article  PubMed  Google Scholar 

  4. Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R. Male development of chromosomally female mice transgenic for Sry. Nature. 1991;351(6322):117–21.

    Article  CAS  PubMed  Google Scholar 

  5. Schepers GE, Teasdale RD, Koopman P. Twenty pairs of sox: extent, homology, and nomenclature of the mouse and human sox transcription factor gene families. Dev Cell. 2002;3(2):167–70.

    Article  CAS  PubMed  Google Scholar 

  6. Lefebvre V, Dumitriu B, Penzo-Méndez A, Han Y, Pallavi B. Control of cell fate and differentiation by Sry-related high-mobility-group box (Sox) transcription factors. Int J Biochem Cell Biol. 2007;39(12):2195–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kamachi Y, Kondoh H. Sox proteins: regulators of cell fate specification and differentiation. Development. 2013;140(20):4129–44.

    Article  CAS  PubMed  Google Scholar 

  8. Sarkar A, Hochedlinger K. The sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell. 2013;12(1):15–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Phochanukul N, Russell S. No backbone but lots of Sox: invertebrate Sox genes. Int J Biochem Cell Biol. 2010;42(3):453–64.

    Article  CAS  PubMed  Google Scholar 

  10. Dy P, Penzo-Méndez A, Wang H, Pedraza CE, Macklin WB, Lefebvre V. The three SoxC proteins—Sox4, Sox11 and Sox12—exhibit overlapping expression patterns and molecular properties. Nucleic Acids Res. 2008;36(9):3101–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. van Beest M, Dooijes D, van De Wetering M, Kjaerulff S, Bonvin A, Nielsen O, et al. Sequence-specific high mobility group box factors recognize 10-12-base pair minor groove motifs. J Biol Chem. 2000;275(35):27266–73.

    PubMed  Google Scholar 

  12. Hoser M, Potzner MR, Koch JM, Bösl MR, Wegner M, Sock E. Sox12 deletion in the mouse reveals nonreciprocal redundancy with the related Sox4 and Sox11 transcription factors. Mol Cell Biol. 2008;28(15):4675–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mallampati S, Sun B, Lu Y, Ma H, Gong Y, Wang D, et al. Integrated genetic approaches identify the molecular mechanisms of Sox4 in early B-cell development: intricate roles for RAG1/2 and CK1epsilon. Blood. 2014;123(26):4064–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kuo PY, Leshchenko VV, Fazzari MJ, Perumal D, Gellen T, He T, et al. High-resolution chromatin immunoprecipitation (ChIP) sequencing reveals novel binding targets and prognostic role for SOX11 in mantle cell lymphoma. Oncogene. 2015;34(10):1231–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. van de Wetering M, Oosterwegel M, van Norren K, Clevers H. Sox-4, an Sry-like HMG box protein, is a transcriptional activator in lymphocytes. EMBO J. 1993;12(10):3847–54.

    PubMed  PubMed Central  Google Scholar 

  16. Lioubinski O, Müller M, Wegner M, Sander M. Expression of Sox transcription factors in the developing mouse pancreas. Dev Dyn. 2003;227(3):402–8.

    Article  CAS  PubMed  Google Scholar 

  17. Sun B, Mallampati S, Gong Y, Wang D, Lefebvre V, Sun X. Sox4 is required for the survival of pro-B cells. J Immunol. 2013;190(5):2080–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Schilham MW, Oosterwegel MA, Moerer P, Ya J, de Boer PA, van de Wetering M, et al. Defects in cardiac outflow tract formation and pro-B-lymphocyte expansion in mice lacking Sox-4. Nature. 1996;380(6576):711–4.

    Article  CAS  PubMed  Google Scholar 

  19. Sock E, Rettig SD, Enderich J, Bösl MR, Tamm ER, Wegner M. Gene targeting reveals a widespread role for the high-mobility-group transcription factor Sox11 in tissue remodeling. Mol Cell Biol. 2004;24(15):6635–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bhattaram P, Penzo-Méndez A, Sock E, Colmenares C, Kaneko KJ, Vassilev A, et al. Organogenesis relies on SoxC transcription factors for the survival of neural and mesenchymal progenitors. Nat Commun. 2010;1:9.

    Article  PubMed  Google Scholar 

  21. Thein DC, Thalhammer JM, Hartwig AC, Crenshaw 3rd EB, Lefebvre V, Wegner M, et al. The closely related transcription factors Sox4 and Sox11 function as survival factors during spinal cord development. J Neurochem. 2010;115(1):131–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Potzner MR, Tsarovina K, Binder E, Penzo-Méndez A, Lefebvre V, Rohrer H, et al. Sequential requirement of Sox4 and Sox11 during development of the sympathetic nervous system. Development. 2010;137(5):775–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lin L, Lee VM, Wang Y, Lin JS, Sock E, Wegner M, et al. Sox11 regulates survival and axonal growth of embryonic sensory neurons. Dev Dyn. 2011;240(1):52–64.

    Article  CAS  PubMed  Google Scholar 

  24. Jiang Y, Ding Q, Xie X, Libby RT, Lefebvre V, Gan L. Transcription factors SOX4 and SOX11 function redundantly to regulate the development of mouse retinal ganglion cells. J Biol Chem. 2013;288(25):18429–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Paul MH, Harvey RP, Wegner M, Sock E. Cardiac outflow tract development relies on the complex function of Sox4 and Sox11 in multiple cell types. Cell Mol Life Sci. 2014;71(15):2931–45.

    Article  CAS  PubMed  Google Scholar 

  26. Bergsland M, Werme M, Malewicz M, Perlmann T, Muhr J. The establishment of neuronal properties is controlled by Sox4 and Sox11. Genes Dev. 2006;20(24):3475–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bergsland M, Ramsköld D, Zaouter C, Klum S, Sandberg R, Muhr J. Sequentially acting Sox transcription factors in neural lineage development. Genes Dev. 2011;25(23):2453–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schilham MW, Moerer P, Cumano A, Clevers HC. Sox-4 facilitates thymocyte differentiation. Eur J Immunol. 1997;27(5):1292–5.

    Article  CAS  PubMed  Google Scholar 

  29. Mu L, Berti L, Masserdotti G, Covic M, Michaelidis TM, Doberauer K, et al. SoxC transcription factors are required for neuronal differentiation in adult hippocampal neurogenesis. J Neurosci. 2012;32(9):3067–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Penzo-Méndez AI. Critical roles for SoxC transcription factors in development and cancer. Int J Biochem Cell Biol. 2010;42(3):425–8.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Jafarnejad SM, Ardekani GS, Ghaffari M, Li G. Pleiotropic function of SRY-related HMG box transcription factor 4 in regulation of tumorigenesis. Cell Mol Life Sci. 2013;70(15):2677–96.

    Article  CAS  PubMed  Google Scholar 

  32. Lu TX, Li JY, Xu W. The role of SOX11 in mantle cell lymphoma. Leuk Res. 2013;37(11):1412–9.

    Article  CAS  PubMed  Google Scholar 

  33. Vervoort SJ, van Boxtel R, Coffer PJ. The role of SRY-related HMG box transcription factor 4 (SOX4) in tumorigenesis and metastasis: friend or foe? Oncogene. 2013;32(29):3397–409. This paper reviews current knowledge on SOXC proteins in various types of cancer.

    Article  CAS  PubMed  Google Scholar 

  34. Song GD, Sun Y, Shen H, Li W. SOX4 overexpression is a novel biomarker of malignant status and poor prognosis in breast cancer patients. Tumour Biol. 2015;36(6):4167–73.

    Article  CAS  PubMed  Google Scholar 

  35. Ramezani-Rad P, Geng H, Hurtz C, Chan LN, Chen Z, Jumaa H, et al. SOX4 enables oncogenic survival signals in acute lymphoblastic leukemia. Blood. 2013;121(1):148–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Brennan DJ, Ek S, Doyle E, Drew T, Foley M, Flannelly G, et al. The transcription factor Sox11 is a prognostic factor for improved recurrence-free survival in epithelial ovarian cancer. Eur J Cancer. 2009;45(8):1510–7.

    Article  CAS  PubMed  Google Scholar 

  37. Hide T, Takezaki T, Nakatani Y, Nakamura H, Kuratsu J, Kondo T. Sox11 prevents tumorigenesis of glioma-initiating cells by inducing neuronal differentiation. Cancer Res. 2009;69(20):7953–9.

    Article  CAS  PubMed  Google Scholar 

  38. Tiwari N, Tiwari VK, Waldmeier L, Balwierz PJ, Arnold P, Pachkov M, et al. Sox4 is a master regulator of epithelial-mesenchymal transition by controlling Ezh2 expression and epigenetic reprogramming. Cancer Cell. 2013;23(6):768–83.

    Article  CAS  PubMed  Google Scholar 

  39. Pan X, Zhao J, Zhang WN, Li HY, Mu R, Zhou T, et al. Induction of SOX4 by DNA damage is critical for p53 stabilization and function. Proc Natl Acad Sci U S A. 2009;106(10):3788–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Moreno CS. The sex-determining region Y-box 4 and homeobox C6 transcriptional networks in prostate cancer progression: crosstalk with the Wnt, Notch, and PI3K pathways. Am J Pathol. 2010;176(2):518–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang J, Jiang H, Shao J, Mao R, Liu J, Ma Y, et al. SOX4 inhibits GBM cell growth and induces G0/G1 cell cycle arrest through Akt-p53 axis. BMC Neurol. 2014;14:207.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Lefebvre V, Bhattaram P. Vertebrate skeletogenesis. Curr Top Dev Biol. 2010;90:291–317.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Long F, Ornitz DM. Development of the endochondral skeleton. Cold Spring Harb Perspect Biol. 2013;5(1):a008334.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kozhemyakina E, Lassar AB, Zelzer E. A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation. Development. 2015;142(5):817–31. This paper provides a comprehensive overview of current knowledge of molecular mechanisms controlling skeletogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cameron TL, Belluoccio D, Farlie PG, Brachvogel B, Bateman JF. Global comparative transcriptome analysis of cartilage formation in vivo. BMC Dev Biol. 2009;9:20.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kan A, Ikeda T, Fukai A, Nakagawa T, Nakamura K, Chung UI, et al. SOX11 contributes to the regulation of GDF5 in joint maintenance. BMC Dev Biol. 2013;13:4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bhattaram P, Penzo-Méndez A, Kato K, Bandyopadhyay K, Gadi A, Taketo MM, et al. SOXC proteins amplify canonical WNT signaling to secure nonchondrocytic fates in skeletogenesis. J Cell Biol. 2014;207(5):657–71. This paper demonstrates the importance of SOXC proteins and their functional interactions with canonical WNT signaling in early skeletogenesis.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sekiya I, Vuoristo JT, Larson BL, Prockop DJ. In vitro cartilage formation by human adult stem cells from bone marrow stroma defines the sequence of cellular and molecular events during chondrogenesis. Proc Natl Acad Sci U S A. 2002;99(7):4397–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kato K, Bhattaram P, Penzo-Méndez A, Gadi A, Lefebvre V. SOXC transcription factors induce cartilage growth plate formation in mouse embryos by promoting noncanonical WNT signaling. J Bone Miner Res. 2015;30(9):1560–71. This paper demonstrates the importance of SOXC proteins in establishing cartilage growth plates and identifies non-canonical WNT signaling as a key mechanism whereby the proteins mediate this function.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nissen-Meyer LS, Jemtland R, Gautvik VT, Pedersen ME, Paro R, Fortunati D, et al. Osteopenia, decreased bone formation and impaired osteoblast development in Sox4 heterozygous mice. J Cell Sci. 2007;120(Pt 16):2785–95.

    Article  CAS  PubMed  Google Scholar 

  51. Jemtland R, Holden M, Reppe S, Olstad OK, Reinholt FP, Gautvik VT, et al. Molecular disease map of bone characterizing the postmenopausal osteoporosis phenotype. J Bone Miner Res. 2011;26(8):1793–801.

    Article  CAS  PubMed  Google Scholar 

  52. Duncan EL, Danoy P, Kemp JP, Leo PJ, McCloskey E, Nicholson GC, et al. Genome-wide association study using extreme truncate selection identifies novel genes affecting bone mineral density and fracture risk. PLoS Genet. 2011;7(4):e1001372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tsurusaki Y, Koshimizu E, Ohashi H, Phadke S, Kou I, Shiina M, et al. De novo SOX11 mutations cause Coffin-Siris syndrome. Nat Commun. 2014;5:4011. This paper is the first one to demonstrate that SOX11 mutations can cause a congenital disease in humans.

    Article  CAS  PubMed  Google Scholar 

  54. Verloes A, Bonneau D, Guidi O, Berthier M, Oriot D, Van Maldergem L, et al. Brachymorphism-onychodysplasia-dysphalangism syndrome. J Med Genet. 1993;30(2):158–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Billiard J, Moran RA, Whitley MZ, Chatterjee-Kishore M, Gillis K, Brown EL, et al. Transcriptional profiling of human osteoblast differentiation. J Cell Biochem. 2003;89(2):389–400.

    Article  CAS  PubMed  Google Scholar 

  56. Gadi J, Jung SH, Lee MJ, Jami A, Ruthala K, Kim KM, et al. The transcription factor protein Sox11 enhances early osteoblast differentiation by facilitating proliferation and the survival of mesenchymal and osteoblast progenitors. J Biol Chem. 2013;288(35):25400–13. This paper and the next two papers are the first ones to suggest that SOX11 has key functions in skeletal progenitors and the osteoblast lineage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Choi MK, Seong I, Kang SA, Kim J. Down-regulation of Sox11 is required for efficient osteogenic differentiation of adipose-derived stem cells. Mol Cells. 2014;37(4):337–44. See the comment made for reference 56.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Xu L, Huang S, Hou Y, Liu Y, Ni M, Meng F, et al. Sox11-modified mesenchymal stem cells (MSCs) accelerate bone fracture healing: Sox11 regulates differentiation and migration of MSCs. FASEB J. 2015;29(4):1143–52. See the comment made for reference 56.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the Lefebvre lab was supported by the NIH grants AR54513, AR46249, and AR60016 (to VL) and an Arthritis National Research Foundation grant (to PB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Lefebvre.

Ethics declarations

Conflict of Interest

V. Lefebvre and P. Bhattaram both declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

All animal studies carried by the authors were performed as approved by the Cleveland Clinic Institutional Animal Care and Use Committee. No studies were conducted by the authors using human subjects or materials.

Additional information

This article is part of the Topical Collection on Skeletal Development

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lefebvre, V., Bhattaram, P. SOXC Genes and the Control of Skeletogenesis. Curr Osteoporos Rep 14, 32–38 (2016). https://doi.org/10.1007/s11914-016-0296-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-016-0296-1

Keywords

Navigation