Skip to main content

Advertisement

Log in

Developments in Sclerostin Biology: Regulation of Gene Expression, Mechanisms of Action, and Physiological Functions

  • Skeletal Biology and Regulation (MR Forwood and A Robling, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

The SOST gene, which encodes the protein sclerostin, was identified through genetic linkage analysis of sclerosteosis and van Buchem’s disease patients. Sclerostin is a secreted glycoprotein that binds to the low-density lipoprotein receptor-related proteins 4, 5, and 6 to inhibit Wnt signaling. Since the initial discovery of sclerostin, much understanding has been gained into the role of this protein in the regulation of skeletal biology. In this article, we discuss the latest findings in the regulation of SOST expression, sclerostin mechanisms of action, and the potential utility of targeting sclerostin in conditions of low bone mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. van Bezooijen R, ten Dijke P, Papapoulos SE, Lowik CW. SOST/sclerostin, an osteocyte-derived negative regulator of bone formation. Cytokine Growth Factor Rev. 2005;16:319–27.

    Google Scholar 

  2. van Hul W, Balemans W, van Hul E, Dikkers F, Obee H, Stokroos R, et al. van Buchem Disease (hyperostosis corticalis generalisata) maps to the chromosome 17q12-q21. Am J Hum Genet. 1998;62:391–9.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Balemans W, Van Den Ende J, Freire Paes-Alves A, Dikkers FG, Willems PJ, Vanhoenacker F, et al. Localization of the Gene for Sclerosteosis to the van Buchem Disease-Gene Region on Chromosome 17q12-q21. Am J Hum Genet. 1999;64:1661–9.

  4. Balemans W, Ebeling M, Patel N, Van Hul E, Olson P, Dioszegi M, et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Molec Genet. 2001;10(5):537–43.

    Article  CAS  PubMed  Google Scholar 

  5. Brunkow M, Gardner JC, Van Ness J, Paeper BW, Kovacevich BR, Proll S, et al. Bone dysplasia sclerosteosis results from loss of the SOST gene product, a novel cystine knot-containing protein. Am J Hum Genet. 2001;68:577–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. van Lierop A, Hamdy NAT, Hamersma H, van Bezooijen RL, Power J, Loveridge N, et al. Patients with sclerosteosis and disease carriers: human models of the effect of sclerostin on bone turnover. J Bone Miner Res. 2011;26(12):2804–11. This manuscript provides evidence that decreased or absent sclerostin leads to increased bone mass in humans. Importantly, decreased sclerostin in sclerosteosis carriers correlated with increased bone mass without disease symptoms.

    Article  PubMed  Google Scholar 

  7. Balemans W, Patel N, Ebeling M, Van Hul E, Wuyts W, Lacza C, et al. Identification of a 52 kb deletion downstream of the SOST gene in patients with van Buchem disease. J Med Genet. 2002;39:91–7.

    Article  CAS  PubMed  Google Scholar 

  8. van Lierop A, Hamdy NAT, van Egmond ME, Bakker E, Dikkers FG, Papapoulos SE. Van Buchem Disease: clinical, biochemical, and densitometric features of patients and disease carriers. J Bone Miner Res. 2013;28(4):848–54. This manuscript provides evidence that there is a gene-dose effect of the VBD mutation on circulating sclerostin, suggesting that altered sclerostin levels affects the severity of the bone phenotype in VBD and sclerosteosis patients.

    Article  PubMed  Google Scholar 

  9. Burgers T, Williams BO. Regulation of Wnt/ß-catenin signaling within and from osteocytes. Bone. 2013;54:244–9.

    Article  CAS  PubMed  Google Scholar 

  10. Rossini M, Gatti D, Adami S. Involvement of WNT/ß-catenin Signaling in the treatment of osteoporosis. Calcif Tissue Int. 2013;93:121–32.

    Article  CAS  PubMed  Google Scholar 

  11. Little R, Carulli JP, Del Mastro RG, Dupuis J, Osborne M, Folz C, et al. A mutation in the LDL receptor-related protein 5 gene results in the autosomal dominant high-bone-mass trait. Am J Hum Genet. 2002;70:11–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Boyden L, Mao J, Belsky J, Mitzner L, Farhi A, Mitnick MA, et al. High bone density due to a mutation in LDL-receptor-related protein 5. N Engl J Med. 2002;346:1513–21.

    Article  CAS  PubMed  Google Scholar 

  13. Gong Y, Slee RB, Fukai N, Rawadi G, Roman-Roman S, Reginato AM, et al. LDL Receptor-related protein 5 (LRP5) affects bone accrual and eye development. Cell. 2001;107(4):513–23. doi:10.1016/S0092-8674(01)00571-2.

    Article  CAS  PubMed  Google Scholar 

  14. Ott S. Editorial: sclerostin and Wnt signaling—the pathway to bone strength. J Clin Endo Metab. 2005;90(12):6741–3.

    Article  Google Scholar 

  15. Ohyama Y, Nifuji A, Maeda Y, Amagasa T, Noda M. Spaciotemporal association and bone morphogenetic protein regulation of sclerostin and osterix expression during embryonic osteogenesis. Endocrinology. 2004;145(10):4685–92. doi:10.1210/en.2003-1492.

    Article  CAS  PubMed  Google Scholar 

  16. van Bezooijen RL, Roelen BA, Visser A, van der Wee-Pals L, de Wilt E, Karperien M, et al. Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J Exp Med. 2004;199(6):805–14. doi:10.1084/jem.20031454.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Van Bezooijen R, Bronckers A, Gortzak R, Hogendoorn P, van der Wee-Pals L, Balemans W, et al. Sclerostin in mineralized matrices and van Buchem disease. J Dental Res. 2009;88(6):569–74.

    Article  Google Scholar 

  18. Moester M, Papapoulos SE, Lowik CWGM, van Bezooijen RL. Sclerostin: current knowledge and future perspectives. Calcif Tissue Int. 2010;87:99–107.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Kusu N, Laurikkala J, Imanishi M, Usui H, Konishi M, Miyake A, et al. Sclerostin is a novel secreted osteoclast-derived bone morphogenetic protein antagonist with unique ligand specificity. J Biol Chem. 2003;278(26):24113–7. doi:10.1074/jbc.M301716200.

    Article  CAS  PubMed  Google Scholar 

  20. Pederson L, Ruan M, Westendorf JJ, Khosla S, Oursler MJ. Regulation of bone formation by osteoclasts involves Wnt/BMP signaling and the chemokine sphingosine-1-phosphate. Proc Natl Acad Sci U S A. 2008;105(52):20764–9. doi:10.1073/pnas.0805133106.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Ota K, Quint P, Ruan M, Pederson L, Westendorf JJ, Khosla S, et al. Sclerostin is expressed in osteoclasts from aged mice and reduces osteoclast-mediated stimulation of mineralization. J Cell Biochem. 2013;114(8):1901–7. doi:10.1002/jcb.24537.

    Article  CAS  PubMed  Google Scholar 

  22. Tang W, Li Y, Osimiri L, Zhang C. Osteoblast-specific Transcription Factor Osterix (Osx) is an upstream regulator of Satb2 during bone formation. J Biol Chem. 2011;286(38):32995–3002. doi:10.1074/jbc.M111.244236.

    Article  CAS  PubMed  Google Scholar 

  23. Sevetson B, Taylor S, Pan Y. Cbfa1/RUNX2 directs specific expression of the sclerosteosis gene (SOST). J Biol Chem. 2004;279(14):13849–58. doi:10.1074/jbc.M306249200.

    Article  CAS  PubMed  Google Scholar 

  24. Yang F, Tang W, So S, de Crombrugghe B, Zhang C. Sclerostin is a direct target of osteoblast-specific transcription factor osterix. Biochem Biophys Res Commun. 2010;400(4):684–8. doi:10.1016/j.bbrc.2010.08.128.

    Article  CAS  PubMed  Google Scholar 

  25. Delgado-Calle J, Sanudo C, Bolado A, Fernandez AF, Arozamena J, Pascual-Carra MA, et al. DNA methylation contributes to the regulation of sclerostin expression in human osteocytes. J Bone Min Res. 2012;27(4):926–37. doi:10.1002/jbmr.1491. These data show that epigenetics contributes to the regulation of sclerostin expression.

    Article  CAS  Google Scholar 

  26. Delgado-Calle J, Arozamena J, Perez-Lopez J, Bolado-Carrancio A, Sanudo C, Agudo G, et al. Role of BMPs in the regulation of sclerostin as revealed by an epigenetic modifier of human bone cells. Mol Cell Endocrinol. 2013;369(1-2):27–34. doi:10.1016/j.mce.2013.02.002. These data demonstrate that epigenetic modulation of the sclerostin promoter contributes to the ability microenvironment factors to affect sclerostin expression.

    Article  CAS  PubMed  Google Scholar 

  27. Kamiya N, Ye L, Kobayashi T, Mochida Y, Yamauchi M, Kronenberg HM, et al. BMP signaling negatively regulates bone mass through sclerostin by inhibiting the canonical Wnt pathway. Development. 2008;135(22):3801–11. doi:10.1242/dev.025825.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Papanicolaou SE, Phipps RJ, Fyhrie DP, Genetos DC. Modulation of sclerostin expression by mechanical loading and bone morphogenetic proteins in osteogenic cells. Biorheology. 2009;46(5):389–99. doi:10.3233/BIR-2009-0550.

    CAS  PubMed  Google Scholar 

  29. Collette NM, Genetos DC, Economides AN, Xie L, Shahnazari M, Yao W, et al. Targeted deletion of SOST distal enhancer increases bone formation and bone mass. Proc Natl Acad Sci U S A. 2012;109(35):14092–7. doi:10.1073/pnas.1207188109. Deletion of the ECR5 enhancer region causes a bone phenotype similar to van Buchem's Disease.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Leupin O, Kramer I, Collette NM, Loots GG, Natt F, Kneissel M, et al. Control of the SOST bone enhancer by PTH using MEF2 transcription factors. J Bone Min Res. 2007;22(12):1957–67. doi:10.1359/jbmr.070804.

    Article  CAS  Google Scholar 

  31. Loots GG, Keller H, Leupin O, Murugesh D, Collette NM, Genetos DC. TGF-beta regulates sclerostin expression via the ECR5 enhancer. Bone. 2012;50(3):663–9. doi:10.1016/j.bone.2011.11.016.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Quinn ZA, Yang CC, Wrana JL, McDermott JC. Smad proteins function as co-modulators for MEF2 transcriptional regulatory proteins. Nucleic Acids Res. 2001;29(3):732–42.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Keller H, Kneissel M. SOST is a target gene for PTH in bone. Bone. 2005;37(2):148–58. doi:10.1016/j.bone.2005.03.018.

    Article  CAS  PubMed  Google Scholar 

  34. Genetos DC, Yellowley CE, Loots GG. Prostaglandin E2 signals through PTGER2 to regulate sclerostin expression. PLoS One. 2011;6(3):e17772. doi:10.1371/journal.pone.0017772.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Ellies DL, Viviano B, McCarthy J, Rey JP, Itasaki N, Saunders S, et al. Bone density ligand, sclerostin, directly interacts with LRP5 but not LRP5G171V to modulate Wnt activity. J Bone Min Res. 2006;21(11):1738–49. doi:10.1359/jbmr.060810.

    Article  CAS  Google Scholar 

  36. Veverka V, Henry AJ, Slocombe PM, Ventom A, Mulloy B, Muskett FW, et al. Characterization of the structural features and interactions of sclerostin: molecular insight into a key regulator of Wnt-mediated bone formation. J Biol Chem. 2009;284(16):10890–900. doi:10.1074/jbc.M807994200.

    Article  CAS  PubMed  Google Scholar 

  37. Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE, et al. Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. Embo J. 2003;22(23):6267–76. doi:10.1093/emboj/cdg599.

    Article  CAS  PubMed  Google Scholar 

  38. Collette NM, Genetos DC, Murugesh D, Harland RM, Loots GG. Genetic evidence that SOST inhibits WNT signaling in the limb. Dev Biol. 2010;342(2):169–79. doi:10.1016/j.ydbio.2010.03.021.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Itasaki N, Jones CM, Mercurio S, Rowe A, Domingos PM, Smith JC, et al. Wise, a context-dependent activator and inhibitor of Wnt signalling. Development. 2003;130(18):4295–305.

    Article  CAS  PubMed  Google Scholar 

  40. Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang J, et al. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem. 2005;280(20):19883–7. doi:10.1074/jbc.M413274200.

    Article  CAS  PubMed  Google Scholar 

  41. Leupin O, Piters E, Halleux C, Hu S, Kramer I, Morvan F, et al. Bone overgrowth-associated mutations in the LRP4 gene impair sclerostin facilitator function. J Biol Chem. 2011;286(22):19489–500. doi:10.1074/jbc.M110.190330. This publication shows that interaction of sclerostin with LRP4 can also contribute to the regulation of human bone metabolism.

    Article  CAS  PubMed  Google Scholar 

  42. Holdsworth G, Slocombe P, Doyle C, Sweeney B, Veverka V, Le Riche K, et al. Characterization of the interaction of sclerostin with the low density lipoprotein receptor-related protein (LRP) family of Wnt co-receptors. J Biol Chem. 2012;287(32):26464–77. doi:10.1074/jbc.M112.350108. These data characterize the binding of sclerostin to LRP.

    Article  CAS  PubMed  Google Scholar 

  43. Bourhis E, Wang W, Tam C, Hwang J, Zhang Y, Spittler D, et al. Wnt antagonists bind through a short peptide to the first beta-propeller domain of LRP5/6. Structure. 2011;19(10):1433–42. doi:10.1016/j.str.2011.07.005.

    Article  CAS  PubMed  Google Scholar 

  44. Semenov MV, He X. LRP5 mutations linked to high bone mass diseases cause reduced LRP5 binding and inhibition by SOST. J Biol Chem. 2006;281(50):38276–84. doi:10.1074/jbc.M609509200.

    Article  CAS  PubMed  Google Scholar 

  45. Sutherland MK, Geoghegan JC, Yu C, Turcott E, Skonier JE, Winkler DG, et al. Sclerostin promotes the apoptosis of human osteoblastic cells: a novel regulation of bone formation. Bone. 2004;35(4):828–35. doi:10.1016/j.bone.2004.05.023.

    Article  CAS  PubMed  Google Scholar 

  46. Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MR, Alam I, et al. Mechanical stimulation of bone in vivo reduces osteocyte expression of SOST/sclerostin. J Biol Chem. 2008;283(9):5866–75. doi:10.1074/jbc.M705092200.

    Article  CAS  PubMed  Google Scholar 

  47. Tu X, Rhee Y, Condon KW, Bivi N, Allen MR, Dwyer D, et al. SOST downregulation and local Wnt signaling are required for the osteogenic response to mechanical loading. Bone. 2012;50(1):209–17. doi:10.1016/j.bone.2011.10.025. Transgenic SOST expression prevents the loading-induced osteogenic response, demonstrating that the modulation of SOST expression in osteocytes is a mechanism by which mechanical-loading stimulates bone formation.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Lin C, Jiang X, Dai Z, Guo X, Weng T, Wang J, et al. Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/beta-catenin signaling. J Bone Min Res. 2009;24(10):1651–61. doi:10.1359/jbmr.090411.

    Article  CAS  Google Scholar 

  49. Galea GL, Sunters A, Meakin LB, Zaman G, Sugiyama T, Lanyon LE, et al. SOST down-regulation by mechanical strain in human osteoblastic cells involves PGE2 signaling via EP4. FEBS Lett. 2011;585(15):2450–4. doi:10.1016/j.febslet.2011.06.019.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Nguyen J, Tang SY, Nguyen D, Alliston T. Load regulates bone formation and Sclerostin expression through a TGFbeta-dependent mechanism. PLoS One. 2013;8(1):e53813. doi:10.1371/journal.pone.0053813.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Lips P, Courpron P, Meunier PJ. Mean wall thickness of trabecular bone packets in the human iliac crest: changes with age. Calcif Tissue Res. 1978;26(1):13–7.

    Article  CAS  PubMed  Google Scholar 

  52. Modder UI, Hoey KA, Amin S, McCready LK, Achenbach SJ, Riggs BL, et al. Relation of age, gender, and bone mass to circulating sclerostin levels in women and men. J Bone Min Res. 2011;26(2):373–9. doi:10.1002/jbmr.217.

    Article  CAS  Google Scholar 

  53. Wijenayaka AR, Kogawa M, Lim HP, Bonewald LF, Findlay DM, Atkins GJ. Sclerostin stimulates osteocyte support of osteoclast activity by a RANKL-dependent pathway. PLoS One. 2011;6(10):e25900. doi:10.1371/journal.pone.0025900.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Kogawa M, Wijenayaka AR, Ormsby R, Thomas GP, Anderson PH, Bonewald LF, et al. Sclerostin regulates release of bone mineral by osteocytes by induction of carbonic anhydrase 2. J Bone Min Res. 2013;28:2436-2448 doi:10.1002/jbmr.2003.

    Google Scholar 

  55. Qiang YW, Chen Y, Brown N, Hu B, Epstein J, Barlogie B, et al. Characterization of Wnt/beta-catenin signalling in osteoclasts in multiple myeloma. Br J Haematol. 2010;148(5):726–38. doi:10.1111/j.1365-2141.2009.08009.x.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Ruan M, Pederson L, Hachfeld C, Thomson M, Prakash YS, Howe A, et al. Deletion of Wnt Receptors Lrp5 and Lrp6 or β-catenin in late osteoclast precursors differentially suppress osteoclast differentiation and bone metabolism. J Bone Miner Res. 2012;27(Suppl 1).

  57. Wei W, Zeve D, Suh JM, Wang X, Du Y, Zerwekh JE, et al. Biphasic and dosage-dependent regulation of osteoclastogenesis by beta-catenin. Mol Cell Biol. 2011;31(23):4706–19. doi:10.1128/MCB.05980-11.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Otero K, Shinohara M, Zhao H, Cella M, Gilfillan S, Colucci A, et al. TREM2 and beta-catenin regulate bone homeostasis by controlling the rate of osteoclastogenesis. J Immunol. 2012;188(6):2612–21. doi:10.4049/jimmunol.1102836.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Albers J, Keller J, Baranowsky A, Beil FT, Catala-Lehnen P, Schulze J, et al. Canonical Wnt signaling inhibits osteoclastogenesis independent of osteoprotegerin. J Cell Biol. 2013;200(4):537–49. doi:10.1083/jcb.201207142.

    Article  CAS  PubMed  Google Scholar 

  60. Kramer I, Loots GG, Studer A, Keller H, Kneissel M. Parathyroid hormone (PTH)–induced bone gain is blunted in SOST overexpressing and deficient mice. J Bone Min Res. 2010;25(2):178–89. doi:10.1359/jbmr.090730.

    Article  CAS  Google Scholar 

  61. Cain CJ, Rueda R, McLelland B, Collette NM, Loots GG, Manilay JO. Absence of sclerostin adversely affects B-cell survival. J Bone Min Res. 2012;27(7):1451–61. doi:10.1002/jbmr.1608.

    Article  CAS  Google Scholar 

  62. Brandenburg VM, Kramann R, Koos R, Kruger T, Schurgers L, Muhlenbruch G, et al. Relationship between sclerostin and cardiovascular calcification in hemodialysis patients: a cross-sectional study. BMC Nephrol. 2013;14:219. doi:10.1186/1471-2369-14-219.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Claes KJ, Viaene L, Heye S, Meijers B, d'Haese P, Evenepoel P. Sclerostin: another vascular calcification inhibitor? J Clin Endocrinol Metab. 2013;98(8):3221–8. doi:10.1210/jc.2013-1521.

    Article  CAS  PubMed  Google Scholar 

  64. Noordzij M, Cranenburg EM, Engelsman LF, Hermans MM, Boeschoten EW, Brandenburg VM, et al. Progression of aortic calcification is associated with disorders of mineral metabolism and mortality in chronic dialysis patients. Nephrol Dial Transplant. 2011;26(5):1662–9. doi:10.1093/ndt/gfq582.

    Article  PubMed  Google Scholar 

  65. Gardner J, van Bezooijen RL, Mervis B, Hamdy NAT, Lowik CWGM, Hamersma H, et al. Bone mineral density in sclerosteosis: affected individuals and gene carriers. J Clin Endo Metab. 2005;90(12):6392–5.

    Article  CAS  Google Scholar 

  66. Li X, Ominsky MS, Warmington KS, Morony S, Gong J, Cao J, et al. Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J Bone Min Res. 2009;24(4):578–88. doi:10.1359/jbmr.081206.

    Article  CAS  Google Scholar 

  67. Ominsky MS, Vlasseros F, Jolette J, Smith SY, Stouch B, Doellgast G, et al. Two doses of sclerostin antibody in cynomolgus monkeys increases bone formation, bone mineral density, and bone strength. J Bone Min Res. 2010;25(5):948–59. doi:10.1002/jbmr.14.

    Article  CAS  Google Scholar 

  68. Tian X, Jee WS, Li X, Paszty C, Ke HZ. Sclerostin antibody increases bone mass by stimulating bone formation and inhibiting bone resorption in a hindlimb-immobilization rat model. Bone. 2011;48(2):197–201. doi:10.1016/j.bone.2010.09.009.

    Article  CAS  PubMed  Google Scholar 

  69. Padhi D, Jang G, Stouch B, Fang L, Posvar E. Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Min Res. 2011;26(1):19–26. doi:10.1002/jbmr.173. The first-in-human study assessing the effects of sclerostin monoclonal antibody AMG 785 on the skeleton.

    Article  CAS  Google Scholar 

  70. McColm J, Hu L, Womack T, Tang CC, Chiang AY. Single- and multiple-dose randomized studies of blosozumab, a monoclonal antibody against sclerostin, in healthy postmenopausal women. J Bone Min Res. 2013. doi:10.1002/jbmr.2092. This study assesses the effects of the sclerostin monoclonal antibody blosozumab on the skeleton.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (P01 AG004875, R01 DK091146, F32 AR064679, T32 AR056950).

Compliance with Ethics Guidelines

Conflict of Interest

M. M. Weivoda declares that she has no conflicts of interest.

M. J. Oursler declares that she has no conflicts of interest.

Human and Animal Rights and Informed Consent

All studies by Merry Jo Oursler involving animal subjects were performed after approval by the appropriate Institutional Animal Care and Use Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megan M. Weivoda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weivoda, M.M., Oursler, M.J. Developments in Sclerostin Biology: Regulation of Gene Expression, Mechanisms of Action, and Physiological Functions. Curr Osteoporos Rep 12, 107–114 (2014). https://doi.org/10.1007/s11914-014-0188-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-014-0188-1

Keywords

Navigation