Skip to main content

Advertisement

Log in

Novel Bone Endocrine Networks Integrating Mineral and Energy Metabolism

  • Hot Topic
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

The skeleton is an endocrine organ that regulates energy metabolism through the release of the osteoblast-derived hormone, osteocalcin (Ocn), and phosphate and vitamin D homeostasis through the secretion by osteoblasts and osteocytes of the novel hormone, FGF23 Ocn activates a widely expressed G-protein coupled receptor, GPRC6A, to regulate insulin secretion by pancreatic β−cells, testosterone secretion by testicular Leydig cells, fatty acid metabolism in the liver, and insulin sensitivity of muscle and fat, as well as other functions. FGF23 targets a limited number of tissues, including kidney, parathyroid gland, choroid plexus, and pituitary gland that co-express FGF receptors and α-Klotho complexes. Ectodomain shedding and secretion of a soluble form of Klotho also is purported to act as an anti-ageing hormone. Further elucidation of these novel endocrine networks is likely to lead to new appreciation of the cooperation between various organ systems to regulate phosphate, vitamin D, and energy metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Feng X, McDonald JM. Disorders of bone remodeling. Annu Rev Pathol. 2011;6:121–45. PMCID: 3571087.

    Article  PubMed  CAS  Google Scholar 

  2. Xiao Z, Zhang S, Magenheimer BS, Luo J, Quarles LD. Polycystin-1 regulates skeletogenesis through stimulation of the osteoblast-specific transcription factor RUNX2-II. J Biol Chem. 2008;283(18):12624–34. PMCID: 2335361.

    Article  PubMed  CAS  Google Scholar 

  3. Riggs BL, Parfitt AM. Drugs used to treat osteoporosis: the critical need for a uniform nomenclature based on their action on bone remodeling. J Bone Miner Res. 2005;20(2):177–84.

    Article  PubMed  CAS  Google Scholar 

  4. Parfitt AM. Misconceptions (3): calcium leaves bone only by resorption and enters only by formation. Bone. 2003;33(3):259–63.

    Article  PubMed  CAS  Google Scholar 

  5. Eriksen EF. Cellular mechanisms of bone remodeling. Rev Endocr Metab Disord. 2010;11(4):219–27. PMCID: 3028072.

    Article  PubMed  Google Scholar 

  6. Wei W, Dutchak PA, Wang X, Ding X, Bookout AL, Goetz R, et al. Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor gamma. Proc Natl Acad Sci U S A. 2012;109(8):3143–8. PMCID: 3286969.

    Article  PubMed  CAS  Google Scholar 

  7. Huitema LF, Apschner A, Logister I, Spoorendonk KM, Bussmann J, Hammond CL, et al. Entpd5 is essential for skeletal mineralization and regulates phosphate homeostasis in zebrafish. Proc Natl Acad Sci U S A. 2012;109(52):21372–7. PMCID: 3535636.

    Article  PubMed  CAS  Google Scholar 

  8. Tagliabracci VS, Engel JL, Wen J, Wiley SE, Worby CA, Kinch LN, et al. Secreted kinase phosphorylates extracellular proteins that regulate biomineralization. Science. 2012;336(6085):1150–3.

    Article  PubMed  CAS  Google Scholar 

  9. Clemens TL, Karsenty G. The osteoblast: an insulin target cell controlling glucose homeostasis. J Bone Miner Res. 2011;26(4):677–80.

    Article  PubMed  CAS  Google Scholar 

  10. Pi M, Wu Y, Quarles LD. GPRC6A mediates responses to osteocalcin in beta-cells in vitro and pancreas in vivo. J Bone Miner Res. 2011;26(7):1680–3.

    Article  PubMed  CAS  Google Scholar 

  11. Bodine PV, Komm BS. Evidence that conditionally immortalized human osteoblasts express an osteocalcin receptor. Bone. 1999;25(5):535–43.

    Article  PubMed  CAS  Google Scholar 

  12. Clemens TL, Karsenty G. The osteoblast: an insulin target cell controlling glucose homeostasis. J Bone Miner Res. 2011;26(4):677–80.

    Google Scholar 

  13. Ferron M, McKee MD, Levine RL, Ducy P, Karsenty G. Intermittent injections of osteocalcin improve glucose metabolism and prevent type 2 diabetes in mice. Bone. 2012;50(2):568–75. PMCID: 3181267.

    Article  PubMed  CAS  Google Scholar 

  14. Pi M, Faber P, Ekema G, Jackson PD, Ting A, Wang N, et al. Identification of a novel extracellular cation-sensing G-protein-coupled receptor. J Biol Chem. 2005;280(48):40201–9.

    Article  PubMed  CAS  Google Scholar 

  15. Pi M, Chen L, Huang MZ, Zhu W, Ringhofer B, Luo J, et al. GPRC6A null mice exhibit osteopenia, feminization and metabolic syndrome. PLoS One. 2008;3(12):e3858. PMCID: 2585477.

    Article  PubMed  Google Scholar 

  16. Pi M, Parrill AL, Quarles LD. GPRC6A mediates the non-genomic effects of steroids. J Biol Chem. 2010;285(51):39953–64. PMCID: 3000977.

    Article  PubMed  CAS  Google Scholar 

  17. Oury F, Sumara G, Sumara O, Ferron M, Chang H, Smith CE, et al. Endocrine regulation of male fertility by the skeleton. Cell. 2011;144(5):796–809. PMCID: 3052787.

    Article  PubMed  CAS  Google Scholar 

  18. Kuang D, Yao Y, Lam J, Tsushima RG, Hampson DR. Cloning and characterization of a family C orphan G-protein coupled receptor. J Neurochem. 2005;93(2):383–91.

    Article  PubMed  CAS  Google Scholar 

  19. Wellendorph P, Brauner-Osborne H. Molecular cloning, expression, and sequence analysis of GPRC6A, a novel family C G-protein-coupled receptor. Gene. 2004;335:37–46.

    Article  PubMed  CAS  Google Scholar 

  20. Christiansen B, Hansen KB, Wellendorph P, Brauner-Osborne H. Pharmacological characterization of mouse GPRC6A, an L-alpha-amino-acid receptor modulated by divalent cations. Br J Pharmacol. 2007;150(6):798–807. PMCID: 2013871.

    Article  PubMed  CAS  Google Scholar 

  21. Pi M, Zhang L, Lei SF, Huang MZ, Zhu W, Zhang J, et al. Impaired osteoblast function in GPRC6A null mice. J Bone Miner Res. 2010;25(5):1092–102.

    PubMed  CAS  Google Scholar 

  22. Pi M, Parrill AL, Quarles LD. GPRC6A mediates the non-genomic effects of steroids. J Biol Chem. 2010;285(51):39953–64.

    Google Scholar 

  23. Pi M, Wu Y, Quarles LD. GPRC6A mediates responses to osteocalcin in beta-cells in vitro and pancreas in vivo. J Bone Miner Res. 2011;26(7)1680–3.

    Google Scholar 

  24. Pi M, Wu Y, Lenchik NI, Gerling I, Quarles LD. GPRC6A mediates the effects of L-arginine on insulin secretion in mouse pancreatic islets. Endocrinology. 2012;153(10):4608–15. PMCID: 3512028.

    Article  PubMed  CAS  Google Scholar 

  25. Kirmani S, Atkinson EJ, Melton III LJ, Riggs BL, Amin S, Khosla S. Relationship of testosterone and osteocalcin levels during growth. J Bone Miner Res. 2011;26(9):2212–6.

    Article  PubMed  CAS  Google Scholar 

  26. Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, et al. Endocrine regulation of energy metabolism by the skeleton. Cell. 2007;130(3):456–69. PMCID: 2013746.

    Article  PubMed  CAS  Google Scholar 

  27. Confavreux CB, Levine RL, Karsenty G. A paradigm of integrative physiology, the crosstalk between bone and energy metabolisms. Mol Cell Endocrinol. 2009;310(1–2):21–9.

    Article  PubMed  CAS  Google Scholar 

  28. Meigs JB. Epidemiology of the metabolic syndrome, 2002. Am J Manage Care. 2002;8(11 Suppl):S283–92. quiz S93–6.

    Google Scholar 

  29. Iswari S, Colas AE, Karavolas HJ. Binding of 5 alpha-dihydroprogesterone and other progestins to female rat anterior pituitary nuclear extracts. Steroids. 1986;47(2–3):189–203.

    Article  PubMed  CAS  Google Scholar 

  30. Lambert JJ, Belelli D, Hill-Venning C, Peters JA. Neurosteroids and GABAA receptor function. Trends Pharmacol Sci. 1995;16(9):295–303.

    Article  PubMed  CAS  Google Scholar 

  31. Pike CJ, Nguyen TV, Ramsden M, Yao M, Murphy MP, Rosario ER. Androgen cell signaling pathways involved in neuroprotective actions. Horm Behav. 2008;53(5):693–705. PMCID: 2424283.

    Article  PubMed  CAS  Google Scholar 

  32. Chen M, Xu W, Su CL, Lin JF. Testosterone impairs insulin sensitivity in 3T3-L1 adipocytes and the related nongenomic mechanisms. Zhonghua Yi Xue Za Zhi. 2008;88(21):1488–92.

    PubMed  CAS  Google Scholar 

  33. Taddei S, Virdis A, Mattei P, Salvetti A. Vasodilation to acetylcholine in primary and secondary forms of human hypertension. Hypertension. 1993;21(6 Pt 2):929–33.

    Article  PubMed  CAS  Google Scholar 

  34. Schmidt BM, Oehmer S, Delles C, Bratke R, Schneider MP, Klingbeil A, et al. Rapid nongenomic effects of aldosterone on human forearm vasculature. Hypertension. 2003;42(2):156–60.

    Article  PubMed  CAS  Google Scholar 

  35. Takata R, Akamatsu S, Kubo M, Takahashi A, Hosono N, Kawaguchi T, et al. Genome-wide association study identifies five new susceptibility loci for prostate cancer in the Japanese population. Nat Genet. 2010;42(9):751–4.

    Article  PubMed  CAS  Google Scholar 

  36. Wang M, Liu F, Hsing AW, Wang X, Shao Q, Qi J, et al. Replication and cumulative effects of GWAS-identified genetic variations for prostate cancer in Asians: a case–control study in the ChinaPCa consortium. Carcinogenesis. 2012;33(2):356–60.

    Google Scholar 

  37. Long QZ, Du YF, Ding XY, Li X, Song WB, Yang Y, et al. Replication and fine mapping for association of the C2orf43, FOXP4, GPRC6A and RFX6 genes with prostate cancer in the Chinese population. PLoS One. 2012;7(5):e37866. PMCID: 3360662.

    Article  PubMed  CAS  Google Scholar 

  38. Pi M, Quarles LD. GPRC6A regulates prostate cancer progression. Prostate. 2012;72(4):399–409.

    Google Scholar 

  39. Clegg NJ, Couto SS, Wongvipat J, Hieronymus H, Carver BS, Taylor BS, et al. MYC cooperates with AKT in prostate tumorigenesis and alters sensitivity to mTOR inhibitors. PLoS One. 2011;6(3):e17449. PMCID: 3048873.

    Article  PubMed  CAS  Google Scholar 

  40. Huang WC, Xie Z, Konaka H, Sodek J, Zhau HE, Chung LW. Human osteocalcin and bone sialoprotein mediating osteomimicry of prostate cancer cells: role of cAMP-dependent protein kinase A signaling pathway. Cancer Res. 2005;65(6):2303–13.

    Article  PubMed  CAS  Google Scholar 

  41. Gardner TA, Lee SJ, Lee SD, Li X, Shirakawa T, Kwon DD, et al. Differential expression of osteocalcin during the metastatic progression of prostate cancer. Oncol Rep. 2009;21(4):903–8.

    PubMed  CAS  Google Scholar 

  42. Nimptsch K, Rohrmann S, Nieters A, Linseisen J. Serum undercarboxylated osteocalcin as biomarker of vitamin K intake and risk of prostate cancer: a nested case–control study in the Heidelberg cohort of the European prospective investigation into cancer and nutrition. Cancer Epidemiol Biomarkers Prev. 2009;18(1):49–56.

    Article  PubMed  CAS  Google Scholar 

  43. Martin AP, Palumbi SR. Body size, metabolic rate, generation time, and the molecular clock. Proc Natl Acad Sci U S A. 1993;90(9):4087–91. PMCID: 46451.

    Article  PubMed  CAS  Google Scholar 

  44. Dehghan A, Dupuis J, Barbalic M, Bis JC, Eiriksdottir G, Lu C, et al. Meta-analysis of genome-wide association studies in >80,000 subjects identifies multiple loci for C-reactive protein levels. Circulation. 2011;123(7):731–8.

    Article  PubMed  CAS  Google Scholar 

  45. Dehghan A, Kardys I, de Maat MP, Uitterlinden AG, Sijbrands EJ, Bootsma AH, et al. Genetic variation, C-reactive protein levels, and incidence of diabetes. Diabetes. 2007;56(3):872–8.

    Article  PubMed  CAS  Google Scholar 

  46. Danesh J, Wheeler JG, Hirschfield GM, Eda S, Eiriksdottir G, Rumley A, et al. C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med. 2004;350(14):1387–97.

    Article  PubMed  CAS  Google Scholar 

  47. Hwang YC, Jeong IK, Ahn KJ, Chung HY. Circulating osteocalcin level is associated with improved glucose tolerance, insulin secretion and sensitivity independent of the plasma adiponectin level. Osteoporos Int. 2011.

  48. Pittas AG, Harris SS, Eliades M, Stark P, Dawson-Hughes B. Association between serum osteocalcin and markers of metabolic phenotype. J Clin Endocrinol Metab. 2009;94(3):827–32. PMCID: 2681283.

    Article  PubMed  CAS  Google Scholar 

  49. Liu S, Guo R, Simpson LG, Xiao ZS, Burnham CE, Quarles LD. Regulation of fibroblastic growth factor 23 expression but not degradation by PHEX. J Biol Chem. 2003;278(39):37419–26.

    Article  PubMed  CAS  Google Scholar 

  50. Liu S, Zhou J, Tang W, Jiang X, Rowe DW, Quarles LD. Pathogenic role of Fgf23 in Hyp mice. Am J Physiol Endocrinol Metab. 2006;291(1):E38–49.

    Article  PubMed  CAS  Google Scholar 

  51. Stubbs J, Liu S, Quarles LD. Role of fibroblast growth factor 23 in phosphate homeostasis and pathogenesis of disordered mineral metabolism in chronic kidney disease. Semin Dial. 2007;20(4):302–8.

    Article  PubMed  Google Scholar 

  52. Quarles LD. The bone and beyond: 'Dem bones' are made for more than walking. Nat Med. 2011;17(4):428–30.

    Article  PubMed  CAS  Google Scholar 

  53. Yamashita T, Yoshioka M, Itoh N. Identification of a novel fibroblast growth factor, FGF23, preferentially expressed in the ventrolateral thalamic nucleus of the brain. Biochem Biophys Res Commun. 2000;277(2):494–8.

    Article  PubMed  CAS  Google Scholar 

  54. Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, Rosenblatt KP, et al. Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem. 2006;281(10):6120–3. PMCID: 2637204.

    Article  PubMed  CAS  Google Scholar 

  55. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006;444(7120):770–4.

    Article  PubMed  CAS  Google Scholar 

  56. Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, et al. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest. 2004;113(4):561–8.

    PubMed  CAS  Google Scholar 

  57. Shimada T, Mizutani S, Muto T, Yoneya T, Hino R, Takeda S, et al. Cloning and characterization of FGF23 as a causative factor of tumor-induced osteomalacia. Proc Natl Acad Sci U S A. 2001;98(11):6500–5.

    Article  PubMed  CAS  Google Scholar 

  58. White KE, Carn G, Lorenz-Depiereux B, Benet-Pages A, Strom TM, Econs MJ. Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF23. Kidney Int. 2001;60(6):2079–86.

    Article  PubMed  CAS  Google Scholar 

  59. Shimada T, Yamazaki Y, Takahashi M, Hasegawa H, Urakawa I, Oshima T, et al. Vitamin D receptor-independent FGF23 actions in regulating phosphate and vitamin D metabolism. Am J Physiol Ren Physiol. 2005;289(5):F1088–95.

    Article  CAS  Google Scholar 

  60. Liu S, Tang W, Zhou J, Stubbs JR, Luo Q, Pi M, et al. Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J Am Soc Nephrol. 2006;17(5):1305–15.

    Article  PubMed  CAS  Google Scholar 

  61. Kolek OI, Hines ER, Jones MD, LeSueur LK, Lipko MA, Kiela PR, et al. 1alpha,25-Dihydroxyvitamin D3 upregulates FGF23 gene expression in bone: the final link in a renal-gastrointestinal-skeletal axis that controls phosphate transport. Am J Physiol Gastrointest Liver Physiol. 2005;289(6):G1036–42.

    Article  PubMed  CAS  Google Scholar 

  62. Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, Goetz R, Kuro-o M, Mohammadi M, et al. The parathyroid is a target organ for FGF23 in rats. J Clin Invest. 2007;117(12):4003–8.

    PubMed  CAS  Google Scholar 

  63. Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390(6655):45–51.

    Article  PubMed  CAS  Google Scholar 

  64. Li SA, Watanabe M, Yamada H, Nagai A, Kinuta M, Takei K. Immunohistochemical localization of Klotho protein in brain, kidney, and reproductive organs of mice. Cell Struct Funct. 2004;29(4):91–9.

    Article  PubMed  CAS  Google Scholar 

  65. Zhang F, Zhai G, Kato BS, Hart DJ, Hunter D, Spector TD, et al. Association between KLOTHO gene and hand osteoarthritis in a female Caucasian population. Osteoarthr Cartil. 2007;15(6):624–9.

    Google Scholar 

  66. Brown WW, Juppner H, Langman CB, Price H, Farrow EG, White KE, et al. Hypophosphatemia with elevations in serum fibroblast growth factor 23 in a child with Jansen's Metaphyseal Chondrodysplasia. J Clin Endocrinol Metab. 2009;94(1):17–20.

    Article  PubMed  CAS  Google Scholar 

  67. Kawata T, Imanishi Y, Kobayashi K, Miki T, Arnold A, Inaba M, et al. Parathyroid hormone regulates fibroblast growth factor-23 in a mouse model of primary hyperparathyroidism. J Am Soc Nephrol. 2007;18(10):2683–8.

    Article  PubMed  CAS  Google Scholar 

  68. Lavi-Moshayoff V, Wasserman G, Meir T, Silver J, Naveh-Many T. PTH increases FGF23 gene expression and mediates the high-FGF23 levels of experimental kidney failure: a bone parathyroid feedback loop. Am J Physiol Ren Physiol. 2010;299(4):F882–9.

    Article  CAS  Google Scholar 

  69. Sato T, Tominaga Y, Ueki T, Goto N, Matsuoka S, Katayama A, et al. Total parathyroidectomy reduces elevated circulating fibroblast growth factor 23 in advanced secondary hyperparathyroidism. Am J Kidney Dis. 2004;44(3):481–7.

    PubMed  CAS  Google Scholar 

  70. Gutierrez OM, Smith KT, Barchi-Chung A, Patel NM, Isakova T, Wolf M. (1–34) parathyroid hormone infusion acutely lowers fibroblast growth factor 23 concentrations in adult volunteers. Clin J Am Soc Nephrol. 2012;7(1):139–45.

    Article  PubMed  CAS  Google Scholar 

  71. Samadfam R, Richard C, Nguyen-Yamamoto L, Bolivar I, Goltzman D. Bone formation regulates circulating concentrations of fibroblast growth factor 23. Endocrinology. 2009;150(11):4835–45.

    Article  PubMed  CAS  Google Scholar 

  72. Yu X, Sabbagh Y, Davis SI, Demay MB, White KE. Genetic dissection of phosphate- and vitamin D-mediated regulation of circulating Fgf23 concentrations. Bone. 2005;36(6):971–7.

    Article  PubMed  CAS  Google Scholar 

  73. Weber TJ, Liu S, Indridason OS, Quarles LD. Serum FGF23 levels in normal and disordered phosphorus homeostasis. J Bone Miner Res. 2003;18(7):1227–34.

    Article  PubMed  CAS  Google Scholar 

  74. Isakova T, Gutierrez OM, Smith K, Epstein M, Keating LK, Juppner H, et al. Pilot study of dietary phosphorus restriction and phosphorus binders to target fibroblast growth factor 23 in patients with chronic kidney disease. Nephrol Dial Transplant. 2011;26(2):584–91.

    Google Scholar 

  75. Oliveira RB, Cancela AL, Graciolli FG, Dos Reis LM, Draibe SA, Cuppari L, et al. Early control of PTH and FGF23 in normophosphatemic CKD patients: a new target in CKD-MBD therapy? Clin J Am Soc Nephrol. 2010;5(2):286–91. PMCID: 2827593.

    Article  PubMed  CAS  Google Scholar 

  76. Moe SM, Zidehsarai MP, Chambers MA, Jackman LA, Radcliffe JS, Trevino LL, et al. Vegetarian compared with meat dietary protein source and phosphorus homeostasis in chronic kidney disease. Clin J Am Soc Nephrol. 2011;6(2):257–64.

    Google Scholar 

  77. Nagano N, Miyata S, Abe M, Kobayashi N, Wakita S, Yamashita T, et al. Effect of manipulating serum phosphorus with phosphate binder on circulating PTH and FGF23 in renal failure rats. Kidney Int. 2006;69(3):531–7.

    Article  PubMed  CAS  Google Scholar 

  78. Saito H, Maeda A, Ohtomo S, Hirata M, Kusano K, Kato S, et al. Circulating FGF23 is regulated by 1alpha,25-dihydroxyvitamin D3 and phosphorus in vivo. J Biol Chem. 2005;280(4):2543–9.

    Article  PubMed  CAS  Google Scholar 

  79. Liu S, Tang W, Fang J, Ren J, Li H, Xiao Z, et al. Novel regulators of Fgf23 expression and mineralization in Hyp bone. Mol Endocrinol. 2009;23(9):1505–18. PMCID: 2737552.

    Article  PubMed  CAS  Google Scholar 

  80. Martin A, David V, Quarles LD. Regulation and function of the FGF23/klotho endocrine pathways. Physiol Rev. 2012;92(1):131–55. PMCID: 3306265.

    Article  PubMed  CAS  Google Scholar 

  81. Faul C, Amaral AP, Oskouei B, Hu MC, Sloan A, Isakova T, et al. FGF23 induces left ventricular hypertrophy. J Clin Invest. 2011;121(11):4393–408. PMCID: 3204831.

    Article  PubMed  CAS  Google Scholar 

  82. Hu MC, Shi M, Zhang J, Pastor J, Nakatani T, Lanske B, et al. Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J. 2010;24(9):3438–50. PMCID: 2923354.

    Article  PubMed  CAS  Google Scholar 

  83. Hu MC, Shi M, Zhang J, Pastor J, Nakatani T, Lanske B, et al. Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule. FASEB J. 2010;24(9):3438–50.

    Google Scholar 

  84. Nabeshima Y. Toward a better understanding of Klotho. Sci Aging Knowl Environ. 2006;2006(8):pe11. PMID: 16672727.

  85. Wolf I, Levanon-Cohen S, Bose S, Ligumsky H, Sredni B, Kanety H, et al. Klotho: a tumor suppressor and a modulator of the IGF-1 and FGF pathways in human breast cancer. Oncogene. 2008;27(56):7094–105.

    Article  PubMed  CAS  Google Scholar 

  86. Liu H, Fergusson MM, Castilho RM, Liu J, Cao L, Chen J, et al. Augmented Wnt signaling in a mammalian model of accelerated aging. Science. 2007;317(5839):803–6.

    Article  PubMed  CAS  Google Scholar 

  87. Gutierrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H, Shah A, et al. Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med. 2008;359(6):584–92.

    Article  PubMed  CAS  Google Scholar 

  88. Fliser D, Kollerits B, Neyer U, Ankerst DP, Lhotta K, Lingenhel A, et al. Fibroblast growth factor 23 (FGF23) predicts progression of chronic kidney disease: the Mild to Moderate Kidney Disease (MMKD) Study. J Am Soc Nephrol. 2007;18(9):2600–8.

    Article  PubMed  CAS  Google Scholar 

  89. Mirza MA, Alsio J, Hammarstedt A, Erben RG, Michaelsson K, Tivesten A, et al. Circulating fibroblast growth factor-23 is associated with fat mass and dyslipidemia in two independent cohorts of elderly individuals. Arterioscler Thromb Vasc Biol. 2011;31(1):219–27.

    Article  PubMed  CAS  Google Scholar 

  90. Parker BD, Schurgers LJ, Brandenburg VM, Christenson RH, Vermeer C, Ketteler M, et al. The associations of fibroblast growth factor 23 and uncarboxylated matrix Gla protein with mortality in coronary artery disease: the Heart and Soul Study. Ann Intern Med. 2010;152(10):640–8.

    Article  PubMed  Google Scholar 

  91. Karsenty G, Ferron M. The contribution of bone to whole-organism physiology. Nature. 2012;481(7381):314–20.

    Article  PubMed  CAS  Google Scholar 

  92. Tsuji K, Maeda T, Kawane T, Matsunuma A, Horiuchi N. Leptin stimulates fibroblast growth factor 23 expression in bone and suppresses renal 1alpha,25-dihydroxyvitamin D(3) synthesis in leptin-deficient ob/ob mice. J Bone Miner Res. 2010;25(8):1711–23.

    Google Scholar 

  93. Hinoi E, Gao N, Jung DY, Yadav V, Yoshizawa T, Myers Jr MG, et al. The sympathetic tone mediates leptin's inhibition of insulin secretion by modulating osteocalcin bioactivity. J Cell Biol. 2008;183(7):1235–42. PMCID: 2606962.

    Article  PubMed  CAS  Google Scholar 

  94. Chateau MT, Araiz C, Descamps S, Galas S. Klotho interferes with a novel FGF-signalling pathway and insulin/Igf-like signalling to improve longevity and stress resistance in Caenorhabditis elegans. Aging. 2010;2(9):567–81. PMCID: 2984606.

    PubMed  CAS  Google Scholar 

  95. Smith RC, O'Bryan LM, Farrow EG, Summers LJ, Clinkenbeard EL, Roberts JL, et al. Circulating alphaKlotho influences phosphate handling by controlling FGF23 production. J Clin Invest. 2012;122(12):4710–5. PMCID: 3533557.

    Article  PubMed  CAS  Google Scholar 

  96. Brownstein CA, Adler F, Nelson-Williams C, Iijima J, Li P, Imura A, et al. A translocation causing increased alpha-klotho level results in hypophosphatemic rickets and hyperparathyroidism. Proc Natl Acad Sci U S A. 2008;105(9):3455–60. PMCID: 2265125.

    Article  PubMed  CAS  Google Scholar 

  97. Chen CD, Podvin S, Gillespie E, Leeman SE, Abraham CR. Insulin stimulates the cleavage and release of the extracellular domain of Klotho by ADAM10 and ADAM17. Proc Natl Acad Sci U S A. 2007;104(50):19796–801. PMCID: 2148378.

    Article  PubMed  CAS  Google Scholar 

  98. Shalhoub V, Ward SC, Sun B, Stevens J, Renshaw L, Hawkins N, et al. Fibroblast growth factor 23 (FGF23) and alpha-klotho stimulate osteoblastic MC3T3.E1 cell proliferation and inhibit mineralization. Calcif Tissue Int. 2011;89(2):140–50. PMCID: 3135830.

    Article  PubMed  CAS  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

M Pi declares that he has no conflicts of interest.

LD Quarles is a consultant for and has received honoraria from Amgen and has received research support from the National Institutes of Health.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Darryl Quarles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pi, M., Quarles, L.D. Novel Bone Endocrine Networks Integrating Mineral and Energy Metabolism. Curr Osteoporos Rep 11, 391–399 (2013). https://doi.org/10.1007/s11914-013-0178-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-013-0178-8

Keywords