Skip to main content

Advertisement

Log in

Ibandronate treatment for osteoporosis: Rationale, preclinical and clinical development of extended dosing regimens

  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Ibandronate is a potent nitrogen-containing bisphosphonate available as a once-monthly oral formulation for the treatment and prevention of osteoporosis. Preclinical experiments with estrogen-depleted rats, dogs, and monkeys demonstrated the efficacy of daily and intermittent ibandronate dosing. Initial clinical trials explored the optimal dosing regimens for oral administration in humans. The Oral Ibandronate Osteoporosis Vertebral Fracture Trial in North America and Europe (BONE) and Monthly Oral Ibandronate in Ladies (MOBILE) trials demonstrated that long-term daily and intermittent administration of ibandronate was efficacious for increasing bone mineral density, reducing markers of bone turnover, and preventing fractures, while maintaining bone quality. These preclinical and clinical ibandronate trials provided progressive evidence that a simple, long interval dosing regimen could offer efficacy and safety comparable with currently available bisphosphonates. It is anticipated that once-monthly ibandronate may have a positive impact on patient adherence, and ultimately, on fracture protection in osteoporotic women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Fleisch HA: Bisphosphonates: preclinical aspects and use in osteoporosis. Ann Med 1997, 29:55–62.

    PubMed  CAS  Google Scholar 

  2. Rogers MJ: New insights into the molecular mechanisms of action of bisphosphonates. Curr Pharm Des 2003, 9:2643–2658.

    Article  PubMed  CAS  Google Scholar 

  3. Fleisch H: Bisphosphonates: mechanisms of action. Endocr Rev 1998, 19:80–100.

    Article  PubMed  CAS  Google Scholar 

  4. Sato M, Grasser W, Endo N, et al.: Bisphosphonate action. Alendronate localization in rat bone and effects on osteoclast ultrastructure. J Clin Invest 1991, 88:2095–2105.

    Article  PubMed  CAS  Google Scholar 

  5. Frith JC, Monkkonen J, Auriola S, et al.: The molecular mechanism of action of the antiresorptive and antiin-flammatory drug clodronate: evidence for the formation in vivo of a metabolite that inhibits bone resorption and causes osteoclast and macrophage apoptosis. Arthritis Rheum 2001, 44:2201–2210.

    Article  PubMed  CAS  Google Scholar 

  6. Coxon FP, Rogers MJ: The role of prenylated small GTPbinding proteins in the regulation of osteoclast function. Calcif Tissue Int 2003, 72:80–84.

    Article  PubMed  CAS  Google Scholar 

  7. Reszka AA, Rodan GA: Mechanism of action of bisphosphonates. Curr Osteoporos Rep 2003, 1:45–52. Review article describing the mechanism of action of various bisphosphonates and the cellular pathways affected leading to the suppression of bone turnover.

    Article  PubMed  Google Scholar 

  8. Balena R, Toolan BC, Shea M, et al.: The effects of 2-year treatment with the aminobisphosphonate alendronate on bone metabolism, bone histomorphometry, and bone strength in ovariectomized nonhuman primates. J Clin Invest 1993, 92:2577–2586.

    PubMed  CAS  Google Scholar 

  9. Ott SM: Clinical effects of bisphosphonates in involutional osteoporosis. J Bone Miner Res 1993, 8(Suppl2):S597-S606.

    PubMed  Google Scholar 

  10. Flora L, Hassing GS, Cloyd GG, et al.: The long-term skeletal effects of EHDP in dogs. Metab Bone Dis Relat Res 1981, 3:289–300.

    Article  PubMed  CAS  Google Scholar 

  11. Bauss F, Russell RG: Ibandronate in osteoporosis: preclinical data and rationale for intermittent dosing. Osteoporos Int 2004, 15:423–433. Review article describing characteristics of ibandronate, pharmacokinetic and pharmacologic, that have enabled the development of an intermittent dosing regimen with extended dosing intervals.

    Article  PubMed  CAS  Google Scholar 

  12. Russell RG: Understanding intermittent therapy: potency and persistence. Osteoporos Int 2002, 13:S77.

    Google Scholar 

  13. Dunford JE, Thompson K, Coxon FP, et al.: Structure-activity relationships for inhibition of farnesyl diphosphate synthase in vitro and inhibition of bone resorption in vivo by nitrogen-containing bisphosphonates. J Pharmacol Exp Ther 2001, 296:235–242.

    PubMed  CAS  Google Scholar 

  14. Reginster JY, Felsenberg D, Cooper C, et al.: A new concept for bisphosphonate therapy: a rationale for the development of monthly oral dosing of ibandronate. Osteoporos Int 2006, 17:159–166.

    Article  PubMed  CAS  Google Scholar 

  15. Muhlbauer RC, Bauss F, Schenk R, et al.: BM 21.0955, a potent new bisphosphonate to inhibit bone resorption. J Bone Miner Res 1991, 6:1003–1011.

    PubMed  CAS  Google Scholar 

  16. World Health Organization Guidelines for preclinical evaluation and clinical trials in osteoporosis. Geneva: WHO; 1998.

  17. Seedor JG, Quartuccio HA, Thompson DD: The bisphosphonate alendronate (MK-217) inhibits bone loss due to ovariectomy in rats. J Bone Miner Res 1991, 6:339–346.

    PubMed  CAS  Google Scholar 

  18. Boyce RW, Wronski TJ, Ebert DC, et al.: Direct stereological estimation of three-dimensional connectivity in rat vertebrae: effect of estrogen, etidronate and risedronate following ovariectomy. Bone 1995, 16:209–213.

    Article  PubMed  CAS  Google Scholar 

  19. Hornby SB, Evans GP, Hornby SL, et al.: Long-term zoledronic acid treatment increases bone structure and mechanical strength of long bones of ovariectomized adult rats. Calcif Tissue Int 2003, 72:519–527.

    Article  PubMed  CAS  Google Scholar 

  20. Thompson DD, Seedor JG, Quartuccio H, et al.: The bisphosphonate, alendronate, prevents bone loss in ovariectomized baboons. J Bone Miner Res 1992, 7:951–960.

    PubMed  CAS  Google Scholar 

  21. Binkley N, Kimmel D, Bruner J, et al.: Zoledronate prevents the development of absolute osteopenia following ovariectomy in adult rhesus monkeys. J Bone Miner Res 1998, 13:1775–1782.

    Article  PubMed  CAS  Google Scholar 

  22. Forwood MR, Burr DB, Takano Y, et al.: Risedronate treatment does not increase microdamage in the canine femoral neck. Bone 1995, 16:643–650.

    Article  PubMed  CAS  Google Scholar 

  23. Peter CP, Guy J, Shea M, et al.: Long-term safety of the aminobisphosphonate alendronate in adult dogs. I. General safety and biomechanical properties of bone. J Pharmacol Exp Ther 1996, 276:271–276.

    PubMed  CAS  Google Scholar 

  24. Mashiba T, Hirano T, Turner CH, et al.: Suppressed bone turnover by bisphosphonates increases microdamage accumulation and reduces some biomechanical properties in dog rib. J Bone Miner Res 2000, 15:613–620.

    Article  PubMed  CAS  Google Scholar 

  25. Fischer KJ, Vikoren TH, Ney S, et al.: Mechanical evaluation of bone samples following alendronate therapy in healthy male dogs. J Biomed Mater Res B Appl Biomater 2005, 76:143–148.

    Google Scholar 

  26. Food and Drug Administration: Guidelines for Preclinical and Clinical Evaluation of Agents Used in the Treatment or Prevention of Postmenopausal Osteoporosis. Washington, DC: FDA Division of Metabolic and Endocrine Drug Products; 1994.

    Google Scholar 

  27. Kalu DN: The ovariectomized rat model of postmenopausal bone loss. Bone Miner 1991, 15:175–191.

    Article  PubMed  CAS  Google Scholar 

  28. Bauss F, Wagner M, Hothorn LH: Total administered dose of ibandronate determines its effects on bone mass and architecture in ovariectomized aged rats. J Rheumatol 2002, 29:990–998. This study determined an optimal daily dosage of ibandronate to inhibit bone loss in ovariectomized aged rats and demonstrated that the total dose administered determined treatment effiscacy and not the treatment regimen. Daily and cyclic intermittent dosing schedules were compared.

    PubMed  CAS  Google Scholar 

  29. Bauss F, Lalla S, Endele R, Hothorn LA: Effects of treatment with ibandronate on bone mass, architecture, biomechanical properties, and bone concentration of ibandronate in ovariectomized aged rats. J Rheumatol 2002, 29:2200–2208.

    PubMed  CAS  Google Scholar 

  30. Lalla S, Hothorn LA, Haag N, et al.: Lifelong administration of high doses of ibandronate increases bone mass and maintains bone quality of lumbar vertebrae in rats. Osteoporos Int 1998, 8:97–103.

    PubMed  CAS  Google Scholar 

  31. Burr DB, Forwood MR, Fyhrie DP, et al.: Bone microdamage and skeletal fragility in osteoporotic and stress fractures. J Bone Miner Res 1997, 12:6–15.

    Article  PubMed  CAS  Google Scholar 

  32. Monier-Faugere MC, Friedler RM, Bauss F, Malluche HH: A new bisphosphonate, BM 21.0955, prevents bone loss associated with cessation of ovarian function in experimental dogs. J Bone Miner Res 1993, 8:1345–1355.

    Article  PubMed  CAS  Google Scholar 

  33. Monier-Faugere MC, Geng Z, Paschalis EP, et al.: Intermittent and continuous administration of the bisphosphonate ibandronate in ovariohysterectomized beagle dogs: effects on bone morphometry and mineral properties. J Bone Miner Res 1999, 14:1768–1778.

    Article  PubMed  CAS  Google Scholar 

  34. Bauss F, Schenk RK, Hort S, et al.: New model for simulation of fracture repair in full-grown beagle dogs: model characterization and results from a long-term study with ibandronate. J Pharmacol Toxicol Methods 2004, 50:25–34.

    Article  PubMed  CAS  Google Scholar 

  35. Jerome CP, Turner CH, Lees CJ: Decreased bone mass and strength in ovariectomized cynomolgus monkeys (Macaca fascicularis). Calcif Tissue Int 1997, 60:265–270.

    Article  PubMed  CAS  Google Scholar 

  36. Brommage R: Perspectives on using nonhuman primates to understand the etiology and treatment of postmenopausal osteoporosis. J Musculoskelet Neuronal Interact 2001, 1:307–325.

    PubMed  CAS  Google Scholar 

  37. Smith SY, Recker RR, Hannan M, et al.: Intermittent intravenous administration of the bisphosphonate ibandronate prevents bone loss and maintains bone strength and quality in ovariectomized cynomolgus monkeys. Bone 2003, 32:45–55.

    Article  PubMed  CAS  Google Scholar 

  38. Muller R, Hannan M, Smith SY, Bauss F: Intermittent ibandronate preserves bone quality and bone strength in the lumbar spine after 16 months of treatment in the ovariectomized cynomolgus monkey. J Bone Miner Res 2004, 19:1787–1796.

    Article  PubMed  CAS  Google Scholar 

  39. Thiebaud D, Burckhardt P, Kriegbaum H, et al.: Three monthly intravenous injections of ibandronate in the treatment of postmenopausal osteoporosis. Am J Med 1997, 103:298–307.

    Article  PubMed  CAS  Google Scholar 

  40. Ravn P, Clemmesen B, Riis BJ, Christiansen C: The effect on bone mass and bone markers of different doses of ibandronate: a new bisphosphonate for prevention and treatment of postmenopausal osteoporosis: a 1-year, randomized, double-blind, placebo-controlled dose-finding study. Bone 1996, 19:527–533.

    Article  PubMed  CAS  Google Scholar 

  41. Riis BJ, Ise J, von Stein T, et al.: Ibandronate: a comparison of oral daily dosing versus intermittent dosing in postmenopausal osteoporosis. J Bone Miner Res 2001, 16:1871–1878.

    Article  PubMed  CAS  Google Scholar 

  42. Schimmer RC, Bauss F: Effect of daily and intermittent use of ibandronate on bone mass and bone turnover in postmenopausal osteoporosis: a review of three phase II studies. Clin Ther 2003, 25:19–34.

    Article  PubMed  CAS  Google Scholar 

  43. Chesnut CH, 3rd, Skag A, Christiansen C, et al.: Effects of oral ibandronate administered daily or intermittently on fracture risk in postmenopausal osteoporosis. J Bone Miner Res 2004, 19:1241–1249. This was the first study to demonstrate anti-fracture efficacy of a bisphosphonate, ibandronate, administered intermittently. Reductions in vertebral fracture risk of 62% and 50% were observed in patients receiving daily and intermittent ibandronate, respectively.

    Article  CAS  Google Scholar 

  44. Delmas PD, Recker RR, Chesnut CH, 3rd, et al.: Daily and intermittent oral ibandronate normalize bone turnover and provide significant reduction in vertebral fracture risk: results from the BONE study. Osteoporos Int 2004, 15:792–798.

    Article  PubMed  CAS  Google Scholar 

  45. Recker RR, Weinstein RS, Chesnut CH, 3rd, et al.: Histomorphometric evaluation of daily and intermittent oral ibandronate in women with postmenopausal osteoporosis: results from the BONE study. Osteoporos Int 2004, 15:231–237.

    Article  PubMed  CAS  Google Scholar 

  46. Hochberg MC, Greenspan S, Wasnich RD, et al.: Changes in bone density and turnover explain the reductions in incidence of nonvertebral fractures that occur during treatment with antiresorptive agents. J Clin Endocrinol Metab 2002, 87:1586–1592.

    Article  PubMed  CAS  Google Scholar 

  47. Wasnich RD, Miller PD: Antifracture efficacy of antiresorptive agents are related to changes in bone density. J Clin Endocrinol Metab 2000, 85:231–236.

    Article  PubMed  CAS  Google Scholar 

  48. Miller PD, McClung MR, Macovei L, et al.: Monthly oral ibandronate therapy in postmenopausal osteoporosis: 1-Year results from the MOBILE study. J Bone Miner Res 2005, 20:1315–1322. This study demonstrated that once-monthly dosing of ibandronate was noninferior to a once-daily treatment regimen as evidenced by similar observed increases in patient lumbar spine and hip BMD.

    Article  PubMed  CAS  Google Scholar 

  49. Recker RR, Gallagher R, MacCosbe PE: Effect of dosing frequency on bisphosphonate medication adherence in a large longitudinal cohort of women. Mayo Clin Proc 2005, 80:856–861.

    Article  PubMed  Google Scholar 

  50. Cramer J, Amonkar M, Hebborn A, Altman R: Compliance and persistence with bisphosphonate dosing regimens among women with postmenopausal osteoporosis. Curr Med Res Opin 2005, 21:1453–1460.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solomon Epstein MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Epstein, S. Ibandronate treatment for osteoporosis: Rationale, preclinical and clinical development of extended dosing regimens. Curr Osteoporos Rep 4, 14–20 (2006). https://doi.org/10.1007/s11914-006-0010-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-006-0010-9

Keywords

Navigation