Skip to main content

Advertisement

Log in

Emerging Therapeutic Targets of Neuroendocrine Prostate Cancer

  • Review
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Treatment-emergent neuroendocrine prostate cancer (NEPC) is aggressive and lethal. As androgen receptor signaling inhibitors (ARSIs) are increasingly used in earlier disease settings, treatment-emergent NEPC becomes more prevalent, and effective therapies are urgently needed. The purpose of this review was to summarize recent progress on emerging therapeutic targets of NEPC.

Recent Findings

A multitude of therapeutic targets have emerged in NEPC over recent years. These targets may represent drivers of treatment-emergent lineage plasticity or simply be overexpressed on the surface of NEPC cells. Multiple modalities have been employed to drug these targets, with promising preclinical and clinical results.

Summary

Treatment-emergent NEPC represents a distinct and clinically significant subset of castration-resistant prostate cancer (CRPC). Emerging therapeutic approaches have demonstrated encouraging efficacy and safety profiles, offering the potential to improve patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Yamada Y, Beltran H. Clinical and biological features of neuroendocrine prostate cancer. Curr Oncol Rep. 2021;23:15.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Haffner MC, Morris MJ, Ding C-KC, Sayar E, Mehra R, Robinson B et al. Framework for the pathology workup of metastatic castration-resistant prostate cancer biopsies. Clin Cancer Res [Internet]. 2024; Available from: https://doi.org/10.1158/1078-0432.CCR-24-2061

  3. Eule CJ, Hu J, Al-Saad S, Collier K, Boland P, Lewis AR, et al. Outcomes of second-line therapies in patients with metastatic de Novo and treatment-emergent neuroendocrine prostate cancer: a multi-institutional study. Clin Genitourin Cancer. 2023;21:483–90.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Aggarwal R, Huang J, Alumkal JJ, Zhang L, Feng FY, Thomas GV, et al. Clinical and genomic characterization of treatment-emergent small-cell neuroendocrine prostate Cancer: a multi-institutional prospective study. J Clin Oncol. 2018;36:2492–503.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Quintanal-Villalonga Á, Chan JM, Yu HA, Pe’er D, Sawyers CL, Sen T, et al. Lineage plasticity in cancer: a shared pathway of therapeutic resistance. Nat Rev Clin Oncol. 2020;17:360–71.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sequist LV, Waltman BA, Dias-Santagata D, Digumarthy S, Turke AB, Fidias P, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med. 2011;3:75ra26.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Rubin MA, Bristow RG, Thienger PD, Dive C, Imielinski M. Impact of lineage plasticity to and from a neuroendocrine phenotype on progression and response in prostate and lung cancers. Mol Cell. 2020;80:562–77.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Lundberg A, Zhang M, Aggarwal R, Li H, Zhang L, Foye A, et al. The genomic and Epigenomic Landscape of double-negative metastatic prostate Cancer. Cancer Res. 2023;83:2763–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Ku SY, Rosario S, Wang Y, Mu P, Seshadri M, Goodrich ZW, et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science. 2017;355:78–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Mu P, Zhang Z, Benelli M, Karthaus WR, Hoover E, Chen C-C, et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer. Science. 2017;355:84–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Zou M, Toivanen R, Mitrofanova A, Floch N, Hayati S, Sun Y, et al. Transdifferentiation as a mechanism of Treatment Resistance in a mouse model of castration-resistant prostate Cancer. Cancer Discov. 2017;7:736–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Park JW, Lee JK, Sheu KM, Wang L, Balanis NG, Nguyen K, et al. Reprogramming normal human epithelial tissues to a common, lethal neuroendocrine cancer lineage. Science. 2018;362:91–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Romero R, Chu T, González Robles TJ, Smith P, Xie Y, Kaur H et al. The neuroendocrine transition in prostate cancer is dynamic and dependent on ASCL1. Nat Cancer. 2024;1–19.

  14. Aparicio AM, Shen L, Tapia ELN, Lu J-F, Chen H-C, Zhang J, et al. Combined tumor suppressor defects characterize clinically defined aggressive variant prostate cancers. Clin Cancer Res. 2016;22:1520–30.

    Article  PubMed  CAS  Google Scholar 

  15. Corn PG, Heath EI, Zurita A, Ramesh N, Xiao L, Sei E, et al. Cabazitaxel plus carboplatin for the treatment of men with metastatic castration-resistant prostate cancers: a randomised, open-label, phase 1–2 trial. Lancet Oncol. 2019;20:1432–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Cyrta J, Augspach A, De Filippo MR, Prandi D, Thienger P, Benelli M, et al. Role of specialized composition of SWI/SNF complexes in prostate cancer lineage plasticity. Nat Commun. 2020;11:5549.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Xiao L, Parolia A, Qiao Y, Bawa P, Eyunni S, Mannan R, et al. Targeting SWI/SNF ATPases in enhancer-addicted prostate cancer. Nature. 2022;601:434–9.

    Article  PubMed  CAS  Google Scholar 

  18. Li JJ, Vasciaveo A, Karagiannis D, Sun Z, Chen X, Socciarelli F et al. NSD2 maintains lineage plasticity and castration-resistance in neuroendocrine prostate cancer. bioRxivorg. 2023;2023.07.18.549585.

  19. Parolia A, Eyunni S, Verma BK, Young E, Liu Y, Liu L et al. NSD2 is a requisite subunit of the AR/FOXA1 neo-enhanceosome in promoting prostate tumorigenesis. Nat Genet. 2024;1–12.

  20. Adams EJ, Karthaus WR, Hoover E, Liu D, Gruet A, Zhang Z, et al. FOXA1 mutations alter pioneering activity, differentiation and prostate cancer phenotypes. Nature. 2019;571:408–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Baca SC, Takeda DY, Seo J-H, Hwang J, Ku SY, Arafeh R, et al. Reprogramming of the FOXA1 cistrome in treatment-emergent neuroendocrine prostate cancer. Nat Commun. 2021;12:1979.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Han M, Li F, Zhang Y, Dai P, He J, Li Y, et al. FOXA2 drives lineage plasticity and KIT pathway activation in neuroendocrine prostate cancer. Cancer Cell. 2022;40:1306–e13238.

    Article  PubMed  CAS  Google Scholar 

  23. Nouruzi S, Namekawa T, Tabrizian N, Kobelev M, Sivak O, Scurll JM et al. ASCL1 regulates and cooperates with FOXA2 to drive terminal neuroendocrine phenotype in prostate cancer. JCI Insight [Internet]. 2024 [cited 2024 Oct 31]; Available from: https://pubmed.ncbi.nlm.nih.gov/39470735/

  24. Nouruzi S, Ganguli D, Tabrizian N, Kobelev M, Sivak O, Namekawa T, et al. ASCL1 activates neuronal stem cell-like lineage programming through remodeling of the chromatin landscape in prostate cancer. Nat Commun. 2022;13:2282.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Chen C-C, Tran W, Song K, Sugimoto T, Obusan MB, Wang L, et al. Temporal evolution reveals bifurcated lineages in aggressive neuroendocrine small cell prostate cancer trans-differentiation. Cancer Cell. 2023;41:2066–82.e9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Rodarte KE, Nir Heyman S, Guo L, Flores L, Savage TK, Villarreal J et al. Neuroendocrine differentiation in prostate cancer requires ASCL1. Cancer Res [Internet]. 2024 [cited 2024 Oct 11]; Available from: https://pubmed.ncbi.nlm.nih.gov/39264686/

  27. Varuzhanyan G, Chen C-C, Freeland J, He T, Tran W, Song K et al. PGC-1α drives small cell neuroendocrine cancer progression towards an ASCL1-expressing subtype with increased mitochondrial capacity. bioRxivorg [Internet]. 2024 [cited 2024 Oct 11]; Available from: https://pubmed.ncbi.nlm.nih.gov/38645232/

  28. Lee JK, Phillips JW, Smith BA, Park JW, Stoyanova T, McCaffrey EF, et al. N-Myc drives neuroendocrine prostate Cancer initiated from human prostate epithelial cells. Cancer Cell. 2016;29:536–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Xu P, Yang JC, Chen B, Ning S, Zhang X, Wang L, et al. Proteostasis perturbation of N-Myc leveraging HSP70 mediated protein turnover improves treatment of neuroendocrine prostate cancer. Nat Commun. 2024;15:6626.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Qian C, Yang Q, Rotinen M, Huang R, Kim H, Gallent B, et al. ONECUT2 acts as a lineage plasticity driver in adenocarcinoma as well as neuroendocrine variants of prostate cancer. Nucleic Acids Res. 2024;52:7740–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Xu Y, Vakoc CR. Targeting cancer cells with BET bromodomain inhibitors. Cold Spring Harb Perspect Med. 2017;7:a026674.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Asangani IA, Dommeti VL, Wang X, Malik R, Cieslik M, Yang R, et al. Therapeutic targeting of BET bromodomain proteins in castration-resistant prostate cancer. Nature. 2014;510:278–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Asangani IA, Wilder-Romans K, Dommeti VL, Krishnamurthy PM, Apel IJ, Escara-Wilke J, et al. BET bromodomain inhibitors enhance efficacy and disrupt resistance to AR antagonists in the treatment of prostate cancer. Mol Cancer Res. 2016;14:324–31.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Janouskova H, El Tekle G, Bellini E, Udeshi ND, Rinaldi A, Ulbricht A, et al. Opposing effects of cancer-type-specific SPOP mutants on BET protein degradation and sensitivity to BET inhibitors. Nat Med. 2017;23:1046–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Zhang P, Wang D, Zhao Y, Ren S, Gao K, Ye Z, et al. Intrinsic BET inhibitor resistance in SPOP-mutated prostate cancer is mediated by BET protein stabilization and AKT-mTORC1 activation. Nat Med. 2017;23:1055–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Dai X, Gan W, Li X, Wang S, Zhang W, Huang L, et al. Prostate cancer-associated SPOP mutations confer resistance to BET inhibitors through stabilization of BRD4. Nat Med. 2017;23:1063–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Aggarwal RR, Schweizer MT, Nanus DM, Pantuck AJ, Heath EI, Campeau E, et al. A phase Ib/IIa study of the pan-BET inhibitor ZEN-3694 in combination with enzalutamide in patients with metastatic castration-resistant prostate cancer. Clin Cancer Res. 2020;26:5338–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Aggarwal R, Starodub AN, Koh BD, Xing G, Armstrong AJ, Carducci MA. Phase 1b study of the BET inhibitor GS-5829 as monotherapy and combined with enzalutamide in patients with metastatic castration-resistant prostate cancer. Clin Cancer Res [Internet]. 2022; Available from: https://doi.org/10.1158/1078-0432.CCR-22-0175

  39. Study Details. NCT04471974 [Internet]. [cited 2024 Nov 10]. Available from: https://clinicaltrials.gov/study/NCT04471974

  40. Kim D-H, Sun D, Storck WK, Welker Leng K, Jenkins C, Coleman DJ, et al. BET bromodomain inhibition blocks an AR-Repressed, E2F1-Activated treatment-emergent neuroendocrine prostate cancer lineage plasticity program. Clin Cancer Res. 2021;27:4923–36.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Choo N, Keerthikumar S, Ramm S, Ashikari D, Teng L, Niranjan B, et al. Co-targeting BET, CBP, and p300 inhibits neuroendocrine signalling in androgen receptor-null prostate cancer. J Pathol. 2024;263:242–56.

    Article  PubMed  CAS  Google Scholar 

  42. Faivre EJ, McDaniel KF, Albert DH, Mantena SR, Plotnik JP, Wilcox D, et al. Selective inhibition of the BD2 bromodomain of BET proteins in prostate cancer. Nature. 2020;578:306–10.

    Article  PubMed  CAS  Google Scholar 

  43. Shen L, Wang B, Wang S-P, Ji S-K, Fu M-J, Wang S-W, et al. Combination therapy and dual-target inhibitors based on LSD1: New emerging tools in cancer therapy. J Med Chem. 2024;67:922–51.

    Article  PubMed  CAS  Google Scholar 

  44. Metzger E, Wissmann M, Yin N, Müller JM, Schneider R, Peters AHFM, et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature. 2005;437:436–9.

    Article  PubMed  CAS  Google Scholar 

  45. Gao S, Chen S, Han D, Wang Z, Li M, Han W, et al. Chromatin binding of FOXA1 is promoted by LSD1-mediated demethylation in prostate cancer. Nat Genet. 2020;52:1011–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Nyquist MD, Corella A, Coleman I, De Sarkar N, Kaipainen A, Ha G, et al. Combined TP53 and RB1 loss promotes prostate Cancer Resistance to a spectrum of therapeutics and confers vulnerability to replication stress. Cell Rep. 2020;31:107669.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Han W, Liu M, Han D, Li M, Toure AA, Wang Z, et al. RB1 loss in castration-resistant prostate cancer confers vulnerability to LSD1 inhibition. Oncogene. 2022;41:852–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Li M, Liu M, Han W, Wang Z, Han D, Patalano S, et al. LSD1 inhibition disrupts super-enhancer-driven oncogenic transcriptional programs in castration-resistant prostate cancer. Cancer Res. 2023;83:1684–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Mandl A, Jasmine S, Krueger T, Kumar R, Coleman IM, Dalrymple SL et al. LSD1 inhibition suppresses ASCL1 and de-represses YAP1 to drive potent activity against neuroendocrine prostate cancer. bioRxivorg [Internet]. 2024; Available from: https://pubmed.ncbi.nlm.nih.gov/38328141/

  50. Hollebecque A, Salvagni S, Plummer R, Niccoli P, Capdevila J, Curigliano G, et al. Clinical activity of CC-90011, an oral, potent, and reversible LSD1 inhibitor, in advanced malignancies. Cancer. 2022;128:3185–95.

    Article  PubMed  CAS  Google Scholar 

  51. Study Details. NCT05268666 [Internet]. [cited 2024 Nov 10]. Available from: https://clinicaltrials.gov/study/NCT05268666

  52. van Mierlo G, Veenstra GJC, Vermeulen M, Marks H. The complexity of PRC2 subcomplexes. Trends Cell Biol. 2019;29:660–71.

    Article  PubMed  Google Scholar 

  53. Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 2002;419:624–9.

    Article  PubMed  CAS  Google Scholar 

  54. Venkadakrishnan VB, Presser AG, Singh R, Booker MA, Traphagen NA, Weng K, et al. Lineage-specific canonical and non-canonical activity of EZH2 in advanced prostate cancer subtypes. Nat Commun. 2024;15:6779.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Davies A, Nouruzi S, Ganguli D, Namekawa T, Thaper D, Linder S et al. An androgen receptor switch underlies lineage infidelity in treatment-resistant prostate cancer. Nat Cell Biol [Internet]. 2021; Available from: https://doi.org/10.1038/s41556-021-00743-5

  56. Choudhury AD, Xie W, Tewari A, Miyamoto DT, Kochupurakkal B, Ellis L, et al. A phase Ia/Ib study of talazoparib in combination with tazemetostat in metastatic castration-resistant prostate cancer (mCRPC). J Clin Oncol. 2022;40:TPS195–195.

    Article  Google Scholar 

  57. Schweizer MT, Penkov K, Choudhury AD, Calvo E, Frank RC, Liu L, et al. Phase 1 trial of mevrometostat (PF-06821497), a potent and selective inhibitor of enhancer of zeste homolog 2 (EZH2), in castration-resistant prostate cancer (CRPC). J Clin Oncol. 2024;42:5061–5061.

    Article  Google Scholar 

  58. Daemen A, Yuen N, Wang A, Pankov A, Ulicna L, Chen C, et al. Abstract 6586: ORIC-944, a potent and selective allosteric PRC2 inhibitor with best-in-class properties, demonstrates combination synergy with AR pathway inhibitors in prostate cancer models. Cancer Res. 2024;84:6586–6586.

    Article  Google Scholar 

  59. Study Details. NCT05413421 [Internet]. [cited 2024 Nov 11]; Available from: https://clinicaltrials.gov/study/NCT05413421

  60. Li Y, He Y, Butler W, Xu L, Chang Y, Lei K et al. Targeting cellular heterogeneity with CXCR2 blockade for the treatment of therapy-resistant prostate cancer. Sci Transl Med [Internet]. 2019;11. Available from: https://doi.org/10.1126/scitranslmed.aax0428

  61. Guo C, Sharp A, Gurel B, Crespo M, Figueiredo I, Jain S, et al. Targeting myeloid chemotaxis to reverse prostate cancer therapy resistance. Nature. 2023;623:1053–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Study Details. NCT03177187 [Internet]. [cited 2024 Nov 11]. Available from: https://clinicaltrials.gov/study/NCT03177187

  63. Beltran H, Rickman DS, Park K, Chae SS, Sboner A, MacDonald TY, et al. Molecular characterization of neuroendocrine prostate cancer and identification of new drug targets. Cancer Discov. 2011;1:487–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Beltran H, Oromendia C, Danila DC, Montgomery B, Hoimes C, Szmulewitz RZ, et al. A phase II trial of the Aurora kinase A inhibitor Alisertib for patients with castration-resistant and neuroendocrine prostate Cancer: efficacy and biomarkers. Clin Cancer Res. 2019;25:43–51.

    Article  PubMed  CAS  Google Scholar 

  65. Bluemn EG, Coleman IM, Lucas JM, Coleman RT, Hernandez-Lopez S, Tharakan R, et al. Androgen receptor pathway-independent prostate Cancer is sustained through FGF signaling. Cancer Cell. 2017;32:474–e4896.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Chan JM, Zaidi S, Love JR, Zhao JL, Setty M, Wadosky KM, et al. Lineage plasticity in prostate cancer depends on JAK/STAT inflammatory signaling. Science. 2022;377:1180–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Hanahan D. Hallmarks of Cancer: New dimensions. Cancer Discov. 2022;12:31–46.

    Article  PubMed  CAS  Google Scholar 

  68. Loh J-J, Ma S. Hallmarks of cancer stemness. Cell Stem Cell. 2024;31:617–39.

    Article  PubMed  CAS  Google Scholar 

  69. Motzer R, Alekseev B, Rha S-Y, Porta C, Eto M, Powles T, et al. Lenvatinib plus Pembrolizumab or Everolimus for Advanced Renal Cell Carcinoma. N Engl J Med. 2021;384:1289–300.

    Article  PubMed  CAS  Google Scholar 

  70. Makker V, Colombo N, Casado Herráez A, Santin AD, Colomba E, Miller DS, et al. Lenvatinib plus Pembrolizumab for Advanced Endometrial Cancer. N Engl J Med. 2022;386:437–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Finn RS, Qin S, Ikeda M, Galle PR, Ducreux M, Kim T-Y, et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N Engl J Med. 2020;382:1894–905.

    Article  PubMed  CAS  Google Scholar 

  72. Kramer G, Shore ND, Joshua AM, Li XT, Poehlein CH, Schloss C, et al. KEYNOTE-365 cohorts E and F: phase 1b/2 study of pembrolizumab + lenvatinib combination therapy in patients with adenocarcinoma metastatic castration-resistant prostate cancer (mCRPC) or treatment-emergent neuroendocrine mCRPC (t-NE). J Clin Oncol. 2022;40:TPS215–215.

    Article  Google Scholar 

  73. Augustin M, Laguerre B, Baldini C, Zedan AH, Gonzalez-Billalabeitia E, Fong PCC, et al. Pembrolizumab (pembro) plus lenvatinib (lenva) in patients (pts) with docetaxel-pretreated, metastatic castration-resistant prostate cancer (mCRPC): KEYNOTE-365 cohort E. J Clin Oncol. 2024;42:148–148.

    Article  Google Scholar 

  74. Agarwal N, Azad A, Carles J, Matsubara N, Oudard S, Saad F, et al. CONTACT-2: phase 3 study of cabozantinib (C) plus atezolizumab (A) vs second novel hormonal therapy (NHT) in patients (pts) with metastatic castration-resistant prostate cancer (mCRPC). J Clin Orthod. 2024;42:18–18.

    Article  Google Scholar 

  75. Zaidi S, Park J, Chan JM, Roudier MP, Zhao JL, Gopalan A, et al. Single-cell analysis of treatment-resistant prostate cancer: implications of cell state changes for cell surface antigen-targeted therapies. Proc Natl Acad Sci U S A. 2024;121:e2322203121.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Ajkunic A, Sayar E, Roudier MP, Patel RA, Coleman IM, De Sarkar N, et al. Assessment of TROP2, CEACAM5 and DLL3 in metastatic prostate cancer: expression landscape and molecular correlates. NPJ Precis Oncol. 2024;8:104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Pulido R, López JI, Nunes-Xavier CE. B7-H3: a robust target for immunotherapy in prostate cancer. Trends Cancer. 2024;10:584–7.

    Article  PubMed  CAS  Google Scholar 

  78. Guo C, Figueiredo I, Gurel B, Neeb A, Seed G, Crespo M, et al. B7-H3 as a therapeutic target in advanced prostate Cancer. Eur Urol. 2023;83:224–38.

    Article  PubMed  CAS  Google Scholar 

  79. Yi KH, Chen L. Fine tuning the immune response through B7-H3 and B7-H4. Immunol Rev. 2009;229:145–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Shi W, Wang Y, Zhao Y, Kim JJ, Li H, Meng C, et al. Immune checkpoint B7-H3 is a therapeutic vulnerability in prostate cancer harboring PTEN and TP53 deficiencies. Sci Transl Med. 2023;15:eadf6724.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Yamada Y, Venkadakrishnan VB, Mizuno K, Bakht M, Ku S-Y, Garcia MM, et al. Targeting DNA methylation and B7-H3 in RB1-deficient and neuroendocrine prostate cancer. Sci Transl Med. 2023;15:eadf6732.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Shenderov E, De Marzo AM, Lotan TL, Wang H, Chan S, Lim SJ, et al. Neoadjuvant enoblituzumab in localized prostate cancer: a single-arm, phase 2 trial. Nat Med. 2023;29:888–97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Riley-Vargas RC, Gill DB, Kemper C, Liszewski MK, Atkinson JP. CD46: expanding beyond complement regulation. Trends Immunol. 2004;25:496–503.

    Article  PubMed  CAS  Google Scholar 

  84. Su Y, Liu Y, Behrens CR, Bidlingmaier S, Lee N-K, Aggarwal R et al. Targeting CD46 for both adenocarcinoma and neuroendocrine prostate cancer. JCI Insight [Internet]. 2018;3. Available from: https://doi.org/10.1172/jci.insight.121497

  85. Shakhnazaryan N, Curry N, Rastogi M, Avins D, Pandey S, de Kouchkovsky I, et al. A phase 1b dose escalation study of FOR46, a novel antibody-drug conjugate targeting a tumor-specific epitope of CD46, in combination with enzalutamide (Enza) in patients with metastatic castration resistant prostate cancer (mCRPC). J Clin Oncol. 2024;42:5066–5066.

    Article  Google Scholar 

  86. Bidkar AP, Wang S, Bobba KN, Chan E, Bidlingmaier S, Egusa EA, et al. Treatment of prostate cancer with CD46-targeted 225Ac alpha particle radioimmunotherapy. Clin Cancer Res. 2023;29:1916–28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Wang S, Li J, Hua J, Su Y, Beckford-Vera DR, Zhao W, et al. Molecular imaging of prostate Cancer targeting CD46 using ImmunoPET. Clin Cancer Res. 2021;27:1305–15.

    Article  PubMed  CAS  Google Scholar 

  88. Study Details. NCT05245006 [Internet]. [cited 2024 Nov 10]. Available from: https://clinicaltrials.gov/study/NCT05245006

  89. Blumenthal RD, Hansen HJ, Goldenberg DM. Inhibition of adhesion, invasion, and metastasis by antibodies targeting CEACAM6 (NCA-90) and CEACAM5 (Carcinoembryonic Antigen). Cancer Res. 2005;65:8809–17.

    Article  PubMed  CAS  Google Scholar 

  90. Lee JK, Bangayan NJ, Chai T, Smith BA, Pariva TE, Yun S, et al. Systemic surfaceome profiling identifies target antigens for immune-based therapy in subtypes of advanced prostate cancer. Proc Natl Acad Sci U S A. 2018;115:E4473–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. DeLucia DC, Cardillo TM, Ang L, Labrecque MP, Zhang A, Hopkins JE, et al. Regulation of CEACAM5 and therapeutic efficacy of an anti-CEACAM5–SN38 antibody–drug conjugate in neuroendocrine prostate cancer. Clin Cancer Res. 2021;27:759–74.

    Article  PubMed  CAS  Google Scholar 

  92. Study Details. NCT05204147 [Internet]. [cited 2024 Nov 10]; Available from: https://clinicaltrials.gov/study/NCT05204147

  93. Imberti C, De Gregorio R, Korsen JA, Hoang TT, Khitrov S, Kalidindi T, et al. CEACAM5-targeted immuno-PET in androgen receptor-negative prostate cancer. J Nucl Med. 2024;65:1043–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Kusumi K, Sun ES, Kerrebrock AW, Bronson RT, Chi DC, Bulotsky MS, et al. The mouse pudgy mutation disrupts Delta homologue Dll3 and initiation of early somite boundaries. Nat Genet. 1998;19:274–8.

    Article  PubMed  CAS  Google Scholar 

  95. Saunders LR, Bankovich AJ, Anderson WC, Aujay MA, Bheddah S, Black K, et al. A DLL3-targeted antibody-drug conjugate eradicates high-grade pulmonary neuroendocrine tumor-initiating cells in vivo. Sci Transl Med. 2015;7:302ra136.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Puca L, Gavyert K, Sailer V, Conteduca V, Dardenne E, Sigouros M et al. Delta-like protein 3 expression and therapeutic targeting in neuroendocrine prostate cancer. Sci Transl Med [Internet]. 2019;11. Available from: https://doi.org/10.1126/scitranslmed.aav0891

  97. Ku S-Y, Wang Y, Garcia MM, Yamada Y, Mizuno K, Long MD et al. Notch signaling suppresses neuroendocrine differentiation and alters the immune microenvironment in advanced prostate cancer. J Clin Invest [Internet]. 2024 [cited 2024 Oct 11];134. Available from: https://pubmed.ncbi.nlm.nih.gov/39024561/

  98. Mansfield AS, Hong DS, Hann CL, Farago AF, Beltran H, Waqar SN, et al. A phase I/II study of rovalpituzumab tesirine in delta-like 3-expressing advanced solid tumors. NPJ Precis Oncol. 2021;5:74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Rudin CM, Pietanza MC, Bauer TM, Ready N, Morgensztern D, Glisson BS, et al. Rovalpituzumab tesirine, a DLL3-targeted antibody-drug conjugate, in recurrent small-cell lung cancer: a first-in-human, first-in-class, open-label, phase 1 study. Lancet Oncol. 2017;18:42–51.

    Article  PubMed  CAS  Google Scholar 

  100. Blackhall F, Jao K, Greillier L, Cho BC, Penkov K, Reguart N, et al. Efficacy and safety of rovalpituzumab tesirine compared with topotecan as second-line therapy in DLL3-high SCLC: results from the phase 3 TAHOE study. J Thorac Oncol. 2021;16:1547–58.

    Article  PubMed  CAS  Google Scholar 

  101. Johnson ML, Zvirbule Z, Laktionov K, Helland A, Cho BC, Gutierrez V, et al. Rovalpituzumab tesirine as a maintenance therapy after first-line platinum-based chemotherapy in patients with extensive-stage-SCLC: results from the phase 3 MERU study. J Thorac Oncol. 2021;16:1570–81.

    Article  PubMed  CAS  Google Scholar 

  102. Giffin MJ, Cooke K, Lobenhofer EK, Estrada J, Zhan J, Deegen P, et al. AMG 757, a half-life extended, DLL3-Targeted bispecific T-Cell engager, shows high potency and sensitivity in Preclinical models of Small-Cell Lung Cancer. Clin Cancer Res. 2021;27:1526–37.

    Article  PubMed  CAS  Google Scholar 

  103. Paz-Ares L, Champiat S, Lai WV, Izumi H, Govindan R, Boyer M, et al. Tarlatamab, a first-in-class DLL3-targeted bispecific T-cell engager, in recurrent small-cell lung cancer: an open-label, phase I study. J Clin Oncol. 2023;41:2893–903.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Ahn M-J, Cho BC, Felip E, Korantzis I, Ohashi K, Majem M et al. Tarlatamab for patients with previously treated small-cell lung cancer. N Engl J Med [Internet]. 2023; Available from: https://doi.org/10.1056/NEJMoa2307980

  105. Dhillon S, Tarlatamab. First approval. Drugs. 2024;84:995–1003.

  106. Aggarwal RR, Rottey S, Bernard-Tessier A, Mellado-Gonzalez B, Kosaka T, Stadler WM, et al. Phase 1b study of tarlatamab in de novo or treatment-emergent neuroendocrine prostate cancer (NEPC). J Clin Oncol. 2024;42:5012–5012.

    Article  Google Scholar 

  107. Chou J, Egusa EA, Wang S, Badura ML, Lee F, Bidkar AP, et al. Immunotherapeutic targeting and PET imaging of DLL3 in small-cell neuroendocrine prostate Cancer. Cancer Res. 2023;83:301–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Korsen JA, Kalidindi TM, Khitrov S, Samuels ZV, Chakraborty G, Gutierrez JA et al. Molecular imaging of neuroendocrine prostate Cancer by targeting delta-like ligand 3. J Nucl Med [Internet]. 2022; Available from: https://doi.org/10.2967/jnumed.121.263221

  109. Tendler S, Dunphy MP, Agee M, O’Donoghue J, Aly RG, Choudhury NJ et al. Imaging with [89Zr]Zr-DFO-SC16.56 anti-DLL3 antibody in patients with high-grade neuroendocrine tumours of the lung and prostate: a phase 1/2, first-in-human trial. Lancet Oncol [Internet]. 2024; Available from: https://doi.org/10.1016/S1470-2045(24)00249-3

  110. Korsen JA, Gutierrez JA, Tully KM, Carter LM, Samuels ZV, Khitrov S, et al. Delta-like ligand 3-targeted radioimmunotherapy for neuroendocrine prostate cancer. Proc Natl Acad Sci U S A. 2022;119:e2203820119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Study Details. NCT04471727 [Internet]. [cited 2024 Nov 10]; Available from: https://clinicaltrials.gov/study/NCT04471727

  112. Study Details. NCT05652686 [Internet]. [cited 2024 Nov 10]; Available from: https://clinicaltrials.gov/study/NCT05652686

  113. Butler W, Xu L, Zhou Y, Cheng Q, Hauck JS, He Y, et al. Oncofetal protein glypican-3 is a biomarker and critical regulator of function for neuroendocrine cells in prostate cancer. J Pathol. 2023;260:43–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Couzinet A, Suzuki T, Nakatsura T. Progress and challenges in glypican-3 targeting for hepatocellular carcinoma therapy. Expert Opin Ther Targets. 2024;1–15.

Download references

Funding

XZ received research funding from Conquer Cancer, the ASCO Foundation, the Prostate Cancer Foundation (PCF), and the Department of Defense (DOD) outside of this work. CKCD received research funding from the PCF outside of this work. RRA received research funding from the PCF, the DOD, and the National Cancer Institute outside of this work.

Author information

Authors and Affiliations

Authors

Contributions

X.Z. wrote the main manuscript text and prepared the figure and the table. R.R.A. oversaw the writing. All authors reviewed and edited the manuscript.

Corresponding author

Correspondence to Rahul R. Aggarwal.

Ethics declarations

Human and Animal Rights

All reported studies with human subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki Declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Competing Interests

RRA is an advisor/consultant for AstraZeneca, Bayer, Bioexcel Therapeutics, Boxer Capital, Clovis, Curio, Dendreon, Exelixis, Janssen, Lumanity, Merck, Novartis, Pfizer, Prostate Cancer Clinical Trials Consortium, and Tersara Consulting; and received institutional research grants/funding from Amgen, AstraZeneca, Janssen, Merck, Novartis, and Zenith Epigenetics.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, X., Ding, CK.C. & Aggarwal, R.R. Emerging Therapeutic Targets of Neuroendocrine Prostate Cancer. Curr Oncol Rep 27, 362–374 (2025). https://doi.org/10.1007/s11912-025-01643-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-025-01643-9

Keywords