Skip to main content

Advertisement

Log in

Cardiovascular Toxicity and Risk Mitigation with Lung Cancer Treatment

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Patients with lung cancer often have concomitant cardiovascular comorbidities and receive potentially cardiotoxic therapies. As oncologic outcomes improve, the relative impact of cardiovascular disease on lung cancer survivors is expected to increase. This review summarizes cardiovascular toxicities observed after treatment for lung cancer, as well as recommended risk mitigation strategies.

Recent Findings

A variety of cardiovascular events may be observed after surgery, radiation therapy (RT), and systemic therapy. The risk of cardiovascular events after radiation therapy (RT) is higher than previously appreciated (23–32%), and RT dose to the heart is a modifiable risk factor. Targeted agents and immune checkpoint inhibitors have been associated with cardiovascular toxicities distinct from those of cytotoxic agents; these are rare but can be severe and require prompt intervention.

Summary

Optimization of cardiovascular risk factors is important at all phases of cancer therapy and survivorship. Recommended practices for baseline risk assessment, preventive measures, and appropriate monitoring are discussed herein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •Of importance ••Of major importance

  1. World Cancer Research Fund International: https://www.wcrf.org/cancer-trends/lung-cancer-statistics/.

  2. World Health Organization Fact Sheets: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).

  3. Siegel RL, Miller KD, Fuchs HE, Jemal A. 2022 Cancer statistics. CA: Cancer J Clin. 2022;72(1):7–33.

    PubMed  Google Scholar 

  4. Tammemagi CM, Neslund-Dudas C, Simoff M, Kvale P. Impact of comorbidity on lung cancer survival. Int J Cancer. 2003;103(6):792–802.

    Article  CAS  PubMed  Google Scholar 

  5. Islam KMM, Jiang X, Anggondowati T, Lin G, Ganti AK. Comorbidity and survival in lung cancer patients. Cancer Epidemiol Biomark Prev. 2015;24(7):1079–85.

    Article  Google Scholar 

  6. Kocher F, Fiegl M, Mian M, Hilbe W. Cardiovascular comorbidities and events in NSCLC: often underestimated but worth considering. Clin Lung Cancer. 2015;16(4):305–12.

    Article  PubMed  Google Scholar 

  7. Strongman H, Gadd S, Matthews AA, Mansfield KE, Stanway S, Lyon AR, et al. Does cardiovascular mortality overtake cancer mortality during cancer survivorship? JACC: CardioOncol. 2022;4(1):113–23.

    PubMed  Google Scholar 

  8. Imperatori A, Mariscalco G, Riganti G, Rotolo N, Conti V, Dominioni L. Atrial fibrillation after pulmonary lobectomy for lung cancer affects long-term survival in a prospective single-center study. J Cardiothorac Surg. 2012;7(1):4.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Onaitis M, D’Amico T, Zhao Y, O’Brien S, Harpole D. Risk factors for atrial fibrillation after lung cancer surgery: analysis of the Society of Thoracic Surgeons general thoracic surgery database. Ann Thorac Surg. 2010;90(2):368–74.

    Article  PubMed  Google Scholar 

  10. Cardinale D, Sandri MT, Colombo A, Salvatici M, Tedeschi I, Bacchiani G, et al. Prevention of atrial fibrillation in high-risk patients undergoing lung cancer surgery: the PRESAGE trial. Ann Surg. 2016;264(2):244–51.

    Article  PubMed  Google Scholar 

  11. Roselli EE, Murthy SC, Rice TW, Houghtaling PL, Pierce CD, Karchmer DP, et al. Atrial fibrillation complicating lung cancer resection. J Thorac Cardiovasc Surg. 2005;130(2):438.e1-.e9.

    Article  Google Scholar 

  12. Xin Y, Hida Y, Kaga K, Iimura Y, Shiina N, Ohtaka K, et al. Left lobectomy might be a risk factor for atrial fibrillation following pulmonary lobectomy. Eur J Cardiothorac Surg. 2013;45(2):247–50.

    Article  PubMed  Google Scholar 

  13. Fabiani I, Colombo A, Bacchiani G, Cipolla CM, Cardinale DM. Incidence, management, prevention and outcome of post-operative atrial fibrillation in thoracic surgical oncology. J Clin Med. 2019;9(1):37.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yun JP, Choi E-K, Han K-D, Park SH, Jung J-H, Park SH, et al. Risk of atrial fibrillation according to cancer type. JACC: CardioOncol. 2021;3(2):221–32.

    PubMed  Google Scholar 

  15. Leiva O, Abdelhameid D, Connors JM, Cannon CP, Bhatt DL. Common pathophysiology in cancer, atrial fibrillation, atherosclerosis, and thrombosis. JACC: CardioOncol. 2021;3(5):619–34.

    PubMed  Google Scholar 

  16. Karamichalis JM, Putnam JB Jr, Lambright ES. Cardiovascular complications after lung surgery. Thorac Surg Clin. 2006;16(3):253–60.

    Article  PubMed  Google Scholar 

  17. Sellers D, Srinivas C, Djaiani G. Cardiovascular complications after non-cardiac surgery. Anaesthesia. 2018;73:34–42.

    Article  PubMed  Google Scholar 

  18. Alturki A, Marafi M, Proietti R, Cardinale D, Blackwell R, Dorian P, et al. Major adverse cardiovascular events associated with postoperative atrial fibrillation after noncardiac surgery. Circulation: Arrhythmia and Electrophysiology. 2020;13(1):13:e007437.

  19. Sazgary L, Puelacher C, Lurati Buse G, Glarner N, Lampart A, Bolliger D, et al. Incidence of major adverse cardiac events following non-cardiac surgery. Eur Heart J Acute Cardiovasc Care. 2020;10(5):550–8.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Smilowitz NR, Gupta N, Ramakrishna H, Guo Y, Berger JS, Bangalore S. Perioperative major adverse cardiovascular and cerebrovascular events associated with noncardiac surgery. JAMA Cardiol. 2017;2(2):181.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Devereaux PJ, Biccard BM, Sigamani A, Xavier D, Chan MTV, Srinathan SK, et al. Association of postoperative high-sensitivity troponin levels with myocardial injury and 30-day mortality among patients undergoing noncardiac surgery. JAMA. 2017;317(16):1642.

    Article  CAS  PubMed  Google Scholar 

  22. Stoltzfus KC, Zhang Y, Sturgeon K, Sinoway LI, Trifiletti DM, Chinchilli VM, et al. Fatal heart disease among cancer patients. Nature Communications. 2020;11(1). Quantifies risk of fatal heart disease among a variety of cancer patients, including timeframe after diagnosis.

  23. Paterson DI, Wiebe N, Cheung WY, Mackey JR, Pituskin E, Reiman A, et al. Incident cardiovascular disease among adults with cancer. JACC: CardioOncol. 2022;4(1):85–94.

    PubMed  Google Scholar 

  24. Wu Y-L, Tsuboi M, He J, John T, Grohe C, Majem M, et al. Osimertinib in resected <i>egfr</i>-mutated non–small-cell lung cancer. N Engl J Med. 2020;383(18):1711–23.

    Article  CAS  PubMed  Google Scholar 

  25. Felip E, Altorki N, Zhou C, Csőszi T, Vynnychenko I, Goloborodko O, et al. Adjuvant atezolizumab after adjuvant chemotherapy in resected stage IB–IIIA non-small-cell lung cancer (IMpower010): a randomised, multicentre, open-label, phase 3 trial. Lancet. 2021;398(10308):1344–57.

    Article  CAS  PubMed  Google Scholar 

  26. Forde PM, Spicer J, Lu S, Provencio M, Mitsudomi T, Awad MM, et al. Neoadjuvant nivolumab plus chemotherapy in resectable lung cancer. N Engl J Med. 2022;386(21):1973–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Darby SC, Ewertz M, McGale P, Bennet AM, Blom-Goldman U, Brønnum D, et al. Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med. 2013;368(11):987–98.

    Article  CAS  PubMed  Google Scholar 

  28. Van Nimwegen FA, Schaapveld M, Cutter DJ, Janus CPM, Krol ADG, Hauptmann M, et al. Radiation dose-response relationship for risk of coronary heart disease in survivors of hodgkin lymphoma. J Clin Oncol. 2016;34(3):235–43.

    Article  PubMed  Google Scholar 

  29. Bradley JD, Hu C, Komaki RR, Masters GA, Blumenschein GR, Schild SE, et al. Long-term results of NRG oncology RTOG 0617: standard- versus high-dose chemoradiotherapy with or without cetuximab for unresectable stage III non–small-cell lung cancer. J Clin Oncol. 2020;38(7):706–14.

    Article  CAS  PubMed  Google Scholar 

  30. Bradley JD, Paulus R, Komaki R, Masters G, Blumenschein G, Schild S, et al. Standard-dose versus high-dose conformal radiotherapy with concurrent and consolidation carboplatin plus paclitaxel with or without cetuximab for patients with stage IIIA or IIIB non-small-cell lung cancer (RTOG 0617): a randomised, two-by-two factorial p. Lancet Oncol. 2015;16(2):187–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bergom C, Bradley JA, Ng AK, Samson P, Robinson C, Lopez-Mattei J, et al. Past, present, and future of radiation-induced cardiotoxicity: refinements in targeting, surveillance, and risk stratification. JACC: CardioOncol. 2021;3(3):343–59.

    PubMed  Google Scholar 

  32. Atkins KM, Rawal B, Chaunzwa TL, Lamba N, Bitterman DS, Williams CL, et al. Cardiac radiation dose, cardiac disease, and mortality in patients with lung cancer. J Am Coll Cardiol. 2019;73(23):2976–87. Largest published series quantifying the risk of cardiac events after RT for locally advanced NSCLC.

    Article  PubMed  Google Scholar 

  33. Dess RT, Sun Y, Matuszak MM, Sun G, Soni PD, Bazzi L, et al. Cardiac events after radiation therapy: combined analysis of prospective multicenter trials for locally advanced non–small-cell lung cancer. J Clin Oncol. 2017;35(13):1395–402.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wang K, Eblan MJ, Deal AM, Lipner M, Zagar TM, Wang Y, et al. Cardiac toxicity after radiotherapy for stage III non–small-cell lung cancer: pooled analysis of dose-escalation trials delivering 70 to 90 Gy. J Clin Oncol. 2017;35(13):1387–94.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Yegya-Raman N, Wang K, Kim S, Reyhan M, Deek MP, Sayan M, et al. Dosimetric predictors of symptomatic cardiac events after conventional-dose chemoradiation therapy for inoperable NSCLC. J Thorac Oncol. 2018;13(10):1508–18.

    Article  PubMed  Google Scholar 

  36. Stam B, Peulen H, Guckenberger M, Mantel F, Hope A, Werner-Wasik M, et al. Dose to heart substructures is associated with non-cancer death after SBRT in stage I-II NSCLC patients. Radiother Oncol. 2017;123(3):370–5.

    Article  PubMed  Google Scholar 

  37. Kim KH, Oh J, Yang G, Lee J, Kim J, Gwak SY, et al. Association of sinoatrial node radiation dose with atrial fibrillation and mortality in patients with lung cancer. JAMA Oncol. 2022;8(11):1624–34.

  38. Atkins KM, Chaunzwa TL, Lamba N, Bitterman DS, Rawal B, Bredfeldt J, et al. Association of left anterior descending coronary artery radiation dose with major adverse cardiac events and mortality in patients with non–small cell lung cancer. JAMA Oncol. 2021;7(2):206.

    Article  PubMed  Google Scholar 

  39. McWilliam A, Kennedy J, Hodgson C, Vasquez Osorio E, Faivre-Finn C, van Herk M. Radiation dose to heart base linked with poorer survival in lung cancer patients. Eur J Cancer. 2017;85:106–13.

    Article  PubMed  Google Scholar 

  40. McWilliam A, Khalifa J, Vasquez Osorio E, Banfill K, Abravan A, Faivre-Finn C, et al. Novel methodology to investigate the effect of radiation dose to heart substructures on overall survival. Int J Radiat Oncol*Biol*Phys. 2020;108(4):1073–81.

    Article  PubMed  Google Scholar 

  41. Thor M, Deasy JO, Hu C, Gore E, Bar-Ad V, Robinson C, et al. Modeling the impact of cardiopulmonary irradiation on overall survival in NRG oncology trial RTOG 0617. Clin Cancer Res. 2020;26(17):4643–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang K, Pearlstein KA, Patchett ND, Deal AM, Mavroidis P, Jensen BC, et al. Heart dosimetric analysis of three types of cardiac toxicity in patients treated on dose-escalation trials for Stage III non-small-cell lung cancer. Radiother Oncol. 2017;125(2):293–300.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Atkins KM, Bitterman DS, Chaunzwa TL, Kozono DE, Baldini EH, Aerts HJWL, et al. Mean heart dose is an inadequate surrogate for left anterior descending coronary artery dose and the risk of major adverse cardiac events in lung cancer radiation therapy. Int J Radiat Oncol*Biol*Phys. 2021;110(5):1473–9.

    Article  PubMed  Google Scholar 

  44. Aupérin A, Le Péchoux C, Rolland E, Curran WJ, Furuse K, Fournel P, et al. Meta-analysis of concomitant versus sequential radiochemotherapy in locally advanced non-small-cell lung cancer. J Clin Oncol. 2010;28(13):2181–90.

    Article  PubMed  Google Scholar 

  45. Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, et al. Overall survival with durvalumab after chemoradiotherapy in stage III NSCLC. N Engl J Med. 2018;379(24):2342–50.

    Article  CAS  PubMed  Google Scholar 

  46. Bradley JD, Nishio M, Okamoto I, Newton MD, Trani L, Shire NJ, et al. PACIFIC-2: Phase 3 study of concurrent durvalumab and platinum-based chemoradiotherapy in patients with unresectable, stage III NSCLC. J Clin Oncol. 2019;37(15_suppl):TPS8573-TPS.

    Article  Google Scholar 

  47. Du S, Zhou L, Alexander GS, Park K, Yang L, Wang N, et al. PD-1 modulates radiation-induced cardiac toxicity through cytotoxic t lymphocytes. J Thorac Oncol. 2018;13(4):510–20.

    Article  CAS  PubMed  Google Scholar 

  48. Zaborowska-Szmit M, Krzakowski M, Kowalski DM, Szmit S. Cardiovascular complications of systemic therapy in non-small-cell lung cancer. J Clin Med. 2020;9(5):1268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Moore RA, Adel N, Riedel E, Bhutani M, Feldman DR, Tabbara NE, et al. High incidence of thromboembolic events in patients treated with cisplatin-based chemotherapy: a large retrospective analysis. J Clin Oncol. 2011;29(25):3466–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sandler AB, Nemunaitis J, Denham C, Von Pawel J, Cormier Y, Gatzemeier U, et al. Phase III trial of gemcitabine plus cisplatin versus cisplatin alone in patients with locally advanced or metastatic non–small-cell lung cancer. J Clin Oncol. 2000;18(1):122-.

    Article  CAS  PubMed  Google Scholar 

  51. Arbuck SG, Strauss H, Rowinsky E, Christian M, Suffness M, Adams J, et al. A reassessment of cardiac toxicity associated with Taxol. J Natl Cancer Inst Monogr. 1993;15:117–30.

    Google Scholar 

  52. Pande A, Lombardo J, Spangenthal E, Javle M. Hypertension secondary to anti-angiogenic therapy: experience with bevacizumab. Anticancer Res. 2007;27(5B):3465.

    CAS  PubMed  Google Scholar 

  53. Sandler AB, Johnson DH, Herbst RS. Anti-vascular endothelial growth factor monoclonals in non-small cell lung cancer. Clin Cancer Res. 2009;10(12):4258s-s4262.

    Article  Google Scholar 

  54. Choueiri TK, Mayer EL, Je Y, Rosenberg JE, Nguyen PL, Azzi GR, et al. Congestive heart failure risk in patients with breast cancer treated with bevacizumab. J Clin Oncol. 2011;29(6):632–8.

    Article  CAS  PubMed  Google Scholar 

  55. Scappaticci FA, Skillings JR, Holden SN, Gerber H-P, Miller K, Kabbinavar F, et al. Arterial thromboembolic events in patients with metastatic carcinoma treated with chemotherapy and bevacizumab. JNCI: J Natl Cancer Inst. 2007;99(16):1232–9.

    Article  PubMed  Google Scholar 

  56. Dahlberg SE, Sandler AB, Brahmer JR, Schiller JH, Johnson DH. Clinical course of advanced non–small-cell lung cancer patients experiencing hypertension during treatment with bevacizumab in combination with carboplatin and paclitaxel on ECOG 4599. J Clin Oncol. 2010;28(6):949–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rao VU, Reeves DJ, Chugh AR, O’Quinn R, Fradley MG, Raghavendra M, et al. Clinical approach to cardiovascular toxicity of oral antineoplastic agents. J Am Coll Cardiol. 2021;77(21):2693–716. Summarizes cardiovascular toxicity of oral systemic agents, as well as recommended cardiac monitoring at baseline and during treatment.

    Article  CAS  PubMed  Google Scholar 

  58. Anand K, Ensor J, Trachtenberg B, Bernicker EH. Osimertinib-induced cardiotoxicity: a retrospective review of the FDA adverse events reporting system (FAERS). JACC: CardioOncology. 2019;1(2):172–8. Large series on osimertinib-induced cardiotoxicity.

  59. Ewer MS, Tekumalla SH, Walding A, Atuah KN. Cardiac safety of osimertinib: a review of data. J Clin Oncol. 2021;39(4):328–37.

    Article  CAS  PubMed  Google Scholar 

  60. Tartarone A, Gallucci G, Lazzari C, Lerose R, Lombardi L, Aieta M. Crizotinib-induced cardiotoxicity: the importance of a proactive monitoring and management. Future Oncol. 2015;11(14):2043–8.

    Article  CAS  PubMed  Google Scholar 

  61. Morcos PN, Bogman K, Hubeaux S, Sturm-Pellanda C, Ruf T, Bordogna W, et al. Effect of alectinib on cardiac electrophysiology: results from intensive electrocardiogram monitoring from the pivotal phase II NP28761 and NP28673 studies. Cancer Chemother Pharmacol. 2017;79(3):559–68.

    Article  CAS  PubMed  Google Scholar 

  62. Gettinger SN, Bazhenova LA, Langer CJ, Salgia R, Gold KA, Rosell R, et al. Activity and safety of brigatinib in ALK-rearranged non-small-cell lung cancer and other malignancies: a single-arm, open-label, phase 1/2 trial. Lancet Oncol. 2016;17(12):1683–96.

    Article  CAS  PubMed  Google Scholar 

  63. Escudier M, Cautela J, Malissen N, Ancedy Y, Orabona M, Pinto J, et al. Clinical features, management, and outcomes of immune checkpoint inhibitor–related cardiotoxicity. Circulation. 2017;136(21):2085–7.

    Article  PubMed  Google Scholar 

  64. Drobni ZD, Alvi RM, Taron J, Zafar A, Murphy SP, Rambarat PK, et al. Association between immune checkpoint inhibitors with cardiovascular events and atherosclerotic plaque. Circulation. 2020;142(24):2299–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Salem J-E, Manouchehri A, Moey M, Lebrun-Vignes B, Bastarache L, Pariente A, et al. Cardiovascular toxicities associated with immune checkpoint inhibitors: an observational, retrospective, pharmacovigilance study. Lancet Oncol. 2018;19(12):1579–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. D’Souza M, Nielsen D, Svane IM, Iversen K, Rasmussen PV, Madelaire C, et al. The risk of cardiac events in patients receiving immune checkpoint inhibitors: a nationwide Danish study. Eur Heart J. 2021;42(16):1621–31.

    Article  PubMed  Google Scholar 

  67. Thuny F, Naidoo J, Neilan TG. Cardiovascular complications of immune checkpoint inhibitors for cancer. Eur Heart J. 2022;43(42):4458–68.

  68. Zhang L, Reynolds KL, Lyon AR, Palaskas N, Neilan TG. The evolving immunotherapy landscape and the epidemiology, diagnosis, and management of cardiotoxicity. JACC: CardioOncology. 2021;3(1):35–47. Important review on potential cardiotoxic effects of immunotherapy.

  69. Rubio-Infante N, Ramírez-Flores YA, Castillo EC, Lozano O, García-Rivas G, Torre-Amione G. Cardiotoxicity associated with immune checkpoint inhibitor therapy: a meta-analysis. Eur J Heart Fail. 2021;23(10):1739–47. Important meta-analysis on immune checkpoint inhibitor-associated cardiotoxicity.

    Article  CAS  PubMed  Google Scholar 

  70. Laenens D, Yu Y, Santens B, Jacobs J, Beuselinck B, Bechter O, et al. Incidence of cardiovascular events in patients treated with immune checkpoint inhibitors. J Clin Oncol. 2022;40(29):3430–38.

  71. Mahmood SS, Fradley MG, Cohen JV, Nohria A, Reynolds KL, Heinzerling LM, et al. Myocarditis in patients treated with immune checkpoint inhibitors. J Am Coll Cardiol. 2018;71(16):1755–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Waliany S, Neal JW, Reddy S, Wakelee H, Shah SA, Srinivas S, et al. Myocarditis surveillance with high-sensitivity troponin i during cancer treatment with immune checkpoint inhibitors. JACC CardioOncol. 2021;3(1):137–9.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Gong J, Drobni ZD, Zafar A, Quinaglia T, Hartmann S, Gilman HK, et al. Pericardial disease in patients treated with immune checkpoint inhibitors. J Immunother Cancer. 2021;9(6):e002771.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Martín García A, Mitroi C, Mazón Ramos P, García Sanz R, Virizuela JA, Arenas M, et al. Stratification and management of cardiovascular risk in cancer patients. A consensus document of the SEC, FEC, SEOM, SEOR, SEHH, SEMG, AEEMT, AEEC, and AECC. Revista Española de Cardiología (English Edition). 2021;74(5):438–48. Provides specific predisposing factors for cardiovascular complications after cancer therapy and risk factor control goals for patients with cancer.

  75. Lyon AR, Dent S, Stanway S, Earl H, Brezden-Masley C, Cohen-Solal A, et al. Baseline cardiovascular risk assessment in cancer patients scheduled to receive cardiotoxic cancer therapies: a position statement and new risk assessment tools from the <scp>C</scp> ardio- <scp>O</scp> ncol. Eur J Heart Fail. 2020;22(11):1945–60.

    Article  PubMed  Google Scholar 

  76. Curigliano G, Lenihan D, Fradley M, Ganatra S, Barac A, Blaes A, et al. Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. Ann Oncol. 2020;31(2):171–90.

    Article  CAS  PubMed  Google Scholar 

  77. Armenian SH, Lacchetti C, Barac A, Carver J, Constine LS, Denduluri N, et al. Prevention and monitoring of cardiac dysfunction in survivors of adult cancers: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol. 2017;35(8):893–911.

    Article  PubMed  Google Scholar 

  78. Alexandre J, Cautela J, Ederhy S, Damaj GL, Salem JE, Barlesi F, et al. Cardiovascular toxicity related to cancer treatment: a pragmatic approach to the American and European cardio‐oncology guidelines. Journal of the American Heart Association. 2020;9(18). Practical guideline to managing cardiotoxicity of systemic therapies for various cancers.

  79. Liu D, Wen H, He J, Gao S, Li S, Liu L, et al. Society for Translational Medicine Expert Consensus on the preoperative assessment of circulatory and cardiac functions and criteria for the assessment of risk factors in patients with lung cancer. J Thorac Dis. 2018;10(9):5545–9.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Ferguson MK, Saha-Chaudhuri P, Mitchell JD, Varela G, Brunelli A. Prediction of major cardiovascular events after lung resection using a modified scoring system. Ann Thorac Surg. 2014;97(4):1135–40.

    Article  PubMed  Google Scholar 

  81. Fleisher LA, Fleischmann KE, Auerbach AD, Barnason SA, Beckman JA, Bozkurt B, et al. 2014 ACC/AHA guideline on perioperative cardiovascular evaluation and management of patients undergoing noncardiac surgery. Circulation. 2014;130(24):e278–333.

    PubMed  Google Scholar 

  82. Atkins KM, Weiss J, Zeleznik R, Bitterman DS, Chaunzwa TL, Huynh E, et al. Elevated coronary artery calcium quantified by a validated deep learning model from lung cancer radiotherapy planning scans predicts mortality. JCO Clin Cancer Inform. 2022;6:e2100095.

  83. Wang K, Malkin HE, Patchett ND, Pearlstein KA, Heiling HM, McCabe SD, et al. Coronary artery calcifications and cardiac risk after radiation therapy for stage iii lung cancer. Int J Radiat Oncol Biol Phys. 2022;112(1):188–96.

    Article  PubMed  Google Scholar 

  84. Pekmezi DW, Demark-Wahnefried W. Updated evidence in support of diet and exercise interventions in cancer survivors. Acta Oncol. 2011;50(2):167–78.

    Article  PubMed  Google Scholar 

  85. Zhu R, Liu Z, Jiao R, Zhang C, Yu Q, Han S, et al. Updates on the pathogenesis of advanced lung cancer-induced cachexia. Thoracic Cancer. 2019;10(1):8–16.

    Article  PubMed  Google Scholar 

  86. Omland T, Heck SL, Gulati G. The role of cardioprotection in cancer therapy cardiotoxicity. JACC: CardioOncol. 2022;4(1):19–37.

    PubMed  Google Scholar 

  87. NCCN Clinical Practice Guidelines in Oncology - Non-small cell lung cancer - Version 03.2022. 2022.

  88. Yegya-Raman N, Kegelman T, Kim K, Kallan M, Levin W, Cengel K, et al. MA06.01 death from intercurrent disease after proton- versus photon-based chemoradiotherapy for non-small cell lung cancer. J Thorac Oncol. 2021;16(10):S901.

    Article  Google Scholar 

  89. Chun SG, Hu C, Choy H, Komaki RU, Timmerman RD, Schild SE, et al. Impact of intensity-modulated radiation therapy technique for locally advanced non–small-cell lung cancer: a secondary analysis of the NRG oncology RTOG 0617 randomized clinical trial. J Clin Oncol. 2017;35(1):56–62.

    Article  PubMed  Google Scholar 

  90. Schonewolf CA, Jolly S, Dess RT. Particle beam therapy for cardiac-sparing radiotherapy in non-small cell lung cancer. Sem Radiat Oncol. 2021;31(2):112–9.

    Article  Google Scholar 

  91. Yegya-Raman N, Zou W, Nie K, Malhotra J, Jabbour SK. Advanced radiation techniques for locally advanced non-small cell lung cancer: intensity-modulated radiation therapy and proton therapy. J Thorac Dis. 2018;10(S21):S2474–91.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Banfill K, Giuliani M, Aznar M, Franks K, McWilliam A, Schmitt M, et al. Cardiac toxicity of thoracic radiotherapy: existing evidence and future directions. J Thorac Oncol. 2021;16(2):216–27. Comprehensive review on cardiotoxicity of thoracic RT.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Johnson-Hart CN, Price GJ, Faivre-Finn C, Aznar MC, van Herk M. Residual setup errors towards the heart after image guidance linked with poorer survival in lung cancer patients: do we need stricter igrt protocols? Int J Radiat Oncol Biol Phys. 2018;102(2):434–42.

    Article  PubMed  Google Scholar 

  94. Yegya-Raman N, Kim S, Deek MP, Li D, Gupta A, Bond L, et al. Daily image guidance with cone beam computed tomography may reduce radiation pneumonitis in unresectable non-small cell lung cancer. Int J Radiat Oncol*Biol*Phys. 2018;101(5):1104–12.

    Article  PubMed  Google Scholar 

  95. Thuny F, Alexandre J, Salem J-E, Mirabel M, Dolladille C, Cohen-Solal A, et al. Management of immune checkpoint inhibitor–induced myocarditis. JACC: CardioOncol. 2021;3(1):157–61.

    PubMed  Google Scholar 

  96. Xu T, Meng QH, Gilchrist SC, Lin SH, Lin R, Xu T, et al. Assessment of prognostic value of high-sensitivity cardiac troponin t for early prediction of chemoradiation therapy-induced cardiotoxicity in patients with non-small cell lung cancer: a secondary analysis of a prospective randomized trial. Int J Radiat Oncol*Biol*Phys. 2021;111(4):907–16.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lova Sun.

Ethics declarations

Conflict of Interest

Dr. Ky has received grants from NIH, and the American Heart Association, and other funding from Pfizer, Roche, and American College of Cardiology. Other authors have nothing to disclose.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yegya-Raman, N., Berlin, E., Feigenberg, S.J. et al. Cardiovascular Toxicity and Risk Mitigation with Lung Cancer Treatment. Curr Oncol Rep 25, 433–444 (2023). https://doi.org/10.1007/s11912-023-01387-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-023-01387-4

Keywords

Navigation