Skip to main content

Advertisement

Log in

Germline Genetic Testing in Breast Cancer: Systemic Therapy Implications

  • Breast Cancer (RA Leon Ferre, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In this article, we discuss recent advances in germline genetic testing for patients with breast cancer and highlight current limitations and impacts on clinical care. We also provide an update on the therapeutic implications of having a germline mutation, including targeted systemic therapy options for treating early and metastatic breast cancer.

Recent Findings

Approximately 5 to 10% of women diagnosed with breast cancer have a pathogenic variant in a hereditary cancer susceptibility gene, which has significant implications for managing these patients. Previously, testing was done mainly to inform screening and risk-reduction treatment; however, more recently, germline genetic results have significant systemic therapy implications that can meaningfully improve outcomes in breast cancer patients, especially with oral poly-ADP-ribose polymerase (PARP) inhibitors.

Summary

These systemic therapy advances implore a shift in paradigm for whom to test moving forward and how to modify the existing testing models to meet the increasing demand for germline testing, which is expected to grow exponentially.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Hall JM, Lee MK, Newman B, Morrow JE, Anderson LA, Huey B, et al. Linkage of early-onset familial breast cancer to chromosome 17q21. Science. 1990;250(4988):1684–9.

    Article  CAS  PubMed  Google Scholar 

  2. Tung N, Battelli C, Allen B, Kaldate R, Bhatnagar S, Bowles K, et al. Frequency of mutations in individuals with breast cancer referred for BRCA1 and BRCA2 testing using next-generation sequencing with a 25-gene panel. Cancer. 2015;121(1):25–33.

    Article  CAS  PubMed  Google Scholar 

  3. LaDuca H, Stuenkel AJ, Dolinsky JS, Keiles S, Tandy S, Pesaran T, et al. Utilization of multigene panels in hereditary cancer predisposition testing: analysis of more than 2,000 patients. Genet Med. 2014;16(11):830–7.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kurian AW, Hare EE, Mills MA, Kingham KE, McPherson L, Whittemore AS, et al. Clinical evaluation of a multiple-gene sequencing panel for hereditary cancer risk assessment. J Clin Oncol. 2014;32(19):2001–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Guo F, Hirth JM, Lin YL, Richardson G, Levine L, Berenson AB, et al. Use of BRCA mutation test in the US, 2004–2014. Am J Prev Med. 2017;52(6):702–9.

    Article  PubMed  PubMed Central  Google Scholar 

  6. •• Robson M, Im SA, Senkus E, Xu B, Domchek SM, Masuda N, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med. 2017;377(6):523–33. Describes the clinical trial that brought PARP inhibitors to the forefront in patients with metastatic breast cancer with germline BRCA mutation. This has since become standard of care.

    Article  CAS  PubMed  Google Scholar 

  7. •• Litton JK, Rugo HS, Ettl J, Hurvitz SA, Gonçalves A, Lee KH, et al. Talazoparib in patients with advanced breast cancer and a germline BRCA mutation. N Engl J Med. 2018;379(8):753–63. Describes the clinical trial that re-demonstrated use of a different PARP inhibitor in patients with germline BRCA mutation and advanced breast cancer.

    Article  CAS  PubMed  Google Scholar 

  8. •• Tutt ANJ, Garber JE, Kaufman B, Viale G, Fumagalli D, Rastogi P, et al. Adjuvant olaparib for patients with BRCA1- or BRCA2-mutated breast cancer. N Engl J Med. 2021;384(25):2394–405. Describes the clinical trial that demonstrated use of PARP inhibitors in early breast cancer patients with germline mutation testing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Childers CP, Childers KK, Maggard-Gibbons M, Macinko J. National estimates of genetic testing in women with a history of breast or ovarian cancer. J Clin Oncol [Internet]. 2017 Aug 18 [cited 2022 Apr 8]; Available from: https://ascopubs.org/doi/pdf/https://doi.org/10.1200/JCO.2017.73.6314

  10. Breast Cancer Risk Genes — Association Analysis in More than 113,000 Women. N Engl J Med. 2021 ;384(5):428–39.

  11. Hu C, Hart SN, Gnanaolivu R, Huang H, Lee KY, Na J, et al. A population-based study of genes previously implicated in breast cancer. N Engl J Med. 2021;384(5):440–51.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Stoll J, Rosenthal E, Cummings S, Willmott J, Bernhisel R, Kupfer SS. No evidence of increased risk of breast cancer in women with Lynch syndrome identified by multigene panel testing. JCO Precis Oncol. 2020;4:51–60.

    Article  PubMed  Google Scholar 

  13. •• Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic, Version 2.2021, NCCN Clinical Practice Guidelines in Oncology in: Journal of the National Comprehensive Cancer Network Volume 19 Issue 1 (2021) [Internet]. [cited 2022 Apr 8]. Available from: https://jnccn.org/view/journals/jnccn/19/1/article-p77.xml. This is the most widely used criteria for germline genetic testing in patients with breast cancer.

  14. US Preventive Services Task Force. Risk assessment, genetic counseling, and genetic testing for BRCA-related cancer: US Preventive Services Task Force Recommendation Statement. JAMA. 2019;322(7):652–65.

    Article  Google Scholar 

  15. Familial breast cancer: classification, care and managing breast cancer and related risks in people with a family history of breast cancer. 2019;47.

  16. Evans D, Eccles D, Rahman N, Young K, Bulman M, Amir E, et al. A new scoring system for the chances of identifying a BRCA1/2 mutation outperforms existing models including BRCAPRO. J Med Genet. 2004;41(6):474–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hoskins KF, Zwaagstra A, Ranz M. Validation of a tool for identifying women at high risk for hereditary breast cancer in population-based screening. Cancer. 2006;107(8):1769–76.

    Article  PubMed  Google Scholar 

  18. Ashton-Prolla P, Giacomazzi J, Schmidt AV, Roth FL, Palmero EI, Kalakun L, et al. Development and validation of a simple questionnaire for the identification of hereditary breast cancer in primary care. BMC Cancer. 2009;9(1):283.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kurian AW, Griffith KA, Hamilton AS, Ward KC, Morrow M, Katz SJ, et al. Genetic testing and counseling among patients with newly diagnosed breast cancer. JAMA. 2017;317(5):531–4.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Kurian AW, Ward KC, Howlader N, Deapen D, Hamilton AS, Mariotto A, et al. Genetic testing and results in a population-based cohort of breast cancer patients and ovarian cancer patients. J Clin Oncol. 2019;37(15):1305–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. McCarthy AM, Bristol M, Domchek SM, Groeneveld PW, Kim Y, Motanya UN, et al. Health care segregation, physician recommendation, and racial disparities in BRCA1/2 testing among women with breast cancer. J Clin Oncol. 2016;34(22):2610–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Knerr S, Bowles EJA, Leppig KA, Buist DSM, Gao H, Wernli KJ. Trends in BRCA test utilization in an integrated health system, 2005–2015. JNCI J Natl Cancer Inst. 2019;111(8):795–802.

    Article  PubMed  Google Scholar 

  23. Beitsch PD, Whitworth PW, Hughes K, Patel R, Rosen B, Compagnoni G, et al. Underdiagnosis of hereditary breast cancer: are genetic testing guidelines a tool or an obstacle? J Clin Oncol. 2019;37(6):453–60.

    Article  PubMed  Google Scholar 

  24. Yadav S, Hu C, Hart SN, Boddicker N, Polley EC, Na J, et al. Evaluation of germline genetic testing criteria in a hospital-based series of women with breast cancer. J Clin Oncol. 2020;38(13):1409–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kuchenbaecker KB, Hopper JL, Barnes DR, Phillips KA, Mooij TM, Roos-Blom MJ, et al. Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA. 2017;317(23):2402–16.

    Article  CAS  PubMed  Google Scholar 

  26. Kaas R, Verhoef S, Wesseling J, Rookus MA, Oldenburg HSA, Peeters MJV, et al. Prophylactic mastectomy in BRCA1 and BRCA2 mutation carriers: very low risk for subsequent breast cancer. Ann Surg. 2010;251(3):488–92.

    Article  PubMed  Google Scholar 

  27. Metcalfe K, Gershman S, Ghadirian P, Lynch HT, Snyder C, Tung N, et al. Contralateral mastectomy and survival after breast cancer in carriers of BRCA1 and BRCA2 mutations: retrospective analysis. BMJ. 2014;11(348):g226.

    Article  Google Scholar 

  28. Lokich E, Stuckey A, Raker C, Wilbur JS, Laprise J, Gass J. Preoperative genetic testing affects surgical decision making in breast cancer patients. Gynecol Oncol. 2014;134(2):326–30.

    Article  PubMed  Google Scholar 

  29. Yadav S, Jinna S, Pereira-Rodrigues O, et al. Impact of preoperative BRCA1/2 testing on surgical decision making in patients with newly diagnosed breast cancer. Breast J. 2018;24(4):541–8. https://doi.org/10.1111/tbj.13007.

    Article  PubMed  Google Scholar 

  30. Milliron KJ, Griggs JJ. Advances in genetic testing in patients with breast cancer, high-quality decision making, and responsible resource allocation. J Clin Oncol [Internet]. 2018 Dec 7 [cited 2022 May 26]; Available from: https://ascopubs.org/doi/pdf/10.1200/JCO.18.01952

  31. Sun L, Brentnall A, Patel S, Buist DSM, Bowles EJA, Evans DGR, et al. A cost-effectiveness analysis of multigene testing for all patients with breast cancer. JAMA Oncol. 2019;5(12):1718–30.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Murphy BL, Yi M, Arun BK, Gutierrez Barrera AM, Bedrosian I. Contralateral risk reducing mastectomy in breast cancer patients who undergo multi-gene panel testing. Ann Surg Oncol. 2020;27(12):4613–21.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Domchek SM, Brower J, Symecko H, Marcell V, Walsh MF, Hamilton JG, et al. Uptake of oophorectomy in women with findings on multigene panel testing: results from the Prospective Registry of Multiplex Testing (PROMPT). J Clin Oncol. 2020;38(15_suppl):1508–1508.

    Article  Google Scholar 

  34. Barchiesi G, Roberto M, Verrico M, Vici P, Tomao S, Tomao F. Emerging role of PARP inhibitors in metastatic triple negative breast cancer Current Scenario and Future Perspectives. Front Oncol. 2021;11:769280.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lord CJ, Ashworth A. The DNA damage response and cancer therapy. Nature. 2012;481(7381):287–94.

    Article  CAS  PubMed  Google Scholar 

  36. Moynahan ME, Pierce AJ, Jasin M. BRCA2 is required for homology-directed repair of chromosomal Breaks. Mol Cell. 2001;7(2):263–72.

    Article  CAS  PubMed  Google Scholar 

  37. Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, et al. Molecular mechanisms of cisplatin resistance. Oncogene. 2012;31(15):1869–83.

    Article  CAS  PubMed  Google Scholar 

  38. Bhattacharyya A, Ear US, Koller BH, Weichselbaum RR, Bishop DK. The breast cancer susceptibility gene BRCA1 is required for subnuclear assembly of Rad51 and survival following treatment with the DNA cross-linking agent cisplatin. J Biol Chem. 2000;275(31):23899–903.

    Article  CAS  PubMed  Google Scholar 

  39. Garutti M, Pelizzari G, Bartoletti M, Malfatti MC, Gerratana L, Tell G, et al. Platinum salts in patients with breast cancer: a focus on predictive factors. Int J Mol Sci. 2019;20(14):3390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Tutt A, Tovey H, Cheang MCU, Kernaghan S, Kilburn L, Gazinska P, et al. A randomised phase III trial of carboplatin compared with docetaxel in BRCA1/2 mutated and pre-specified triple negative breast cancer “BRCAness” subgroups: the TNT Trial. Nat Med. 2018;24(5):628–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Isakoff SJ, Mayer EL, He L, Traina TA, Carey LA, Krag KJ, et al. TBCRC009: a multicenter phase II clinical trial of platinum monotherapy with biomarker assessment in metastatic triple-negative breast cancer. J Clin Oncol. 2015;33(17):1902–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Byrski T, Dent R, Blecharz P, Foszczynska-Kloda M, Gronwald J, Huzarski T, et al. Results of a phase II open-label, non-randomized trial of cisplatin chemotherapy in patients with BRCA1-positive metastatic breast cancer. Breast Cancer Res BCR. 2012;14(4):R110.

    Article  CAS  PubMed  Google Scholar 

  43. von Minckwitz G, Schneeweiss A, Loibl S, Salat C, Denkert C, Rezai M, et al. Neoadjuvant carboplatin in patients with triple-negative and HER2-positive early breast cancer (GeparSixto; GBG 66): a randomised phase 2 trial. Lancet Oncol. 2014;15(7):747–56.

    Article  Google Scholar 

  44. Geyer CE, Sikov WM, Huober J, Rugo HS, Wolmark N, O’Shaughnessy J, et al. Long-term efficacy and safety of addition of carboplatin with or without veliparib to standard neoadjuvant chemotherapy in triple-negative breast cancer: 4-year follow-up data from BrighTNess, a randomized phase III trial. Ann Oncol. 2022;33(4):384–94.

    Article  CAS  PubMed  Google Scholar 

  45. Poggio F, Bruzzone M, Ceppi M, Pondé NF, Valle GL, Mastro LD, et al. Platinum-based neoadjuvant chemotherapy in triple-negative breast cancer: a systematic review and meta-analysis. Ann Oncol. 2018;29(7):1497–508.

    Article  CAS  PubMed  Google Scholar 

  46. Murai J, Huang SYN, Das BB, Renaud A, Zhang Y, Doroshow JH, et al. Differential trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 2012;72(21):5588–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Barchiesi G, Roberto M, Verrico M, Vici P, Tomao S, Tomao F. Emerging role of PARP inhibitors in metastatic triple negative breast cancer. Current Scenario and Future Perspectives. Front Oncol [Internet]. 2021 [cited 2022 Mar 26];11. Available from: https://www.frontiersin.org/article/10.3389/fonc.2021.769280

  48. Robson M, Ruddy KJ, Im SA, Senkus E, Xu B, Domchek SM, et al. Patient-reported outcomes in patients with a germline BRCA mutation and HER2-negative metastatic breast cancer receiving olaparib versus chemotherapy in the OlympiAD trial. Eur J Cancer. 2019;1(120):20–30.

    Article  Google Scholar 

  49. Litton JK, Hurvitz SA, Mina LA, Rugo HS, Lee KH, Gonçalves A, et al. Talazoparib versus chemotherapy in patients with germline BRCA1/2-mutated HER2-negative advanced breast cancer: final overall survival results from the EMBRACA trial. Ann Oncol. 2020;31(11):1526–35.

    Article  CAS  PubMed  Google Scholar 

  50. McCrea C, Hettle R, Gulati P, Taneja A, Rajora P. Indirect treatment comparison of olaparib and talazoparib in germline BRCA-mutated HER2-negative metastatic breast cancer. J Comp Eff Res. 2021;10(13):1021–30.

    Article  PubMed  Google Scholar 

  51. Patsouris A, Diop K, Tredan O, Nenciu D, Gonçalves A, Arnedos M, et al. Rucaparib in patients presenting a metastatic breast cancer with homologous recombination deficiency, without germline BRCA1/2 mutation. Eur J Cancer. 2021;1(159):283–95.

    Article  Google Scholar 

  52. Turner NC, Balmaña J, Poncet C, Goulioti T, Tryfonidis K, Honkoop AH, et al. Niraparib for advanced breast cancer with germline BRCA1 and BRCA2 mutations: the EORTC 1307-BCG/BIG5-13/TESARO PR-30-50-10-C BRAVO study. Clin Cancer Res Off J Am Assoc Cancer Res. 2021;27(20):5482–91.

    Article  CAS  Google Scholar 

  53. Han HS, Arun BK, Kaufman B, Wildiers H, Friedlander M, Ayoub JP, et al. Veliparib monotherapy following carboplatin/paclitaxel plus veliparib combination therapy in patients with germline BRCA-associated advanced breast cancer: results of exploratory analyses from the phase III BROCADE3 trial. Ann Oncol. 2022;33(3):299–309.

    Article  CAS  PubMed  Google Scholar 

  54. Tutt ANJ, Garber J, Gelber RD, Phillips KA, Eisen A, Johannsson OT, et al. VP1-2022: Pre-specified event driven analysis of Overall Survival (OS) in the OlympiA phase III trial of adjuvant olaparib (OL) in germline BRCA1/2 mutation (gBRCAm) associated breast cancer. Ann Oncol. 2022;1:33.

    Google Scholar 

  55. Masuda N, Lee SJ, Ohtani S, Im YH, Lee ES, Yokota I, et al. Adjuvant capecitabine for breast cancer after preoperative chemotherapy. N Engl J Med. 2017;376(22):2147–59.

    Article  CAS  PubMed  Google Scholar 

  56. Johnston SRD, Harbeck N, Hegg R, Toi M, Martin M, Shao ZM, et al. Abemaciclib combined with endocrine therapy for the adjuvant treatment of HR+, HER2−, node-positive, high-risk, early breast cancer (monarchE). J Clin Oncol. 2020;38(34):3987–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Safonov A, Bandlamudi C, de Lara PT, Ferraro E, Derakhshan F, Will M, et al. Abstract GS4–08: comprehensive genomic profiling of patients with breast cancer identifies germline-somatic interactions mediating therapy resistance. Cancer Res. 2022;82(4_Supplement):GS4-08.

    Article  Google Scholar 

  58. Litton JK, Scoggins ME, Hess KR, Adrada BE, Murthy RK, Damodaran S, et al. Neoadjuvant talazoparib for patients with operable breast cancer with a germline BRCA pathogenic variant. J Clin Oncol. 2020;38(5):388–94.

    Article  CAS  PubMed  Google Scholar 

  59. Litton JK, Beck JT, Jones JM, Andersen J, Blum JL, Mina LA, et al. Neoadjuvant talazoparib in patients with germline BRCA1/2 (gBRCA1/2) mutation-positive, early HER2-negative breast cancer (BC): Results of a phase 2 study. J Clin Oncol. 2021;39(15_suppl):505–505.

    Article  Google Scholar 

  60. Spring LM, Han H, Liu MC, Hamilton E, Irie H, Santa-Maria CA, et al. Neoadjuvant study of niraparib in patients with HER2-negative, BRCA-mutated, resectable breast cancer. Nat Cancer. 2022;3(8):927–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. UNICANCER. An International Multicenter Phase II Trial of Durvalumab (MEDI4736) Plus OLAparib Plus Fulvestrant in Metastatic or Locally Advanced ER-positive, HER2-negative Breast Cancer Patients Selected Using Criteria That Predict Sensitivity to Olaparib [Internet]. clinicaltrials.gov; 2021 Nov [cited 2022 May 12]. Report No.: NCT04053322. Available from: https://clinicaltrials.gov/ct2/show/NCT04053322

  62. Wisinski K. Phase 2 trial with safety run-in of gedatolisib plus talazoparib in advanced triple negative or BRCA1/2 positive, HER2 negative breast cancers big ten cancer research consortium BTCRC-BRE18-337 [Internet]. clinicaltrials.gov; 2022 Jan [cited 2022 May 12]. Report No.: NCT03911973. Available from: https://clinicaltrials.gov/ct2/show/NCT03911973

  63. MPH EM MD. A phase II study of niraparib with dostarlimab therapy as neoadjuvant treatment for patients with BRCA-mutated breast cancer [Internet]. clinicaltrials.gov; 2022 Mar [cited 2022 May 12]. Report No.: NCT04584255. Available from: https://clinicaltrials.gov/ct2/show/NCT04584255

  64. M.D. Anderson Cancer Center. Overcoming PARP inhibitor resistance in BRCA germline mutation positive advanced breast cancer [Internet]. clinicaltrials.gov; 2022 Mar [cited 2022 May 12]. Report No.: NCT04090567. Available from: https://clinicaltrials.gov/ct2/show/NCT04090567

  65. Cerrato A, Morra F, Celetti A. Use of poly ADP-ribose polymerase [PARP] inhibitors in cancer cells bearing DDR defects: the rationale for their inclusion in the clinic. J Exp Clin Cancer Res. 2016;35(1):179.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Tung NM, Robson ME, Ventz S, Santa-Maria CA, Marcom PK, Nanda R, et al. TBCRC 048: a phase II study of olaparib monotherapy in metastatic breast cancer patients with germline or somatic mutations in DNA damage response (DDR) pathway genes (Olaparib Expanded). J Clin Oncol. 2020;38(15_suppl):1002–1002.

    Article  Google Scholar 

  67. Gruber JJ, Afghahi A, Hatton A, Scott D, McMillan A, Ford JM, et al. Talazoparib beyond BRCA: a phase II trial of talazoparib monotherapy in BRCA1 and BRCA2 wild-type patients with advanced HER2-negative breast cancer or other solid tumors with a mutation in homologous recombination (HR) pathway genes. J Clin Oncol. 2019;37(15_suppl):3006–3006.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yara G. Abdou.

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any authors.

Conflict of Interest

Prarthna V. Bhardwaj declares no conflict of interest. Yara G. Abdou receives research money from Exact Sciences for consulting services and served on an advisory board for AstraZeneca.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Breast Cancer

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhardwaj, P.V., Abdou, Y.G. Germline Genetic Testing in Breast Cancer: Systemic Therapy Implications. Curr Oncol Rep 24, 1791–1800 (2022). https://doi.org/10.1007/s11912-022-01340-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-022-01340-x

Keywords

Navigation