Skip to main content

Advertisement

Log in

Chemokine Receptor Antagonists: Role in Oncology

  • Evolving Therapies (RM Bukowski, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To evaluate the clinical potential of chemokine receptor antagonists for the treatment of patients with cancer.

Recent findings

Chemokine receptors and their ligands can have a significant impact on the infiltration of cells into the tumor microenvironment. The receptors are increasingly being investigated as targets for the treatment of cancers. Recent studies are demonstrating the promise of chemokine receptor antagonists in this setting.

Summary

There are many chemokine receptors, and each can have different functions depending on the cellular context. Targeting chemokine receptors is a promising strategy in both pre-clinical research and clinical trials. Inhibiting chemokine receptors that either recruit suppressive cells or improve cancer mobility and viability while sparing those necessary for proper immune trafficking may prove to dramatically improve treatment responses. Further research in this area is warranted and has the potential to dramatically improve patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Sokol, Caroline L., Zamaneh Mikhak, and Andrew D. Luster. “Chemokines.” In Middleton’s allergy: principles and practice, 9th ed., 95–109.e1. Philadelphia, PA, 2020. https://www-clinicalkey-com.ezproxy.library.wisc.edu/#!/content/book/3-s2.0-B9780323544245000071?scrollTo=%23hl0000619. Accessed 2 Feb 2021.

  2. Kaiko GE, Horvat JC, Beagley KW, Hansbro PM. “Immunological decision-making: how does the immune system decide to mount a helper T-cell response?” Immunology. 2008;123(3):326–38. https://doi.org/10.1111/j.1365-2567.2007.02719.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. • Greene S, Robbins Y, Mydlarz W, Huynh A, Schmitt N, Friedman J, Horn L, Palena C, et al. Inhibition of MDSC trafficking with SX-682, a CXCR1/2 inhibitor, enhances NK-cell immunotherapy in head and neck cancer models. Clin Cancer Res. March 2020;26(6):1420–31. https://doi.org/10.1158/1078-0432.CCR-19-2625.. (NK cell-based immunotherapies are an exciting treatment prospect for patients. This study identifies CXCR1/2 as a target for enhancing these therapies.)

    Article  CAS  PubMed  Google Scholar 

  4. Wang J, Hu W, Wang K, Yu J, Luo B, Luo G, Wang W, Wang H, et al. Repertaxin, an inhibitor of the chemokine receptors CXCR1 and CXCR2, inhibits malignant behavior of human gastric cancer MKN45 cells in vitro and in vivo and enhances efficacy of 5-fluorouracil. Int J Oncol. February 2016;48:1341–52. https://doi.org/10.3892/ijo.2016.3371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lazaar AL, Miller BE, Tabberer M, Yonchuk J, Leidy N, Ambery C, Bloomer J, et al. Effect of the CXCR2 antagonist danirixin on symptoms and health status in COPD. Eur Respir J. 2018;52:1801020. https://doi.org/10.1183/13993003.01020-2018.

    Article  CAS  PubMed  Google Scholar 

  6. Moss RB, Mistry SJ, Konstan MW, Pilewski JM, Kerem E, Tal-Singer R, Lazaar AL. Safety and early treatment effects of the CXCR2 antagonist SB-656933 in patients with cystic fibrosis. J Cyst Fibros. September 2012;12(3):241–8. https://doi.org/10.1016/j.jcf.2012.08.016.

    Article  CAS  PubMed  Google Scholar 

  7. Hastrup N, Khalilieh S, Dale DC, Hanson LG, Magnusson P, Tzontcheva A, Tseng J, Huyck S, et al. The effects of the CXCR2 antagonist, MK-7123, on bone marrow functions in healthy subjects. Cytokine. 2015;72(2):197–203. https://doi.org/10.1016/j.cyto.2015.01.002.

    Article  CAS  PubMed  Google Scholar 

  8. Greene S, Robbins Y, Mydlarz W, Huynh A, Schmitt N, Friedman J, Horn L, Palena C, et al. Inhibition of MDSC trafficking with SX-682, a CXCR1/2 inhibitor, enhances NK-cell immunotherapy in head and neck cancer models. Clin Cancer Res. March 2020;26(6):1420–31. https://doi.org/10.1158/1078-0432.CCR-19-2625.

    Article  CAS  PubMed  Google Scholar 

  9. Ijichi H, Chytil A, Agnieszka GE, Aakre ME, Bierie B, Tada M, Mohri D, Miyabayashi K, et al. Inhibiting CXCR2 disrupts tumor-stromal interactions and improves survival in a mouse model of pancreatic ductal adenocarcinoma. J Clin Investig. October 2011;121(10):4106–17. https://doi.org/10.1172/JCI42754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pradelli E, Karimdjee-Soilihi B, Michiels JF, Ricci JE, Millet MA, Vandenbos F, Sullivan TJ, Collins TL, Johnson MG, Medina JC, Kleinerman ES, Schmid-Alliana A, Schmid-Antomarchi H. Antagonism of chemokine receptor CXCR3 inhibits osteosarcoma metastasis to lungs. Int J Cancer. December 2009;125(11):2586–94. https://doi.org/10.1002/ijc.24665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Walser TC, Rifat S, Ma X, Kundu N, Ward C, Goloubeva O, Johnson MG, Medina JC, Collins TL, Fulton AM. Antagonism of CXCR3 inhibits lung metastasis in a murine model of metastatic breast cancer. Can Res. August 2006;66(15):7701–7. https://doi.org/10.1158/0008-5472.CAN-06-0709.

    Article  CAS  Google Scholar 

  12. Zhu G, Yan HH, Pang Y, Jian J, Achyut BR, Liang X, Weiss JM, Wiltrout RH, Hollander MC, Yang L. CXCR3 as a molecular target in breast cancer metastasis: inhibition of tumor cell migration and promotion of host anti-tumor immunity. Oncotarget. 2015;6(41):43408–19. https://doi.org/10.18632/oncotarget.6125.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cambien B, Karimdjee BF, Richard-Fiardo P, Bziouech H, Barthel R, Millet MA, Martini V, Birnbaum D, Scoazec JY, Abello J, Al Saati T, Johnson MG, Sullivan TJ, Medina JC, Collins TL, Schmid-Alliana A, Schmid-Antomarchi H. Organ-specific inhibition of metastatic colon carcinoma by CXCR3 antagonism. Br J Cancer. June 2009;100(11):1755–64. https://doi.org/10.1038/sj.bjc.6605078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cao Y, Hunter ZR, Liu X, Xu L, Yang G, Chen J, Patterson CJ, et al. “The WHIM-like CXCR4S338X somatic mutation activates AKT and ERK, and promotes resistance to ibrutinib and other agents used in the treatment of Waldenstrom’s macroglobulinemia.” Leukemia. 2015;29(1):169–76. https://doi.org/10.1038/leu.2014.187.

    Article  CAS  PubMed  Google Scholar 

  15. “CXCR4-Lo: molecular cloning and functional expression of a novel human CXCR4 splice variant.” Accessed February 8, 2021. https://www.uniprot.org/citations/10452968.

  16. Triantafilou K, Triantafilou M, Dedrick RL. A CD14-independent LPS receptor cluster. Nat Immunol. April 2001;2(4):338–45. https://doi.org/10.1038/86342.

    Article  CAS  PubMed  Google Scholar 

  17. Mao TL, Fan KF, Liu CL. Targeting the CXCR4/CXCL12 axis in treating epithelial ovarian cancer. Gene Ther. September 2017;24:621–9. https://doi.org/10.1038/gt.2017.69.

    Article  CAS  PubMed  Google Scholar 

  18. Reeves PM, Abbaslou MA, Kools FRW, Poznansky MC. CXCR4 blockade with AMD3100 enhances taxol chemotherapy to limit ovarian cancer cell growth. Anticancer Drugs. October 2017;28(9):935–42. https://doi.org/10.1097/CAD.0000000000000518.

    Article  CAS  PubMed  Google Scholar 

  19. Zhou KX, Xie LH, Peng X, Guo QM, Wu QY, Wang WH, Zhang GL, Wu JF, et al. CXCR4 antagonist AMD3100 enhances the response of MDA-MB-231 triple-negative breast cancer cells to ionizing radiation. Cancer Lett. April 2018;418:196–203. https://doi.org/10.1016/j.canlet.2018.01.009.

    Article  CAS  PubMed  Google Scholar 

  20. •• Bockorny B, Semenisty V, Macarulla T, Erkut B, Wolpin BM, Stemmer SM, Golan T, Geva R, et al. “BL-8040, a CXCR4 antagonist, in combination with pembrolizumab and chemotherapy for pancreatic cancer: the COMBAT Trial. Nat Med. June 2020;26:878–85. https://doi.org/10.1038/s41591-020-0880-x.T.. (his report outlines promising results using CXCR4 blockade in combination regimens.)

    Article  CAS  PubMed  Google Scholar 

  21. Dairaghi DJ, Babatunde OO, Gupta A, McCluskey B, Miao S, Powers JP, Seitz LC, et al. “CCR1 blockade reduces tumor burden and osteolysis in vivo in a mouse model of myeloma bone disease.” Blood. 2012;120(7):1449–57. https://doi.org/10.1182/blood-2011-10-384784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kitamura T, Teruaki F, Pius L, Laszlo R, Hiroki H, Kizaka-Kondoh S, Masahiro A, Makoto MT. “Inactivation of chemokine (C-C motif) receptor 1 (CCR1) suppresses colon cancer liver metastasis by blocking accumulation of immature myeloid cells in a mouse model.” Proc Natl Acad Sci. 9 2010;107(2):13063–8. https://doi.org/10.1073/pnas.1002372107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kiyasu Y, Kenji K, Hideyo H, Ryotaro O, Keita H, Hideyuki M, Gen N, et al. “Disruption of CCR1-mediated myeloid cell accumulation suppresses colorectal cancer progression in mice.” Cancer Lett. 2020;487:53–62. https://doi.org/10.1016/j.canlet.2020.05.028.

    Article  CAS  PubMed  Google Scholar 

  24. Kitamura T, Bin-Zhi Q, Soong D, Luca C, Noy R, Sugano G, Yu K, Li J, Pollard JW. “CCL2-induced chemokine cascade promotes breast cancer metastasis by enhancing retention of metastasis-associated macrophages.” J Exp Med. 2015;212(7):1043–59. https://doi.org/10.1084/jem.20141836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jung H, Bischof A, Ebsworth K, Ertl L, Schall T, Israel C. “Combination therapy of chemokine receptor inhibition plus PDL-1 blockade potentiates anti-tumor effects in a murine model of breast cancer.” J Immuno Ther Cancer. 2015;3(2):P227. https://doi.org/10.1186/2051-1426-3-S2-P227.

    Article  Google Scholar 

  26. Yang H, Qiannan Z, Miao X, Lei W, Xuewei C, Yongquan F, Yongning L, Xin Z, Wenming C, Xudong J. “CCL2-CCR2 axis recruits tumor associated macrophages to induce immune evasion through PD-1 signaling in esophageal carcinogenesis.” Mol Cancer. 2020;19(1):41. https://doi.org/10.1186/s12943-020-01165-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lim SY, Arseniy EY, Gordon-Weeks AN, Muschel RJ. “Targeting the CCL2-CCR2 signaling axis in cancer metastasis.” Oncotarget. 2016;7(19):28697. https://doi.org/10.18632/oncotarget.7376.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wolf, Monika Julia, Alexandra Hoos, Judith Bauer, Steffen Boettcher, Markus Knust, Achim Weber, Nicole Simonavicius, et al. “Endothelial CCR2 signaling induced by colon carcinoma cells enables extravasation via the JAK2-Stat5 and P38MAPK pathway.” Cancer Cell 22, no. 1 (July 2012): 91–105. https://doi.org/10.1016/j.ccr.2012.05.023.

  29. Brummer G, Acevedo DS, Qingting H, Portsche M, Bin Fang W, Yao M, Zinda B, et al. “Chemokine signaling facilitates early-stage breast cancer survival and invasion through fibroblast-dependent mechanisms.” Mol Cancer Res. 2018;16(2):296–308. https://doi.org/10.1158/1541-7786.MCR-17-0308.

    Article  CAS  PubMed  Google Scholar 

  30. Flores-Toro J, Luo D, Gopinath A, Sarkisian MR, Campbell JJ, Israel FC, Rajinder S, et al. “CCR2 inhibition reduces tumor myeloid cells and unmasks a checkpoint inhibitor effect to slow progression of resistant murine gliomas.” Proc Natl Acad Sci. 2020;117(2):1129–38. https://doi.org/10.1073/pnas.1910856117.

    Article  CAS  PubMed  Google Scholar 

  31. Karasaki T, Guangliang Q, Masaki A, Yanbin S, Aya S-U, Eiichi S, Kosuke K, et al. “High CCR4 expression in the tumor microenvironment is a poor prognostic indicator in lung adenocarcinoma.” J Thorac Dis. 2018;10(8):4741–50. https://doi.org/10.21037/jtd.2018.07.45.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Berlato C, Moddasar NK, Tiziana S, Thompson R, Maniati E, Montfort A, Jangani M, et al. “A CCR4 antagonist reverses the tumor-promoting microenvironment of renal cancer.” J Clin Invest. n.d.;127(3):801–13. https://doi.org/10.1172/JCI82976.

  33. Sun W, Wei-Jin L, Fan-Qin W, Thian-Sze W, Wen-Bin L, Xiao-Lin Z, Jian L, Wei-Ping W. Blockade of MCP-1/CCR4 signaling-induced recruitment of activated regulatory cells evokes an antitumor immune response in head and neck squamous cell carcinoma. Oncotarget. 2016;7(25):37714–27. https://doi.org/10.18632/oncotarget.9265.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Maeda S, Kohei M, Akiko I, Tomohiro Y, Naoaki M. “CCR4 blockade depletes regulatory T cells and prolongs survival in a canine model of bladder cancer.” Cancer Immunol Res. 2019;7(7):1175–87. https://doi.org/10.1158/2326-6066.CIR-18-0751.

    Article  CAS  PubMed  Google Scholar 

  35. Velasco-Velazquez M, Jiao X, De La Fuente M, Pestell TG, Ertel A, Lisanti MP, Pestell RG. “CCR5 antagonist blocks metastasis of basal breast cancer cells.” Cancer Res. 2012;72(15):3839–50. https://doi.org/10.1158/0008-5472.CAN-11-3917.

    Article  CAS  PubMed  Google Scholar 

  36. Pervaiz A, Michael Z, Saqib M, Doaa MA, Berger MR, Hassan A, et al. Cellular Oncol. 2019;42(1):93–106. https://doi.org/10.1007/s13402-018-0415-3.

    Article  CAS  Google Scholar 

  37. Halama N, Zoernig I, Berthel A, Kahlert C, Klupp F, Suarez-Carmona M, et al. Tumoral immune cell exploitation in colorectal cancer metastases can be targeted effectively by anti-CCR5 therapy in cancer patients. Cancer Cell. 2016;29:587–601. https://doi.org/10.1016/j.ccell.2016.03.005.

    Article  CAS  PubMed  Google Scholar 

  38. Rubie C, Oliveira Frick V, Ghadjar P, Wagner M, Grimm H, Vicinus B, Justinger C, Graeber S, Schilling MK. “CCL20/CCR6 expression profile in pancreatic cancer.” J Transl Med. 2010;8(1):45. https://doi.org/10.1186/1479-5876-8-45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang X-P, Zhi-Juan Hu, Ai-Hong M, Guo-Chen D, Qing-Tao Z, Jing Y. “Role of CCL20/CCR6 and the ERK signaling pathway in lung adenocarcinoma.” Oncology Lett. 2017;14(6):8183–9. https://doi.org/10.3892/ol.2017.7253.

    Article  CAS  Google Scholar 

  40. Kapur N, Hina M, Clarence E, Clark I, Uma K, Derrick JB, James WL, Shailesh S. “CCR6 expression in colon cancer is associated with advanced disease and supports epithelial-to-mesenchymal transition.” Br J Cancer. 2016;114(12):1343–51. https://doi.org/10.1038/bjc.2016.113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu J, Fang K, Zhenyao X, Zhaoyuan L, Lingyun Z, Sha Y, Zhe W, Hong W, Honglin W. “CCR6 is a prognostic marker for overall survival in patients with colorectal cancer, and its overexpression enhances metastasis in vivo.” Plos One. 2014;9(6):e101137. https://doi.org/10.1371/journal.pone.0101137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sánchez-Sánchez N, Lorena R-B, Rodríguez-Fernández JL. “The multiple personalities of the chemokine receptor CCR7 in dendritic cells.” J Immunol. 2006;176(9):5153–9. https://doi.org/10.4049/jimmunol.176.9.5153.

    Article  PubMed  Google Scholar 

  43. Jang MH, Nagako S, Toshiyuki T, Takako H, Takachika H, Kazuo T, Zijin G, et al. “CCR7 is critically important for migration of dendritic cells in intestinal lamina propria to mesenteric lymph nodes.” J Immunol. 2006;176(2):803–10. https://doi.org/10.4049/jimmunol.176.2.803.

    Article  CAS  PubMed  Google Scholar 

  44. Hirao M, Nobuyuki O, Kazumasa H, Watkins SC, Kouji M, Robbins PD, Lotze MT, Hideaki T. “CC chemokine receptor-7 on dendritic cells is induced after interaction with apoptotic tumor cells: critical role in migration from the tumor site to draining lymph nodes.” Cancer Res. 2000;60(8):2209–17.

    CAS  PubMed  Google Scholar 

  45. Tutunea-Fatan E, Mousumi M, Xiping X, Peeyush KL. “The role of CCL21/CCR7 chemokine axis in breast cancer-induced lymphangiogenesis.” Mol Cancer. 2015;14(1):35. https://doi.org/10.1186/s12943-015-0306-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhou S, Shuchang X, Huihong T, Zhiwei Z, Guolin C, Zhiqiang Z, Yaoqin Y. “CCR7 expression and intratumoral FOXP3+ regulatory T cells are correlated with overall survival and lymph node metastasis in gastric cancer.” Plos One. 2013;8(9):e74430. https://doi.org/10.1371/journal.pone.0074430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. An S, Karthik T, Ying W, Ligeng X, Mengying H, Jingjing L, Wantong S, et al. “Locally trapping the C-C chemokine receptor type 7 by gene delivery nanoparticle inhibits lymphatic metastasis prior to tumor resection.” Small. 2019;15(9):1805182. https://doi.org/10.1002/smll.201805182.

    Article  CAS  Google Scholar 

  48. Xu B, Minjie Z, Wencai Q, Jueming Y, Qiming F. “CCR7 mediates human breast cancer cell invasion, migration by inducing epithelial–mesenchymal transition and suppressing apoptosis through AKT pathway.” Cancer Med. 2017;6(5):1062–71. https://doi.org/10.1002/cam4.1039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang L, Xuyang X, Hui A, Jian W, Yanmei M, Yi-Hua Q. “Inhibition of CCR7 promotes NF-ΚB-dependent apoptosis and suppresses epithelial-mesenchymal transition in non-small cell lung cancer.” Oncology Rep. 2017;37(5):2913–9. https://doi.org/10.3892/or.2017.5524.

    Article  CAS  Google Scholar 

  50. Kobayashi D, Masataka E, Hirotaka O, Hironobu H, Masayuki M, Haruko H. “Regulation of CCR7-dependent cell migration through CCR7 homodimer formation.” Sci Rep. 2017;7(1):8536. https://doi.org/10.1038/s41598-017-09113-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yano H, Lawrence PA, Workman CJ, Vignali Dario AA. “Intratumoral regulatory T cells: markers, subsets and their impact on anti-tumor immunity.” Immunol. 2019;157(3):232–47. https://doi.org/10.1111/imm.13067.

    Article  CAS  Google Scholar 

  52. Plitas G, Konopacki C, Kenmin Wu, Bos PD, Morrow M, Putintseva EV, Chudakov DM, Rudensky AY. Regulatory T cells exhibit distinct features in human breast cancer. Immunity. November 2016;45(5):1122–34. https://doi.org/10.1016/j.immuni.2016.10.032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. • Villarreal, Daniel O., Andrew L’Huillier, Susan Armington, Cristina Mottershead, Elena V. Filippova, Brandon D. Coder, Robert G. Petit, and Michael F. Princiotta. “Targeting CCR8 induces protective antitumor immunity and enhances vaccine-induced responses in colon cancer.” Cancer Research 78, no. 18 (September 15, 2018): 5340–48. https://doi.org/10.1158/0008-5472.CAN-18-1119. (This study highlights the ability of chemokine antagonism to shift the immune landscape of a tumor to be more amenable to immunotherapies.)

  54. Melief SM, Schrama E, Brugman MH, Tiemessen MM, Hoogduijn MJ, Fibbe WE, Roelofs H. Multipotent stromal cells induce human regulatory T cells through a novel pathway involving skewing of monocytes toward anti-inflammatory macrophages. STEM CELLS. 2013;31(9):1980–91. https://doi.org/10.1002/stem.1432.

    Article  CAS  PubMed  Google Scholar 

  55. Ge, Xiaoxu, Yamei Zhao, Chao Chen, Jian Wang, and Lifeng Sun. “<p>Cancer immunotherapies targeting tumor-associated regulatory T cells</P>.” OncoTargets and Therapy. Dove Press, December 13, 2019. https://doi.org/10.2147/OTT.S231052.

  56. Hoelzinger DB, Shannon ES, Noweeda M, Dominguez AL, Manrique SZ, Lustgarten J. “Blockade of CCL1 inhibits T regulatory cell suppressive function enhancing tumor immunity without affecting T effector responses.” J Immunol. 2010;184(12):6833–42. https://doi.org/10.4049/jimmunol.0904084.

    Article  CAS  PubMed  Google Scholar 

  57. Wang C, Zhenghuan L, Zhihui X, Xian W, Dongyang Z, Ziqi Z, Jianqin W. “The role of chemokine receptor 9/chemokine ligand 25 signaling: from immune cells to cancer cells (review).” Oncology Lett. 2018;16(2):2071–7. https://doi.org/10.3892/ol.2018.8896.

    Article  CAS  Google Scholar 

  58. Kunkel EJ, James JC, Guttorm H, Junliang P, Boisvert J, Roberts AI, Ebert EC, et al. “Lymphocyte Cc chemokine receptor 9 and epithelial thymus-expressed chemokine (Teck) expression distinguish the small intestinal immune compartment.” J Exp Med. 2000;192(5):761–8.

    Article  CAS  Google Scholar 

  59. Tu Z, Ruijing X, Jie X, Kingsley MT, Xinzhou D, Meng X, Pan L, Meng W, Qiuping Z. “CCR9 in cancer: oncogenic role and therapeutic targeting.” J Hematol Oncol. 2016;9(1):10. https://doi.org/10.1186/s13045-016-0236-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Chamorro S, Vela M, Franco-Villanueva A, Carramolino L, Gutiérrez J, Gómez L, Lozano M, et al. “Antitumor effects of a monoclonal antibody to human CCR9 in leukemia cell xenografts.” MAbs. 2014;6(4):1000–12. https://doi.org/10.4161/mabs.29063.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Somovilla-Crespo, Beatriz, Maria Teresa Martín Monzón, Maria Vela, Isabel Corraliza-Gorjón, Silvia Santamaria, Jose A. Garcia-Sanz, and Leonor Kremer. “92R monoclonal antibody inhibits human CCR9+ leukemia cells growth in NSG mice xenografts.” Frontiers in Immunology 9 (2018). https://doi.org/10.3389/fimmu.2018.00077.

  62. Kogan, Avi N, and Ulrich H von Andrian. “Chapter 10 - Lymphocyte Trafficking.” In Microcirculation (Second Edition), edited by Ronald F. Tuma, Walter N. Durán, and Klaus Ley, 449–82. San Diego: Academic Press, 2008. https://doi.org/10.1016/B978-0-12-374530-9.00012-7.

  63. Pivarcsi A, Müller A, Hippe A, Rieker J, van Lierop A, Steinhoff M, Seeliger S, et al. “Tumor immune escape by the loss of homeostatic chemokine expression.” Proc Natl Acad Sci. 2007;104(48):19055–60. https://doi.org/10.1073/pnas.0705673104.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Thangavadivel S, Zelle-Rieser C, Olivier A, Postert B, Untergasser G, Kern J, Brunner A, et al. “CCR10/CCL27 crosstalk contributes to failure of proteasome-inhibitors in multiple myeloma.” Oncotarget. 2016;7(48):78605–18. https://doi.org/10.18632/oncotarget.12522.

    Article  PubMed  PubMed Central  Google Scholar 

  65. • Ji, Lu, Wei Qian, Liming Gui, Zhongzhong Ji, Pan Yin, Guan Ning Lin, You Wang, Bin Ma, and Wei-Qiang Gao. “Blockade of β-catenin–induced CCL28 suppresses gastric cancer progression via inhibition of Treg cell infiltration.” Cancer Research 80, no. 10 (May 15, 2020): 2004–16. https://doi.org/10.1158/0008-5472.CAN-19-3074. (This study demonstrates that chemokine antagonism can be achieved indirectly, allowing for more unique approaches to treatment.)

  66. Karnezis T, Farnsworth RH, Harris NC, Williams SP, Caesar C, Byrne DJ, Herle P, et al. “CCL27/CCL28–CCR10 chemokine signaling mediates migration of lymphatic endothelial cells.” Cancer Res. 2019;79(7):1558–72. https://doi.org/10.1158/0008-5472.CAN-18-1858.

    Article  CAS  PubMed  Google Scholar 

  67. Yang XL, Kai YL, Feng JL, Hui MS, Zhou LO. “CCL28 promotes breast cancer growth and metastasis through MAPK-mediated cellular anti-apoptosis and pro-metastasis.” Oncology Rep. 2017;38(3):1393–401. https://doi.org/10.3892/or.2017.5798.

    Article  CAS  Google Scholar 

  68. Wu Q, Jin-xian C, Yu C, Li-li C, Xiao-zhong W, Wu-hua G, Jian-feng Z. “The chemokine receptor CCR10 promotes inflammation-driven hepatocarcinogenesis via PI3K/Akt pathway activation.” Cell Death Dis. 2018;9(2):1–18. https://doi.org/10.1038/s41419-018-0267-9.

    Article  CAS  Google Scholar 

  69. Park J, Xianglan Z, Sun KL, Na-Young S, Seung S, Ki RK, Jae Hoon S, Kwang-Kyun P, Won-Yoon C. CCL28-induced RARβ expression inhibits oral squamous cell carcinoma bone invasion. J Clin Investigation. 2019;129(12):5381–99. https://doi.org/10.1172/JCI125336.

    Article  CAS  Google Scholar 

  70. Liu P, Liang Y, Jiang L, Wang H, Wang S, Dong J. CX3CL1/fractalkine enhances prostate cancer spinal metastasis by activating the Src/FAK pathway. Int J Oncol. July 2018;53(4):1544–56. https://doi.org/10.3892/ijo.2018.4487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Tang J, Xiao L, Cui R, Li D, Zheng X, Zhu L, Sun H, Pan Y, Du Y, Yu X. CX3CL1 increases invasiveness and metastasis by promoting epithelial-to-mesenchymal transition through the TACE/TGF-α/EGFR pathway in hypoxic androgen-independent prostate cancer cells. Oncol Rep. 2016;35(2):1153–62. https://doi.org/10.3892/or.2015.4470.

    Article  CAS  PubMed  Google Scholar 

  72. Liang Y, Yi L, Liu P, Jiang L, Wang H, Annan Hu, Sun C, Dong J. CX3CL1 involves in breast cancer metastasizing to the spine via the Src/FAK signaling pathway. J Cancer. September 2018;9(19):3603–12. https://doi.org/10.7150/jca.26497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang FR, Xu SH, Wang BM, Wang F. “MiR-485–5p inhibits metastasis and proliferation of osteosarcoma by targeting CX3CL1.” Eur Rev Med Pharmacol Sci. 2018;22(21):7197–204. https://doi.org/10.26355/eurrev_201811_16253.

    Article  PubMed  Google Scholar 

  74. Wei LM, Cao S, Yu WD, Liu YL, Wang JT. Overexpression of CX3CR1 is associated with cellular metastasis, proliferation and survival in gastric cancer. Oncol Rep. February 2015;33(2):615–24. https://doi.org/10.3892/or.2014.3645.

    Article  CAS  PubMed  Google Scholar 

  75. Hyakudomi M, Matsubara T, Hyakudomi R, Yamamoto T, Kinugasa S, Yamanoi A, Maruyama R, Tanaka T. Increased expression of fractalkine is correlated with a better prognosis and an increased number of both CD8+ T cells and natural killer cells in gastric adenocarcinoma. Ann Surg Oncol. June 2008;15(6):1775–82. https://doi.org/10.1245/s10434-008-9876-3.

    Article  PubMed  Google Scholar 

  76. Wang J, Ou ZL, Hou YF, Luo JM, Shen ZZ, Ding J, Shao ZM. “Enhanced expression of Duffy antigen receptor for chemokines by breast cancer cells attenuates growth and metastasis potential.” Oncogene. 2006;25(54):7201–11. https://doi.org/10.1038/sj.onc.1209703.

    Article  CAS  PubMed  Google Scholar 

  77. Shen H, Schuster R, Stringer KF, Waltz SE, Lentsch AB. The Duffy antigen/receptor for chemokines (DARC) regulates prostate tumor growth. FASEB J. January 2006;20(1):59–64. https://doi.org/10.1096/fj.05-4764com.

    Article  CAS  PubMed  Google Scholar 

  78. Addison, C. L., Belperio, J. A., Burdick, M. D., and Strieter, R. M. “Overexpression of the duffy antigen receptor for chemokines (DARC) by NSCLC tumor cells results in increased tumor necrosis.” BMC Cancer 4, no. 28 (June 2004). https://doi.org/10.1186/1471-2407-4-28.

  79. Savino B, Caronni N, Anselmo A, Pasqualini F, Borroni EM, Basso G, Celesti G, Laghi L, Tourlaki A, Boneschi V, Brambilla L, Nebuloni M, Vago G, Mantovani A, Locati M, Bonecchi R. ERK-dependent downregulation of the atypical chemokine receptor D6 drives tumor aggressiveness in Kaposi sarcoma. Cancer Immunol Res. July 2014;2(7):679–89. https://doi.org/10.1158/2326-6066.CIR-13-0202.

    Article  CAS  PubMed  Google Scholar 

  80. Wu FY, Ou ZL, Feng LY, Luo JM, Wang LP, Shen ZZ, Shao ZM. Chemokine decoy receptor d6 plays a negative role in human breast cancer. Mol Cancer Res. August 2008;6(8):1276–88. https://doi.org/10.1158/1541-7786.MCR-07-2108.

    Article  CAS  PubMed  Google Scholar 

  81. Wu FY, Fan J, Tang L, Zhao YM, Zhou CC. Atypical chemokine receptor D6 inhibits human non-small cell lung cancer growth by sequestration of chemokines. Oncol Lett. July 2013;6(1):91–5. https://doi.org/10.3892/ol.2013.1358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Salazar N, Carlson JC, Huang K, Zheng Y, Oderup C, Gross J, Jang AD, Burke TM, Lewén S, Scholz A, Huang S, Nease L, Kosek J, Mittelbronn M, Butcher EC, Tu H, Zabel BA. A chimeric antibody against ACKR3/CXCR7 in combination with TMZ activates immune responses and extends survival in mouse GBM models. Molecular Therapy: The Journal of the American Society of Gene Therapy. May 2018;26(5):1354–65. https://doi.org/10.1016/j.ymthe.2018.02.030.

    Article  CAS  Google Scholar 

  83. Qian T, Liu Y, Dong Y, Zhang L, Dong Y, Sun Y, Sun D. CXCR7 regulates breast tumor metastasis and angiogenesis in vivo and in vitro. Mol Med Rep. March 2018;17(3):3633–9. https://doi.org/10.3892/mmr.2017.8286.

    Article  CAS  PubMed  Google Scholar 

  84. Luo Y, Azad AK, Karanika S, Basourakos SP, Zuo X, Wang J, Yang L, Yang G, Korentzelos D, Yin J, Park S, Zhang P, Campbell JJ, Schall TJ, Cao G, Li L, Thompson TC. Enzalutamide and CXCR7 inhibitor combination treatment suppresses cell growth and angiogenic signaling in castration-resistant prostate cancer models. Int J Cancer. May 2018;142(10):2163–74. https://doi.org/10.1002/ijc.31237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rafiei S, Gui B, Wu J, Liu XS, Kibel AS, Jia L. Targeting the MIF/CXCR7/AKT signaling pathway in castration-resistant prostate cancer. Mol Cancer Res. September 2017;17(1):263–76. https://doi.org/10.1158/1541-7786.MCR-18-0412.

    Article  Google Scholar 

  86. Feng LY, Ou ZL, Wu FY, Shen ZZ, Shao ZM. Involvement of a novel chemokine decoy receptor CCX-CKR in breast cancer growth, metastasis and patient survival. Clin Cancer Res. May 2009;15(9):2962–70. https://doi.org/10.1158/1078-0432.CCR-08-2495.

    Article  CAS  PubMed  Google Scholar 

  87. Shi JY, Yang LX, Wang ZC, Wang LY, Zhou J, Wang XY, Shi GM, Ding ZB, Ke AW, Dai Z, Qiu SJ, Tang QQ, Gao Q, Fan J. CC chemokine receptor-like 1 functions as a tumour suppressor by impairing CCR7-related chemotaxis in hepatocellular carcinoma. J Pathol. March 2015;235(4):546–58. https://doi.org/10.1002/path.4450.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This project was supported by Funk Out Cancer and the University of Wisconsin Carbone Cancer Center (P30 CA014520).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dustin Deming.

Ethics declarations

Conflict of Interest

Sean Kraus declares that he has no conflict of interest.

Thomas Kolman declares that he has no conflict of interest.

Austin Yeung declares that he has no conflict of interest.

Dustin Deming has received research funding from Bristol-Myers Squibb and Genentech, and has received compensation from Bristol-Myers Squibb, Genentech, and Merck for service as a consultant.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical collection on Evolving Therapies

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraus, S., Kolman, T., Yeung, A. et al. Chemokine Receptor Antagonists: Role in Oncology. Curr Oncol Rep 23, 131 (2021). https://doi.org/10.1007/s11912-021-01117-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11912-021-01117-8

Keywords

Navigation