Skip to main content

Advertisement

Log in

Role of Aspirin in Breast Cancer Survival

  • Breast Cancer (B Overmoyer, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Chemotherapy and hormonal therapy have significantly decreased breast cancer mortality, although with considerable side effects and financial costs. In the USA, over three million women are living after a breast cancer diagnosis and are eager for new treatments that are low in toxicity and cost. Multiple observational studies have reported improved breast cancer survival with regular aspirin use. Furthermore, pooled data from five large randomized trials of aspirin for cardiovascular disease showed that subjects on aspirin had decreased risk of cancer mortality and decreased risk of metastatic cancer. Although the potential mechanism for aspirin preventing breast cancer is not known, possible pathways may involve platelets, inflammation, cyclooxygenase (COX) 2, hormones, or PI3 kinase. This review article summarizes the current epidemiologic and clinical trial evidence as well as possible underlying mechanisms that justify current phase III randomized trials of aspirin to improve breast cancer survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Elwood PC, et al. Aspirin in the treatment of cancer: reductions in metastatic spread and in mortality: a systematic review and meta-analyses of published studies. PLoS One. 2016;11(4):e0152402.

    Article  PubMed  PubMed Central  Google Scholar 

  2. • Huang XZ, et al. Aspirin and nonsteroidal anti-inflammatory drugs after but not before diagnosis are associated with improved breast cancer survival: a meta-analysis. Cancer Causes Control. 2015;26(4):589–600. This meta-analysis evaluates the association both including and excluding the randomized trial aspirin data

    Article  PubMed  Google Scholar 

  3. Zhong S, et al. Association between aspirin use and mortality in breast cancer patients: a meta-analysis of observational studies. Breast Cancer Res Treat. 2015;150(1):199–207.

    Article  CAS  PubMed  Google Scholar 

  4. Blair CK, et al. NSAID use and survival after breast cancer diagnosis in post-menopausal women. Breast Cancer Res Treat. 2007;101(2):191–7.

    Article  CAS  PubMed  Google Scholar 

  5. Fraser, D.M., et al., Aspirin use and survival after the diagnosis of breast cancer: a population-based cohort study. Br J Cancer. 2014;111(3):623–7.

  6. Holmes, M.D., et al., Aspirin intake and survival after breast cancer. J Clin Oncol. 2010;28(9):1467–72.

  7. Holmes MD, et al. Aspirin intake and breast cancer survival—a nation-wide study using prospectively recorded data in Sweden. BMC Cancer. 2014;14:391.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Murray LJ, et al. Post-diagnostic prescriptions for low-dose aspirin and breast cancer-specific survival: a nested case-control study in a breast cancer cohort from the UK Clinical Practice Research Datalink. Breast Cancer Res. 2014;16(2):R34.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wernli KJ, et al. Use of antidepressants and NSAIDs in relation to mortality in long-term breast cancer survivors. Pharmacoepidemiol Drug Saf. 2011;20(2):131–7.

    Article  PubMed  Google Scholar 

  10. Barron TI, et al. Recent prediagnostic aspirin use, lymph node involvement, and 5-year mortality in women with stage I-III breast cancer: a nationwide population-based cohort study. Cancer Res. 2014;74(15):4065–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rothwell PM, et al. Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials. Lancet. 2012;379(9826):1591–601.

    Article  CAS  PubMed  Google Scholar 

  12. Falandry C, et al. Celecoxib and exemestane versus placebo and exemestane in postmenopausal metastatic breast cancer patients: a double-blind phase III GINECO study. Breast Cancer Res Treat. 2009;116(3):501–8.

    Article  CAS  PubMed  Google Scholar 

  13. Dirix LY, et al. Treatment of advanced hormone-sensitive breast cancer in postmenopausal women with exemestane alone or in combination with celecoxib. J Clin Oncol. 2008;26(8):1253–9.

    Article  CAS  PubMed  Google Scholar 

  14. Dang CT, et al. Phase II study of celecoxib and trastuzumab in metastatic breast cancer patients who have progressed after prior trastuzumab-based treatments. Clin Cancer Res. 2004;10(12 Pt 1):4062–7.

    Article  CAS  PubMed  Google Scholar 

  15. Martin LA, et al. Pre-surgical study of the biological effects of the selective cyclo-oxygenase-2 inhibitor celecoxib in patients with primary breast cancer. Breast Cancer Res Treat. 2010;123(3):829–36.

    Article  PubMed  Google Scholar 

  16. Brandao RD, et al. A randomised controlled phase II trial of pre-operative celecoxib treatment reveals anti-tumour transcriptional response in primary breast cancer. Breast cancer research : BCR. 2013;15(2):R29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Aristarco V, et al. A randomized, placebo-controlled, phase II, presurgical biomarker trial of celecoxib versus exemestane in postmenopausal breast cancer patients. Cancer Prev Res (Phila). 2016;9(5):349–56.

    Article  CAS  Google Scholar 

  18. Chow LW, et al. Celecoxib anti-aromatase neoadjuvant (CAAN) trial for locally advanced breast cancer. J Steroid Biochem Mol Biol. 2008;111(1–2):13–7.

    Article  CAS  PubMed  Google Scholar 

  19. Goss PE, et al. Exemestane versus anastrozole in postmenopausal women with early breast cancer: NCIC CTG MA.27—a randomized controlled phase III trial. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2013;31(11):1398–404.

    Article  CAS  Google Scholar 

  20. Williams CS, Mann M, DuBois RN. The role of cyclooxygenases in inflammation, cancer, and development. Oncogene. 1999;18(55):7908–16.

    Article  CAS  PubMed  Google Scholar 

  21. Ulrich CM, Bigler J, Potter JD. Non-steroidal anti-inflammatory drugs for cancer prevention: promise, perils and pharmacogenetics. Nat Rev Cancer. 2006;6(2):130–40.

    Article  CAS  PubMed  Google Scholar 

  22. Bennett A, et al. Prostaglandins and breast cancer. Lancet. 1977;2(8039):624–6.

    Article  CAS  PubMed  Google Scholar 

  23. McFadden DW, et al. Additive effects of Cox-1 and Cox-2 inhibition on breast cancer in vitro. Int J Oncol. 2006;29(4):1019–23.

    CAS  PubMed  Google Scholar 

  24. Liu W, et al. Combination of radiation and celebrex (celecoxib) reduce mammary and lung tumor growth. Am J Clin Oncol. 2003;26(4):S103–9.

    Article  PubMed  Google Scholar 

  25. Tsujii M, DuBois RN. Alterations in cellular adhesion and apoptosis in epithelial cells overexpressing prostaglandin endoperoxide synthase 2. Cell. 1995;83(3):493–501.

    Article  CAS  PubMed  Google Scholar 

  26. Ristimaki A, et al. Prognostic significance of elevated cyclooxygenase-2 expression in breast cancer. Cancer Res. 2002;62(3):632–5.

    CAS  PubMed  Google Scholar 

  27. Denkert C, et al. Elevated expression of cyclooxygenase-2 is a negative prognostic factor for disease free survival and overall survival in patients with breast carcinoma. Cancer. 2003;97(12):2978–87.

    Article  CAS  PubMed  Google Scholar 

  28. Wulfing P, et al. Analysis of cyclooxygenase-2 expression in human breast cancer: high throughput tissue microarray analysis. J Cancer Res Clin Oncol. 2003;129(7):375–82.

    Article  PubMed  Google Scholar 

  29. Baylin A, et al. Adipose tissue biomarkers of fatty acid intake. Am J Clin Nutr. 2002;76(4):750–7.

    CAS  PubMed  Google Scholar 

  30. Costa C, et al. Cyclo-oxygenase 2 expression is associated with angiogenesis and lymph node metastasis in human breast cancer. J Clin Pathol. 2002;55(6):429–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Subbaramaiah K, et al. Cyclooxygenase-2 is overexpressed in HER-2/neu-positive breast cancer: evidence for involvement of AP-1 and PEA3. J Biol Chem. 2002;277(21):18649–57.

    Article  CAS  PubMed  Google Scholar 

  32. Ranger GS, et al. Elevated cyclooxygenase-2 expression correlates with distant metastases in breast cancer. Anticancer Res. 2004;24(4):2349–51.

    CAS  PubMed  Google Scholar 

  33. Spizzo G, et al. Correlation of COX-2 and Ep-CAM overexpression in human invasive breast cancer and its impact on survival. Br J Cancer. 2003;88(4):574–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Holmes MD, et al. COX-2 expression predicts worse breast cancer prognosis and does not modify the association with aspirin. Breast Cancer Res Treat. 2011;130(2):657–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. • Hugo HJ, et al. New insights on COX-2 in chronic inflammation driving breast cancer growth and metastasis. J Mammary Gland Biol Neoplasia. 2015;20(3–4):109–19. This article reviews potential mechanisms linking COX-2, inflammation, aspirin, and breast cancer

    Article  PubMed  Google Scholar 

  36. Zelenay S, et al. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell. 2015;162(6):1257–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liu XH, Rose DP. Differential expression and regulation of cyclooxygenase-1 and -2 in two human breast cancer cell lines. Cancer Res. 1996;56(22):5125–7.

    CAS  PubMed  Google Scholar 

  38. Natarajan K, et al. Exposure of human breast cancer cells to the anti-inflammatory agent indomethacin alters choline phospholipid metabolites and Nm23 expression. Neoplasia. 2002;4(5):409–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hwang D, et al. Expression of cyclooxygenase-1 and cyclooxygenase-2 in human breast cancer. J Natl Cancer Inst. 1998;90(6):455–60.

    Article  CAS  PubMed  Google Scholar 

  40. Yoshimura N, et al. Expression of cyclooxygenase-1 and -2 in human breast cancer. Surg Today. 2003;33(11):805–11.

    Article  CAS  PubMed  Google Scholar 

  41. Basu S, et al. Cellular expression of cyclooxygenase, aromatase, adipokines, inflammation and cell proliferation markers in breast cancer specimen. PLoS One. 2015;10(10):e0138443.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gay LJ, Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Cancer. 2011;11(2):123–34.

    Article  CAS  PubMed  Google Scholar 

  43. Sierko E, Wojtukiewicz MZ. Inhibition of platelet function: does it offer a chance of better cancer progression control? Semin Thromb Hemost. 2007;33(7):712–21.

    Article  CAS  PubMed  Google Scholar 

  44. Mohle R, et al. Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proc Natl Acad Sci U S A. 1997;94(2):663–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Coppinger JA, et al. Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions. Blood. 2004;103(6):2096–104.

    Article  CAS  PubMed  Google Scholar 

  46. Smyth SS, et al. Platelet functions beyond hemostasis. J Thromb Haemost. 2009;7(11):1759–66.

    Article  CAS  PubMed  Google Scholar 

  47. Holmes CE, et al. Initiation of aspirin therapy modulates angiogenic protein levels in women with breast cancer receiving tamoxifen therapy. Clin Transl Sci. 2013;6(5):386–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Sindelar WF, Tralka TS, Ketcham AS. Electron microscopic observations on formation of pulmonary metastases. J Surg Res. 1975;18(2):137–61.

    Article  CAS  PubMed  Google Scholar 

  49. Borsig L, et al. Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc Natl Acad Sci U S A. 2001;98(6):3352–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Nieswandt B, et al. Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res. 1999;59(6):1295–300.

    CAS  PubMed  Google Scholar 

  51. Felding-Habermann B, et al. Role of beta3 integrins in melanoma cell adhesion to activated platelets under flow. J Biol Chem. 1996;271(10):5892–900.

    Article  CAS  PubMed  Google Scholar 

  52. Elwood PC, et al. Aspirin, salicylates, and cancer. Lancet. 2009;373(9671):1301–9.

    Article  CAS  PubMed  Google Scholar 

  53. Rocca B, et al. Cyclooxygenase-2 expression is induced during human megakaryopoiesis and characterizes newly formed platelets. Proc Natl Acad Sci U S A. 2002;99(11):7634–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pulcinelli FM, et al. Inhibition of platelet aggregation by aspirin progressively decreases in long-term treated patients. J Am Coll Cardiol. 2004;43(6):979–84.

    Article  CAS  PubMed  Google Scholar 

  55. Engelman JA. Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer. 2009;9(8):550–62.

    Article  CAS  PubMed  Google Scholar 

  56. Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell. 2007;129(7):1261–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Franke TF, et al. Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science. 1997;275(5300):665–8.

    Article  CAS  PubMed  Google Scholar 

  58. Banerji S, et al. Sequence analysis of mutations and translocations across breast cancer subtypes. Nature. 2012;486(7403):405–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dasari A, Messersmith WA. New strategies in colorectal cancer: biomarkers of response to epidermal growth factor receptor monoclonal antibodies and potential therapeutic targets in phosphoinositide 3-kinase and mitogen-activated protein kinase pathways. Clin Cancer Res. 2010;16(15):3811–8.

    Article  CAS  PubMed  Google Scholar 

  60. Pandolfi PP. Breast cancer—loss of PTEN predicts resistance to treatment. N Engl J Med. 2004;351(22):2337–8.

    Article  CAS  PubMed  Google Scholar 

  61. Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 2006;7(8):606–19.

    Article  CAS  PubMed  Google Scholar 

  62. Zhao L, Vogt PK. Class I PI3K in oncogenic cellular transformation. Oncogene. 2008;27(41):5486–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cancer Genome Atlas, N. Comprehensive molecular portraits of human breast tumours. Nature. 2012;490(7418):61–70.

    Article  Google Scholar 

  64. Glynn SA, et al. COX-2 activation is associated with Akt phosphorylation and poor survival in ER-negative, HER2-positive breast cancer. BMC Cancer. 2010;10:626.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Liao X, et al. Aspirin use, tumor PIK3CA mutation, and colorectal-cancer survival. N Engl J Med. 2012;367(17):1596–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. • Domingo E, et al. Evaluation of PIK3CA mutation as a predictor of benefit from nonsteroidal anti-inflammatory drug therapy in colorectal cancer. J Clin Oncol. 2013;31(34):4297–305. This is one of several studies that show that the aspirin association for colorectal cancer is more strongly seen with PI3K mutant tumors

    Article  CAS  PubMed  Google Scholar 

  67. Din FV, et al. Aspirin inhibits mTOR signaling, activates AMP-activated protein kinase, and induces autophagy in colorectal cancer cells. Gastroenterology. 2012;142(7):1504–15. e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hudson AG, et al. Nonsteroidal anti-inflammatory drug use and serum total estradiol in postmenopausal women. Cancer Epidemiol Biomark Prev. 2008;17(3):680–7.

    Article  CAS  Google Scholar 

  69. Carey LA, et al. Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA. 2006;295(21):2492–502.

    Article  CAS  PubMed  Google Scholar 

  70. Duggan, C., et al., Aspirin and serum estrogens in postmenopausal women: a randomized controlled clinical trial. Cancer Prev Res. 2014;7(9):906–912.

  71. Fortner RT, et al. Analgesic use and patterns of estrogen metabolism in premenopausal women. Horm Cancer. 2014;5(2):104–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Burstein HJ, et al. Adjuvant endocrine therapy for women with hormone receptor-positive breast cancer: American society of clinical oncology clinical practice guideline focused update. J Clin Oncol. 2014;32(21):2255–69.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Brodie AM, et al. Aromatase and COX-2 expression in human breast cancers. J Steroid Biochem Mol Biol. 2001;79(1–5):41–7.

    Article  CAS  PubMed  Google Scholar 

  74. Brueggemeier RW, et al. Translational studies on aromatase, cyclooxygenases, and enzyme inhibitors in breast cancer. J Steroid Biochem Mol Biol. 2005;95(1–5):129–36.

    Article  CAS  PubMed  Google Scholar 

  75. Karuppu D, et al. Aromatase and prostaglandin inter-relationships in breast adipose tissue: significance for breast cancer development. Breast Cancer Res Treat. 2002;76(2):103–9.

    Article  CAS  PubMed  Google Scholar 

  76. Subbaramaiah K, et al. Increased levels of COX-2 and prostaglandin E2 contribute to elevated aromatase expression in inflamed breast tissue of obese women. Cancer Discov. 2012;2(4):356–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. • Bowers LW, et al. NSAID use reduces breast cancer recurrence in overweight and obese women: role of prostaglandin-aromatase interactions. Cancer Res. 2014;74(16):4446–57. This study combines both epidemiologic and in vitro data to evaluate how NSAID use may decrease breast cancer recurrence

    Article  CAS  PubMed  Google Scholar 

  78. Morris PG, et al. Inflammation and increased aromatase expression occur in the breast tissue of obese women with breast cancer. Cancer Prev Res. 2011;4(7):1021–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendy Y. Chen.

Ethics declarations

Conflict of Interest

Wendy Y. Chen and Michelle D. Holmes have received aspirin and placebo from Bayer Pharmaceuticals for a randomized trial of aspirin for breast cancer survivors. Dr. Chen serves as the study chair, and Dr. Holmes serves as the co-principal investigator.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Breast Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W.Y., Holmes, M.D. Role of Aspirin in Breast Cancer Survival. Curr Oncol Rep 19, 48 (2017). https://doi.org/10.1007/s11912-017-0605-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11912-017-0605-6

Keywords

Navigation