Skip to main content

Advertisement

Log in

Endoglin for Targeted Cancer Treatment

  • Evolving Therapies (R Bukowski, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Endoglin is a homodimeric cell membrane glycoprotein receptor for transforming growth factor β and bone morphogenetic proteins. Endoglin is essential for angiogenesis, being densely expressed on proliferating endothelial cells and upregulated during hypoxia. Its expression is implicated in development of resistance to vascular endothelial growth factor (VEGF) inhibition. TRC105 is an antibody that binds endoglin and prevents endothelial cell activation. Targeting endoglin and the VEGF pathway concurrently improves treatment in vitro and appears to reverse resistance to bevacizumab in some refractory cancer patients. Randomized trials are under way to assess the clinical benefit of adding TRC105 therapy to bevacizumab therapy. Further trials are under way to assess the activity of TRC105 with small-molecule inhibitors of the VEGF pathway in renal cell carcinoma, hepatocellular carcinoma, and soft tissue sarcoma. Stratification of soft tissue sarcomas based on endoglin expression levels is proposed to identify patients most likely to benefit from TRC105 treatment. The development of a TRC105 antibody–drug conjugate is also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9:653–60.

    Article  CAS  PubMed  Google Scholar 

  2. Folkman J, Shing Y. Angiogenesis. J Biol Chem. 1992;267:10931–4.

    CAS  PubMed  Google Scholar 

  3. Hurwitz H, Fehrehbacher L, Novotny W, et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med. 2004;350:2335–42.

    Article  CAS  PubMed  Google Scholar 

  4. Sandler A, Gray R, Perry MC, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med. 2006;355:2542–50.

    Article  CAS  PubMed  Google Scholar 

  5. Cannistra SA, Matulonis UA, Penson RT, et al. Phase II study of bevacizumab in patients with platinum-resistant ovarian cancer or peritoneal serous cancer. J Clin Oncol. 2007;25:5180–6.

    Article  CAS  PubMed  Google Scholar 

  6. Friedman HS, Prados MD, Wen P, et al. Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol. 2009;27:4733–40.

    Article  CAS  PubMed  Google Scholar 

  7. Escudier B, Bellmunt J, Negrier S, et al. Phase III trial of bevacizumab plus interferon alfa-2a in patients with metastatic renal cell carcinoma (AVOREN): final analysis of overall survival. J Clin Oncol. 2010;28:2144–50.

    Article  CAS  PubMed  Google Scholar 

  8. Joulain F, Proskorovsky I, Allegra C, et al. Mean overall survival gain with aflibercept plus FOLFIRI vs placebo plus FOLFIRI in patients with previously treated metastatic colorectal cancer. Br J Cancer. 2013;109:1735–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Escudier B, Eisen T, Stadler WM, et al. Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med. 2007;356:125–34.

    Article  CAS  PubMed  Google Scholar 

  10. Llovet JM, Ricci S, Mazzaferro V, et al. Sorafenib in advanced hepatocellular carcinoma. N Engl J Med. 2008;359:378–90.

    Article  CAS  PubMed  Google Scholar 

  11. Motzer RJ, Hutson TE, Tonczak P, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356:115–24.

    Article  CAS  PubMed  Google Scholar 

  12. Rini BI, Halabi S, Rosenberg JE, et al. Phase III trial of bevacizumab plus interferon alfa versus interferon alfa monotherapy in patients with metastatic renal cell carcinoma: final results of CALGB 90206. J Clin Oncol. 2010;28:2137–43.

    Article  CAS  PubMed  Google Scholar 

  13. Rini BI, Escudier B, Tomczak P, et al. Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet. 2011;378:1931–9.

    Article  CAS  PubMed  Google Scholar 

  14. Grothey A, Van Cutsem E, Sobrero A, et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet. 2013;381:303–12.

    Article  CAS  PubMed  Google Scholar 

  15. van der Graaf WT, Blay JY, Chawla SP, et al. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo-controlled phase 3 trial. Lancet. 2012;379:1879–86.

    Article  PubMed  Google Scholar 

  16. Ferrara N. Pathways mediating VEGF-independent tumor angiogenesis. Cytokine Growth Factor Rev. 2010;21:21–6.

    Article  CAS  PubMed  Google Scholar 

  17. Bergers G. Hanahan.D. Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer. 2008;8:592–603.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Haruta Y, Seon BK. Distinct human leukemia-associated cell surface glycoprotein GP160 defined by monoclonal antibody SN6. Proc Natl Acad Sci U S A. 1986;83:7898–902.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Gougos A, Letarte M. Identification of a human endothelial cell antigen with monoclonal antibody 44G4 produced against a pre-B leukemic cell line. J Immunol. 1988;141:1925–33.

    CAS  PubMed  Google Scholar 

  20. Li DY, Sorensen LK, Brooke BS, et al. Defective angiogenesis in mice lacking endoglin. Science. 1999;284:1534–7.

    Article  CAS  PubMed  Google Scholar 

  21. Dallas NA, Samuel S, Xia L, et al. Endoglin (CD105): a marker of tumor vasculature and potential target for therapy. Clin Cancer Res. 2008;14:1931–7.

    Article  CAS  PubMed  Google Scholar 

  22. Paauwe M, ten Dijke P, Hawinkels LJ. Endoglin for tumor imaging and targeted cancer therapy. Expert Opin Ther Targets. 2013;17:421–35.

    Article  CAS  PubMed  Google Scholar 

  23. Burrows FJ, Derbyshire EJ, Tazzari PL, et al. Up-regulation of endoglin on vascular endothelial cells in human solid tumors: implications for diagnosis and therapy. Clin Cancer Res. 1995;1:1623–34.

    CAS  PubMed  Google Scholar 

  24. She X et al. Synergy between anti-endoglin (CD105) monoclonal antibodies and TGF-beta in suppression of growth of human endothelial cells. Int J Cancer. 2004;108(2):251–7.

    Article  CAS  PubMed  Google Scholar 

  25. Li C, Issa R, Kumar P, et al. CD105 prevents apoptosis in hypoxic endothelial cells. J Cell Sci. 2003;116:2677–85.

    Article  CAS  PubMed  Google Scholar 

  26. Sánchez-Elsner T, Botella LM, Velasco B, et al. Endoglin expression is regulated by transcriptional cooperation between the hypoxia and transforming growth factor-beta pathways. J Biol Chem. 2002;277:43799–808.

    Article  PubMed  Google Scholar 

  27. van Laake LW, van den Driesche S, Post S, et al. Endoglin has a crucial role in blood cell-mediated vascular repair. Circulation. 2006;114:2288–97.

    Article  PubMed  Google Scholar 

  28. Lenato GM, Guanti G. Hereditary haemorrhagic telangiectasia (HHT): genetic and molecular aspects. Curr Pharm Des. 2006;12:1173–93.

    Article  CAS  PubMed  Google Scholar 

  29. Sabba C, Pasculli G, Lenato GM, et al. Life expectancy in patients with hereditary haemorrhagic telangiectasia. J Thromb Haemost. 2007;5:1149–57.

    Article  CAS  PubMed  Google Scholar 

  30. Rokhlin OW, Cohen MB, Kubagawa H, et al. Differential expression of endoglin on fetal and adult hematopoietic cells in human bone marrow. J Immunol. 1995;154:4456–65.

    CAS  PubMed  Google Scholar 

  31. Kumar S, Ghellal A, Li C, et al. Breast carcinoma: vascular density determined using CD105 antibody correlates with tumor prognosis. Cancer Res. 1999;59:856–61.

    CAS  PubMed  Google Scholar 

  32. Vo MN, Evans M, Leitzel K, et al. Elevated plasma endoglin (CD105) predicts decreased response and survival in a metastatic breast cancer trial of hormone therapy. Breast Cancer Res Treat. 2008;119:767–71.

    Article  PubMed  Google Scholar 

  33. Tanaka F, Otake Y, Yanagihara K, et al. Evaluation of angiogenesis in non-small cell lung cancer: comparison between anti-CD34 antibody and anti-CD105 antibody. Clin Cancer Res. 2001;7:3410–5.

    CAS  PubMed  Google Scholar 

  34. El-Gohary YM, Silverman JF, Olson PR, et al. Endoglin (CD105) and vascular endothelial growth factor as prognostic markers in prostatic adenocarcinoma. Am J Clin Pathol. 2007;127:572–9.

    Article  CAS  PubMed  Google Scholar 

  35. Svatek RS, Karam JA, Roehrborn CG, et al. Preoperative plasma endoglin levels predict biochemical progression after radical prostatectomy. Clin Cancer Res. 2008;14:3362–6.

    Article  CAS  PubMed  Google Scholar 

  36. Li C, Gardy R, Seon BK, et al. Both high intratumoral microvessel density determined using CD105 antibody and elevated plasma levels of CD105 in colorectal cancer patients correlate with poor prognosis. Br J Cancer. 2003;88:1424–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Romani AA, Borghetti AF, Del Rio P, et al. The risk of developing metastatic disease in colorectal cancer is related to CD105-positive vessel count. J Surg Oncol. 2006;93:446–55.

    Article  PubMed  Google Scholar 

  38. Rubatt JM, Darcy KM, Hutson A, et al. Independent prognostic relevance of microvessel density in advanced epithelial ovarian cancer and associations between CD31, CD105, p53 status, and angiogenic marker expression: a Gynecologic Oncology Group study. Gynecol Oncol. 2009;112:469–74.

    Article  CAS  PubMed  Google Scholar 

  39. Taskiran C, Erdem O, Onan A, et al. The prognostic value of endoglin (CD105) expression in ovarian carcinoma. Int J Gynecol Cancer. 2006;16:1789–93.

    Article  CAS  PubMed  Google Scholar 

  40. Ding S, Li C, Lin S, et al. Comparative evaluation of microvessel density determined by CD34 or CD105 in benign and malignant gastric lesions. Hum Pathol. 2006;37:861–6.

    Article  CAS  PubMed  Google Scholar 

  41. Erdem O, Taskiran C, Onan MA, et al. CD105 expression is an independent predictor of survival in patients with endometrial cancer. Gynecol Oncol. 2006;103:1007–11.

    Article  CAS  PubMed  Google Scholar 

  42. Yao Y, Kubota T, Takeuchi H, et al. Prognostic significance of microvessel density determined by an anti-CD105/endoglin monoclonal antibody in astrocytic tumors: comparison with an anti-CD31 monoclonal antibody. Neuropathology. 2005;25:201–6.

    Article  PubMed  Google Scholar 

  43. Yang LY, Lu WQ, Huang GW, et al. Correlation between CD105 expression and postoperative recurrence and metastasis of hepatocellular carcinoma. BMC Cancer. 2006;6:110.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Saad RS, El-Gohary Y, Memari E, et al. Endoglin (CD105) and vascular endothelial growth factor as prognostic markers in esophageal adenocarcinoma. Hum Pathol. 2005;36:955–61.

    Article  CAS  PubMed  Google Scholar 

  45. Kyzas PA, Agnantis NJ, Stefanou D. Endoglin (CD105) as a prognostic factor in head and neck squamous cell carcinoma. Virchows Arch. 2006;448:768–75.

    Article  CAS  PubMed  Google Scholar 

  46. Marioni G, Staffieri A, Manzato E, et al. Endoglin expression is associated with poor oncologic outcome in oral and oropharyngeal carcinoma. Acta Otolaryngol. 2006;126:633–9.

    Article  CAS  PubMed  Google Scholar 

  47. Dubinski W, Gabril M, Iakovlev VV, et al. Assessment of the prognostic significance of endoglin (CD105) in clear cell renal cell carcinoma using automated image analysis. Hum Pathol. 2012;43:1037–43.

    Article  CAS  PubMed  Google Scholar 

  48. Bockhorn M, Tsuzuki Y, Xu L, et al. Differential vascular and transcriptional responses to anti-vascular endothelial growth factor antibody in orthotopic human pancreatic cancer xenografts. Clin Cancer Res. 2003;9:4221–6.

    CAS  PubMed  Google Scholar 

  49. Davis DW, Inoue K, Dinney CP, et al. Regional effects of an antivascular endothelial growth factor receptor monoclonal antibody on receptor phosphorylation and apoptosis in human 253J B-V bladder cancer xenografts. Cancer Res. 2004;64:4601–10.

    Article  CAS  PubMed  Google Scholar 

  50. Sennino B, Ishiguro-Oonuma T, Schriver BJ, et al. Inhibition of c-Met reduces lymphatic metastasis in RIP-Tag2 transgenic mice. Cancer Res. 2013;73:3692–703.

    Article  CAS  PubMed  Google Scholar 

  51. Anderberg C, Cunha SI, Zhai Z, et al. Deficiency for endoglin in tumor vasculature weakens the endothelial barrier to metastatic dissemination. J Exp Med. 2013;210:563–79.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Pàez-Ribes M, Allen E, Hudock J, et al. Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell. 2009;15:220–31.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Cunha SI, Pardali E, Thorikay M, et al. Genetic and pharmacological targeting of activin receptor-like kinase 1 impairs tumor growth and angiogenesis. J Exp Med. 2010;207:85–100.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Matsuno F, Haruta Y, Kondo M, et al. Induction of lasting complete regression of preformed distinct solid tumors by targeting the tumor vasculature using two new anti-endoglin monoclonal antibodies. Clin Cancer Res. 1999;5:371–82.

    CAS  PubMed  Google Scholar 

  55. Takahashi N, Haba A, Matsuno F, et al. Antiangiogenic therapy of established tumors in human skin/severe combined immunodeficiency mouse chimeras by anti-endoglin (CD105) monoclonal antibodies, and synergy between anti-endoglin antibody and cyclophosphamide. Cancer Res. 2001;61:7846–54.

    CAS  PubMed  Google Scholar 

  56. Tsujie M, Tsujie T, Toi H, et al. Anti-tumor activity of an anti-endoglin monoclonal antibody is enhanced in immunocompetent mice. Int J Cancer. 2008;122:2266–73.

    Article  CAS  PubMed  Google Scholar 

  57. Uneda S, Toi H, Seon BK, et al. Anti-endoglin monoclonal antibodies are effective for suppressing metastasis and the primary tumors by targeting tumor vasculature. Int J Cancer. 2009;125:1446–53.

    Article  CAS  PubMed  Google Scholar 

  58. Shen C, Kaelin Jr WG. The VHL/HIF axis in clear cell renal carcinoma. Semin Cancer Biol. 2013;23:18–25.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Bussolati B, Bruno S, Grange C, et al. Identification of a tumor-initiating stem cell population in human renal carcinomas. FASEB J. 2008;22:3696–705.

    Article  CAS  PubMed  Google Scholar 

  60. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. the International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.

    Article  CAS  PubMed  Google Scholar 

  61. Tolar J, Nauta AJ, Osborn MJ, et al. Sarcoma derived from cultured mesenchymal stem cells. Stem Cells. 2007;25:371–9.

    Article  CAS  PubMed  Google Scholar 

  62. Postiglione L, Di Domenico G, Caraglia M, et al. Differential expression and cytoplasm/membrane distribution of endoglin (CD105) in human tumour cell lines: Implications in the modulation of cell proliferation. Int J Oncol. 2005;26:1193–201.

    CAS  PubMed  Google Scholar 

  63. Pardali E, van der Schaft DW, Wiercinska E, et al. Critical role of endoglin in tumor cell plasticity of Ewing sarcoma and melanoma. Oncogene. 2011;30:334–45.

    Article  CAS  PubMed  Google Scholar 

  64. Gromova P, Rubin BP, Thys A, et al. Endoglin/CD105 is expressed in KIT positive cells in the gut and in gastrointestinal stromal tumours. J Cell Mol Med. 2012;16:306–17.

    Article  CAS  PubMed  Google Scholar 

  65. Ciernik IF, Krayenbühl Ciernik BH, et al. Expression of transforming growth factor beta and transforming growth factor beta receptors on AIDS-associated Kaposi’s sarcoma. Clin Cancer Res. 1995;1:1119–24.

    CAS  PubMed  Google Scholar 

  66. Ohta M, Tokuda Y, Kuge S, et al. A case of angiosarcoma of the breast. Jpn J Clin Oncol. 1997;27:91–4.

    Article  CAS  PubMed  Google Scholar 

  67. Morozov A, Downey RJ, Healey J, et al. Benign mesenchymal stromal cells in human sarcomas. Clin Cancer Res. 2010;16:5630–40.

    Article  CAS  PubMed  Google Scholar 

  68. Royer-Pokora B, Busch M, Beier M, et al. Wilms tumor cells with WT1 mutations have characteristic features of mesenchymal stem cells and express molecular markers of paraxial mesoderm. Hum Mol Genet. 2010;19:1651–68.

    Article  CAS  PubMed  Google Scholar 

  69. Nolan-Stevaux O, Zhong W, Culp S, et al. Endoglin requirement for BMP9 signaling in endothelial cells reveals new mechanism of action for selective anti-endoglin antibodies. PLoS One. 2012;7:12. This is a detailed study of the mechanism of action of TRC105.

    Article  Google Scholar 

  70. Rosen LS, Hurwitz HI, Wong MK, et al. A phase I first-in-human study of TRC105 (anti-endoglin antibody) in patients with advanced cancer. Clin Cancer Res. 2012;18:4820–9. This presents the results of the first-in-human study of TRC150 in advanced cancer patients.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Goff L, Cohen RB, Berlin J, et al. Phase I study of PF-03446962, a fully human mAb against ALK 1, a TGFβ receptor involved in tumor angiogenesis. Paper presented at: ASCO annual meeting, Chicago, 2011.

  72. Bendell JC, Gordon MS, Hurwitz H, et al. Phase I study of ACE-041, a novel inhibitor of ALK1-mediated angiogenesis, in patients with advanced solid tumors. Paper presented at: ASCO annual meeting, Chicago, 2011.

  73. Lui Y, Starr M, Pang H, et al. Modulation of angiogenic biomarkers in patients treated on a phase I study of TRC105 (anti-CD105 antibody) monotherapy for advanced solid tumors. Paper presented at: ASCO annual meeting, Chicago, 2011.

  74. Castonguay R, Werner ED, Matthews RG, et al. Soluble endoglin specifically binds bone morphogenetic proteins 9 and 10 via its orphan domain, inhibits blood vessel formation, and suppresses tumor growth. J Biol Chem. 2011;286:30034–46.

    Article  CAS  PubMed  Google Scholar 

  75. Karzai FH, Apollo A, Adelberg D, et al. A phase I study of TRC105 (anti-CD105 [endoglin] antibody) in metastatic castration resistant prostate cancer (mCRPC). Paper presented at: ASCO annual meeting, Chicago, 2012.

  76. Rosen LS, Robert FG, Matie D, et al. A phase Ib dose-escalation study of TRC105 (anti-endoglin antibody) in combination with bevacizumab (BEV) for advanced solid tumors. Paper presented at: ASCO annual meeting, Chicago, Jun 2013. This presented the results of the clinical trial combining TRC105 with bevacizumab.

  77. Choi H, Charnsangavej C, Faria SC, et al. Correlation of computed tomography and positron emission tomography in patients with metastatic gastrointestinal stromal tumor treated at a single institution with imatinib mesylate: proposal of new computed tomography response criteria. J Clin Oncol. 2007;25:1753–9.

    Article  PubMed  Google Scholar 

  78. Korn RL, Gordon MS, Rosen LS. Exploratory textural CT evaluation of the combination of TRC105 (anti-endoglin monoclonal antibody; MAb) and bevacizumab (BEV) indicates partial response by Choi criteria in BEV refractory advanced cancer patients (pts) and identifies candidate markers of response. Paper presented at: EORTC-AACR-NCI molecular targets meeting, Boston, 2013.

  79. Hong H, Severin GW, Yang Y, et al. Positron emission tomography imaging of CD105 expression with 89Zr-Df-TRC105. Eur J Nucl Med Mol Imaging. 2012;39:138–48.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Muñoz R, Arias Y, Ferreras JM, et al. In vitro and in vivo effects of an anti-mouse endoglin (CD105)-immunotoxin on the early stages of mouse B16MEL4A5 melanoma tumours. Cancer Immunol Immunother. 2013;62:541–51.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Lee S. Rosen received funding from Tracon Pharma for a clinical trial.

Michael S. Gordon, Francisco Robert, and Daniela E. Matei declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee S. Rosen.

Additional information

This article is part of the Topical Collection on Evolving Therapies

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rosen, L.S., Gordon, M.S., Robert, F. et al. Endoglin for Targeted Cancer Treatment. Curr Oncol Rep 16, 365 (2014). https://doi.org/10.1007/s11912-013-0365-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11912-013-0365-x

Keywords

Navigation