Skip to main content

Advertisement

Log in

New Targets in Non-Small Cell Lung Cancer

  • Lung Cancer (T Mekhail, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Lung cancer remains the most common cause of cancer-related death in the United States. At presentation, the majority of patients have regional or systemic metastases and therefore require systemic therapy. For years, chemotherapy was the only systemic therapy option. A major paradigm shift has occurred in recent years with the identification of driver genetic alterations in some non-small cell lung cancers (NSCLCs). It is part of current standard of care to assess epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) translocations in tumors of patients with advanced NSCLC. Drugs targeting these mutations provide significant clinical benefit and are the preferred therapeutic option in these patients. Ongoing clinical trials are assessing the clinical benefit from targeting other driver genetic alterations. Further therapeutic targets have been identified through greater understanding of the variety of molecular processes that facilitate tumor formation and progression. Some of these new therapeutic targets are heat shock proteins and targets that can allow enhanced anti-tumor immune response. It is expected that these advances will allow personalized management of NSCLC patients and move us away from approaching all NSCLC patients with the same therapeutic tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Schiller JH, Harrington D, Bepler C, et al. Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med. 2002;346:92–8.

    Article  PubMed  CAS  Google Scholar 

  2. Scagliotti G, Brodowicz T, Shepherd FA, et al. Treatment-by-histology interaction analyses in three phase III trials show superiority of pemetrexed in nonsquamous non-small cell lung cancer. J Thorac Oncol. 2011;6:64–70.

    PubMed  Google Scholar 

  3. Bepler G, Sommers KE, Cantor A, et al. Clinical efficacy and predictive molecular markers of neoadjuvant gemcitabine and pemetrexed in resectable non-small cell lung cancer. J Thorac Oncol. 2008;3(10):1112–8.

    Article  PubMed  Google Scholar 

  4. Christoph DC, Asuncion BR, Hassan B, et al. Significance of folate receptor alpha and thymidylate synthase protein expression in patients with non-small-cell lung cancer treated with pemetrexed. J Thorac Oncol. 2013;8:19–30.

    Article  PubMed  CAS  Google Scholar 

  5. Ceppi P, Volante M, Saviozzi S, et al. Squamous cell carcinoma of the lung compared with other histotypes shows higher messenger RNA and protein levels for thymidylate synthase. Squamous cell carcinoma of the lung compared with other histotypes shows higher messenger RNA and protein levels for thymidylate synthase. Cancer. 2006;107:1589–96.

    Article  PubMed  CAS  Google Scholar 

  6. Sandler A, Gray R, Perry MC, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med. 2006;355:2542–50.

    Article  PubMed  CAS  Google Scholar 

  7. Johnson DH, Fehrenbacher L, Novotny WF, et al. Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previously untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol. 2004;22:2184–91.

    Article  PubMed  CAS  Google Scholar 

  8. Scagliotti G, Novello S, von Pawel J, et al. Phase III study of carboplatin and paclitaxel alone or with sorafenib in advanced non-small-cell lung cancer. J Clin Oncol. 2010;28:1835–42.

    Article  PubMed  CAS  Google Scholar 

  9. • Grilley-Olson JE, Hayes DN, Moore DT, et al. Validation of interobserver agreement in lung cancer assessment: hematoxylin-eosin diagnostic reproducibility for non-small cell lung cancer: the 2004 World Health Organization classification and therapeutically relevant subsets. Arch Pathol Lab Med. 2013;137:32–40. This paper highlights challenges of identifying histologic subtypes.

    Article  PubMed  Google Scholar 

  10. Thunnissen E, Kerr KM, Herth FJ, et al. The challenge of NSCLC diagnosis and predictive analysis on small samples. Practical approach of a working group. Lung Cancer. 2010;76:1–18.

    Article  Google Scholar 

  11. Baselga J, Arteaga CL. Critical update and emerging trends in epidermal growth factor receptor targeting in cancer. J Clin Oncol. 2005;23:2445–59.

    Article  PubMed  CAS  Google Scholar 

  12. Meert AP, Martin B, Delmotte P, et al. The role of EGF-R expression on patient survival in lung cancer: a systematic review with meta-analysis. Eur Respir J. 2002;20(4):975–81.

    Article  PubMed  CAS  Google Scholar 

  13. Shepherd FA, Rodrigues Pereira J, Ciuleanu T, et al. Erlotinib in previously treated non-small-cell lung cancer. N Engl J Med. 2005;353:123–32.

    Article  PubMed  CAS  Google Scholar 

  14. Miller VA, Kris MG, Shah N, et al. Bronchioloalveolar pathologic subtype and smoking history predict sensitivity to gefitinib in advanced non-small-cell lung cancer. J Clin Oncol. 2004;22:1103–9.

    Article  PubMed  CAS  Google Scholar 

  15. Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350:2129–39.

    Article  PubMed  CAS  Google Scholar 

  16. Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304:1497–500.

    Article  PubMed  CAS  Google Scholar 

  17. Sharma SV, Bell DW, Settleman J, et al. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007;7:169–81.

    Article  PubMed  CAS  Google Scholar 

  18. Soria JC, Mok TS, Cappuzzo F, et al. EGFR-mutated oncogene-addicted non-small cell lung cancer: current trends and future prospects. Cancer Treat Rev. 2012;38(5):416–30.

    Article  PubMed  CAS  Google Scholar 

  19. •• Ellis PM, Blais N, Soulieres D, et al. A systematic review and Canadian consensus recommendations on the use of biomarkers in the treatment of non-small cell lung cancer. J Thorac Oncol. 2011;6(8):1379–91. Canadian consensus on clinical value of currently available bio-markers.

    Article  PubMed  Google Scholar 

  20. Pirker R, Pereira JR, von Pawel J, et al. EGFR expression as predictor of survival for first- line chemotherapy plus cetuximab in patients with advanced non-small-cell lung cancer: analysis of data from the phase III FLEX study. Lancet Oncol. 2012;13:33–42.

    Article  PubMed  CAS  Google Scholar 

  21. Shaw AT, Engelman JA. ALK in lung cancer: past, present, and future. J Clin Oncol. 2013;31(8):1105–11.

    Article  PubMed  CAS  Google Scholar 

  22. Solomon B, Varella-Garcia M, Camidge DR. ALK gene rearrangements: a new therapeutic target in a molecularly defined subset of non-small cell lung cancer. J Thorac Oncol. 2009;4:1450–4.

    Article  PubMed  Google Scholar 

  23. Tiseo M, Gelsomino F, Boggiani D, Bortesi B, Bartolotti M, Bozzetti C, et al. EGFR and EML4-ALK gene mutations in NSCLC: a case report of erlotinib-resistant patient with both concomitant mutations. Lung Cancer. 2011;71:241–3.

    Article  PubMed  CAS  Google Scholar 

  24. Lee JK, Kim TM, Koh Y, Lee SH, Kim DW, Jeon YK, et al. Differential sensitivities to tyrosine kinase inhibitors in NSCLC harboring EGFR mutation and ALK translocation. Lung Cancer. 2012;77(2):460–3.

    Article  PubMed  Google Scholar 

  25. Camidge DR, Bang YJ, Kwak EL, et al. Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study. Lancet Oncol. 2012;13:1011–9.

    Article  PubMed  CAS  Google Scholar 

  26. Crino,L, Kim,D, Riely,G.J, et al. Initial phase II results with crizotinib in advanced ALK-positive non-small cell lung cancer (NSCLC): PROFILE 1005, ASCO Meeting 2011 Abstracts, 29: 7514.

  27. Shaw AT, Kim DW, Nakagawa K, et al. PHASE III study of crizotinib versus pemetrexed or docetaxel chemotherapy in patients with advanced ALK-positive non-small cell lung cancer (NSCLC) (PROFILE 1007). Ann Oncol. 2012;23 Suppl 9:LBA1.

    Google Scholar 

  28. Camidge DR, Kono SA, Lu X, et al. Anaplastic lymphoma kinase gene rearrangements in non-small cell lung cancer are associated with prolonged progression-free survival on pemetrexed. J Thorac Oncol. 2011;6:774–80.

    Article  PubMed  Google Scholar 

  29. Santos E, Martin-Zanca D, Reddy EP, et al. Malignant activation of a K-ras oncogene in lung carcinoma but not in normal tissue of the same patient. Science. 1984;223(4637):661–4.

    Article  PubMed  CAS  Google Scholar 

  30. Roberts PJ, Stinchcombe TE. KRAS mutation: should we test for it, and does it matter? J Clin Oncol. 2013;31(8):1112–21.

    Article  PubMed  CAS  Google Scholar 

  31. Mascaux C, Iannino N, Martin B, et al. The role of RAS oncogene in survival of patients with lung cancer: a systematic review of the literature with meta-analysis. Br J Cancer. 2005;92(1):131–9.

    Article  PubMed  CAS  Google Scholar 

  32. Shepherd FA, Bourredjem A, Brambilla E et al. Prognostic and predictive effects of KRAS mutation subtype in completely resected non-small cell lung cancer (NSCLC): A LACE-bio study. ASCO Meeting Abstracts 2012; 30(15_suppl):7007.

    Google Scholar 

  33. Imamura Y, Morikawa T, Liao X, et al. Specific mutations in KRAS codons 12 and 13, and patient prognosis in 1075 BRAF wild-type colorectal cancers. Clin Cancer Res. 2012;18(17):4753–63.

    Article  PubMed  CAS  Google Scholar 

  34. Guerrero S, Casanova I, Farre L, Mazo A, Capella G, Mangues R. K-ras codon 12 mutation induces higher level of resistance to apoptosis and predisposition to anchorage-independent growth than codon 13 mutation or proto-oncogene overexpression. Cancer Res. 2000;60(23):6750–6.

    PubMed  CAS  Google Scholar 

  35. Guerrero S, Figueras A, Casanova I, et al. Codon 12 and codon 13 mutations at the K-ras gene induce different soft tissue sarcoma types in nude mice. FASEB J. 2002;16(12):1642–4.

    PubMed  CAS  Google Scholar 

  36. Tejpar S, Celik I, Schlichting M, et al. Association of KRAS G13D tumor mutations with outcome in patients with metastatic colorectal cancer treated with first-line chemotherapy with or without cetuximab. J Clin Oncol. 2012;30(29):3570–7.

    Article  PubMed  CAS  Google Scholar 

  37. Janne PA, Shaw AT, Pereira J, et al. Phase II double blind randomized study of selumetinib (SEL) plus docetaxel (DOC) versus DOC plus placebo as a second line treatment for advanced KRAS mutant non-small cell lung cancer (NSCLC). J Clin Oncol. 2012;30:7503.

    Google Scholar 

  38. Nagarajan L, Louie E, Tsujimoto Y, et al. The human c-ros gene (ROS) is located at chromosome region 6q16––6q22. Proc Natl Acad Sci USA. 1986;83:6568–72.

    Article  PubMed  CAS  Google Scholar 

  39. Manning G, Whyte DB, Martinez R, et al. The protein kinase complement of the human genome. Science. 2002;298:1912–34.

    Article  PubMed  CAS  Google Scholar 

  40. Acquaviva J, Wong R, Charest A. The multifaceted roles of the receptor tyrosine kinase ROS in development and cancer. Biochim Biophys Acta. 2009;1795:37–52.

    PubMed  CAS  Google Scholar 

  41. Takeuchi K, Soda M, Togashi Y, et al. RET, ROS1 and ALK fusions in lung cancer. Nat Med. 2012;18:378–81.

    Article  PubMed  CAS  Google Scholar 

  42. Bergethon A, Shaw AT, Ou SH, et al. ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol. 2012;30:863–70.

    Article  PubMed  CAS  Google Scholar 

  43. Shaw AT, Camidge DR, Engelman JR, et al. Clinical activity of crizotinib in advanced non-small cell lung cancer (NSCLC) harboring ROS1 gene rearrangement. J Clin Oncol 2012;30:abstract 7508.

  44. Cui JJ, Tran-Dube M, Shen H, et al. Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J Med Chem. 2011;54:6342–63.

    Article  PubMed  CAS  Google Scholar 

  45. McDermott U, Iafrate AJ, Gray NS, et al. Genomic Alterations of Anaplastic Lymphoma Kinase May Sensitize Tumors to Anaplastic Lymphoma Kinase Inhibitors. Cancer Res. 2008;68:3389–95.

    Article  PubMed  CAS  Google Scholar 

  46. Gherardi E, Birchmeier W, Birchmeier C, et al. Targeting MET in cancer: rationale and progress. Nat Rev Cancer. 2012;12:89–103.

    Article  PubMed  CAS  Google Scholar 

  47. Park S, Choi YL, Sung CO, et al. High MET copy number and MET overexpression: poor outcome in non-small cell lung cancer patients. Histol Histopathol. 2012;27:197–207.

    PubMed  Google Scholar 

  48. Takanami I, Tanana F, Hashizume T, et al. Hepatocyte growth factor and c-Met/hepatocyte growth factor receptor in pulmonary adenocarcinomas: an evaluation of their expression as prognostic markers. Oncology. 1996;53:392–7.

    Article  PubMed  CAS  Google Scholar 

  49. Olivero M, Rizzo M, Madeddu R, et al. Overexpression and activation of hepatocyte growth factor/scatter factor in human non-small-cell lung carcinomas. Br J Cancer. 1996;74:1862–8.

    Article  PubMed  CAS  Google Scholar 

  50. Ma PC, Jagadeeswaran R, Jagadeesh S, et al. Functional expression and mutations of c-Met and its therapeutic inhibition with SU11274 and small interfering RNA in non–small cell lung cancer. Cancer Res. 2005;65:1479–88.

    Article  PubMed  CAS  Google Scholar 

  51. Cappuzzo F, Marchetti A, Skokan M, et al. Increased MET gene copy number negatively affects survival of surgically resected non–small-cell lung cancer patients. J Clin Oncol. 2009;27:1667–74.

    Article  PubMed  Google Scholar 

  52. Engelman JA, Zejnullahu K, Mitsudomi T, et al. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316:1039–43.

    Article  PubMed  CAS  Google Scholar 

  53. Turke AB, Zejnullahu K, Wu YL, et al. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell. 2010;17:77–88.

    Article  PubMed  CAS  Google Scholar 

  54. Zhang YW, Staal B, Essenburg C, et al. MET kinase inhibitor SGX523 synergizes with epidermal growth factor receptor inhibitor erlotinib in a hepatocyte growth factor–dependent fashion to suppress carcinoma growth. Cancer Res. 2010;70:6880–90.

    Article  PubMed  CAS  Google Scholar 

  55. Liu L, Shi H, Liu Y, et al. Synergistic effects of foretinib with HER-targeted agents in MET and HER1- or HER2-coactivated tumor cells. Mol Cancer Ther. 2011;10:518–30.

    Article  PubMed  CAS  Google Scholar 

  56. Spigel DR, Ervin TJ, Ramlau R, et al. Final efficacy results from OAM4558g, a randomized phase II study evaluating MetMAb or placebo in combination with erlotinib in advanced NSCLC. J Clin Oncol 2011;29:abstract 7505.

  57. Sequist LV, von Pawel J, Garmey EG, et al. Randomized phase II study of erlotinib plus tivantinib versus erlotinib plus placebo in previously treated non-small-cell lung cancer. J Clin Oncol. 2011;29:3307–15.

    Article  PubMed  CAS  Google Scholar 

  58. Gordon MS, Vogelzang NJ, Schoffski P, et al. Activity of cabozantinib (XL184) in soft tissue and bone: Results of a phase II randomized phase II discontinuation trial in patients with advanced solid tumors. J Clin Oncol 2011;29:abstract 3010.

  59. Alberti L, Carniti C, Miranda C, Roccato E, Pierotti MA. RET and NTRK1 protooncogenes in human diseases. J Cell Physiol. 2003;195:168–86.

    Article  PubMed  CAS  Google Scholar 

  60. Bongarzone I, Vigneri P, Mariani L, Collini P, Pilotti S, Pierotti MA. RET/NTRK1 rearrangements in thyroid gland tumors of the papillary carcinoma family: correlation with clinicopathological features. Clin Cancer Res. 1998;4:223–8.

    PubMed  CAS  Google Scholar 

  61. Ju YS, Lee WC, Shin JY, Lee S, Bleazard T, Won JK, et al. A transforming KIF5B and RET gene fusion in lung adenocarcinoma revealed from whole-genome and transcriptome sequencing. Genome Res. 2012;22:436–45.

    Article  PubMed  CAS  Google Scholar 

  62. Drilon A, Wang L, Hasanovic A, et al. Response to Cabozantinib in Patients with RET Fusion-Positive Lung Adenocarcinomas. Cancer Discov. Epub March 26 2013.

  63. Tomizawa K, Suda K, Onozato R, et al. Prognostic and predictive implications of HER2/ERBB2/neu gene mutations in lung cancers. Lung Cancer. 2011;74:139–44.

    Article  PubMed  Google Scholar 

  64. Mazieres J, Peters S, Lepage B, et al. Lung Cancer That Harbors a HER2 Mutation: Epidemiologic Characteristics and Therapeutic Perspectives. J Clin Oncol 2013;epub April 22 2013.

  65. Arcila ME, Chaft JE, Nafa K, et al. Prevalence, clinicopathologic associations, and molecular spectrum of ERBB2 (HER2) tyrosine kinase mutations in lung adenocarcinomas. Clin Cancer Res. 2012;18:4910–8.

    Article  PubMed  CAS  Google Scholar 

  66. Pelligrini C, Falleni M, Marchetti A, et al. HER-2/Neu alterations in non-small cell lung cancer: a comprehensive evaluation by real time reverse transcription-PCR, fluorescence in situ hybridization, and immunohistochemistry. Clin Cancer Res. 2003;9:3645–52.

    Google Scholar 

  67. Hirsch FR, Varella-Garcia M, Franklin WA, et al. Evaluation of HER-2/neu gene amplification and protein expression in non-small cell lung cancer. B J Cancer. 2002;86:1449–56.

    Article  CAS  Google Scholar 

  68. Kelly RJ, Carter CA, Giaccone G. HER2 mutations in non-small-cell lung cancer can be continually targeted. J Clin Oncol. 2012;30:3318–9.

    Article  PubMed  Google Scholar 

  69. Heinmoller C, Gross C, Beyser K, et al. HER2 status in non-small cell lung cancer: results from patient screening for enrollment to a phase II study of Herceptin. Clin Cancer Res. 2003;9:5238–43.

    PubMed  Google Scholar 

  70. Clamon G, Herndon J, Kern J, et al. Lack of trastuzumab activity in nonsmall cell lung carcinoma with overexpression of erb-B2: 39810: a phase II trial of Cancer and Leukemia Group B. Cancer. 2005;103:1670–5.

    Article  PubMed  CAS  Google Scholar 

  71. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417:949–54.

    Article  PubMed  CAS  Google Scholar 

  72. Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med. 2011;364:2507–16.

    Article  PubMed  CAS  Google Scholar 

  73. Paik PK, Arcila ME, Fara M, et al. Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. J Clin Oncol. 2011;29:2046–51.

    Article  PubMed  Google Scholar 

  74. Marchetti A, Felicioni L, Malatesta S, et al. Clinical features and outcome of patients with non–small-cell lung cancer harboring BRAF mutations. J Clin Oncol 29:3574–3579.

  75. Kobayashi M, Sonobe M, Takahashi T, et al. Clinical significance of BRAF gene mutations in patients with non-small cell lung cancer. Anticancer Res. 2011;31:4619–23.

    PubMed  CAS  Google Scholar 

  76. Gautschi O, Pauli C, Strobel K, et al. A patient with BRAF V600E lung adenocarcinoma responding to vemurafenib. J Thorac Oncol. 2012;7:e23–4.

    Article  PubMed  Google Scholar 

  77. Kopetz S, Desai J, Chan E, et al. PLX4032 in metastatic colorectal cancer patients with mutant BRAF tumors. J Clin Oncol 28:abstract 3534.

  78. Weiss J, Sos ML, Seidel D, et al. Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer. Sci Transl Med. 2010;2(62):62ra93.

    Article  PubMed  CAS  Google Scholar 

  79. Kim HR, Kim DJ, Kang DR, et al. Fibroblast growth factor receptor 1 gene amplification is associated with poor survival and cigarette smoking dosage in patients with resected squamous cell lung cancer. J Clin Oncol. 2013;31:731–7.

    Article  PubMed  Google Scholar 

  80. Heist RS, Mino-Kenudson M, Sequist LV, et al. FGFR1 amplification in squamous cell carcinoma of the lung. J Thorac Oncol. 2012;7:1775–80.

    Article  PubMed  CAS  Google Scholar 

  81. Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancer. Nature. 2012;489:519–25.

    Article  CAS  Google Scholar 

  82. Wolf J, LoRusso PM, Camidge RD, et al. Abstract LB-122: a phase I dose escalation study of NVP-BGJ398, a selective pan FGFR inhibitor in genetically preselected advanced solid tumors. Cancer Res. 2012;72:LB-122.

    Article  Google Scholar 

  83. Hammerman PS, Sos ML, Ramos AH, et al. Mutations in the DDR2 kinase gene identify a novel therapeutic target in squamous cell lung cancer. Cancer Discov. 2011;1:78–89.

    Article  PubMed  CAS  Google Scholar 

  84. Haura EB, Tanvetyanon T, Chiappori A, et al. Phase I/II study of the Src inhibitor dasatinib in combination with erlotinib in advanced non-small-cell lung cancer. J Clin Oncol. 2010;28:1387–94.

    Article  PubMed  CAS  Google Scholar 

  85. Courtney KD, Corcoran RB, Engelman JA. The PI3K pathway as drug target in human cancer. J Clin Oncol. 2010;28:1075–83.

    Article  PubMed  CAS  Google Scholar 

  86. Wojtalla A, Arcaro A. Targeting phosphoinositide 3-kinase signalling in lung cancer. Crit Rev Oncol Hematol. 2011;80:278–90.

    Article  PubMed  Google Scholar 

  87. Kawano O, Sasaki H, Endo K, et al. PIK3CA mutation status in Japanese lung cancer patients. Lung Cancer. 2006;54:209–15.

    Article  PubMed  Google Scholar 

  88. Yamamoto H, Shigematsu H, Nomura M, et al. PIK3CA mutations and copy number gains in human lung cancers. Cancer Res. 2008;68:6913–21.

    Article  PubMed  CAS  Google Scholar 

  89. Okudela K, Suzuki M, Kageyama S, et al. PIK3CA mutation and amplification in human lung cancer. Pathol Int. 2007;57:664–71.

    Article  PubMed  CAS  Google Scholar 

  90. Spoerke JM, O'Brien C, Huw L, et al. Phosphoinositide 3-kinase (PI3K) pathway alterations are associated with histologic subtypes and are predictive of sensitivity to PI3K inhibitors in lung cancer preclinical models. Clin Cancer Res. 2012;18:6771–83.

    Article  PubMed  CAS  Google Scholar 

  91. Chaft JE, Arcila ME, Paik PK, et al. Coexistence of PIK3CA and other oncogene mutations in lung adenocarcinoma-rationale for comprehensive mutation profiling. Mol Cancer Ther. 2012;11:485–91.

    Article  PubMed  CAS  Google Scholar 

  92. Dobashi Y, Kimura M, Matsubara H, et al. Molecular alterations in AKT and its protein activation in human lung carcinomas. Hum Pathol. 2012;43:2229–40.

    Article  PubMed  CAS  Google Scholar 

  93. Sasaki H, Okuda K, Kawano O, et al. AKT1 and AKT2 mutations in lung cancer in a Japanese population. Mol Med Rep. 2008;1:663–6.

    PubMed  CAS  Google Scholar 

  94. Soung YH, Lee JW, Nam SW, et al. Mutational analysis of AKT1, AKT2 and AKT3 genes in common human carcinomas. Oncology. 2006;70:285–9.

    Article  PubMed  CAS  Google Scholar 

  95. Sasaki H, Hikosaka Y, Kawano O, et al. MEK1 and AKT2 mutations in Japanese lung cancer. J Thorac Oncol. 2010;5:597–600.

    PubMed  Google Scholar 

  96. Rekhtman N, Paik PK, Arcila ME, et al. Clarifying the spectrum of driver oncogene mutations in biomarker-verified squamous carcinoma of lung: lack of EGFR/KRAS and presence of PIK3CA/AKT1 mutations. Clin Cancer Res. 2012;18:1167–76.

    Article  PubMed  CAS  Google Scholar 

  97. Soria JC, Lee HY, Lee JI, et al. Lack of PTEN expression in non-small cell lung cancer could be related to promoter methylation. Clin Cancer Res. 2002;8:1178–84.

    PubMed  CAS  Google Scholar 

  98. Marsit CJ, Zheng S, Aldape K, et al. PTEN expression in non-small-cell lung cancer: evaluating its relation to tumor characteristics, allelic loss, and epigenetic alteration. Hum Pathol. 2005;36:768–76.

    Article  PubMed  CAS  Google Scholar 

  99. Barrott JJ, Haystead TA. Hsp90, an unlikely ally in the war on cancer. FEBS J. 2013;280:1381–96.

    Article  PubMed  CAS  Google Scholar 

  100. Socinski MA, Goldman J, El-Hariry I, et al. A multicenter Phase II study of ganetespib monotherapy in patients with genotypically-defined advanced non-small cell lung cancer. Clin Cancer Res 2013; epub Apr 3.

  101. Proia DA, Sang J, He S, et al. Synergistic activity of the Hsp90 inhibitor ganetespib with taxanes in non-small cell lung cancer models. Invest New Drugs. 2012;30:2201–9.

    Article  PubMed  CAS  Google Scholar 

  102. Rice JW, Veal JM, Barabasz A, et al. Targeting of multiple signaling pathways by the Hsp90 inhibitor SNX-2112 in EGFR resistance models as a single agent or in combination with erlotinib. Oncol Res. 2009;18:229–42.

    Article  PubMed  CAS  Google Scholar 

  103. Bao R, Lai CJ, Wang DG, et al. Targeting heat shock protein 90 with CUDC-305 overcomes erlotinib resistance in non-small cell lung cancer. Mol Cancer Ther. 2009;8:3296–306.

    Article  PubMed  CAS  Google Scholar 

  104. Pentcheva-Hoang T, Corse E, Allison JP. Negative regulators of T-cell activation: potential targets for therapeutic intervention in cancer, autoimmune disease, and persistent infections. Immunol Rev. 2009;229:67–87.

    Article  PubMed  CAS  Google Scholar 

  105. Weber J. Immune checkpoint proteins: a new therapeutic paradigm for cancer–preclinical background: CTLA-4 and PD-1 blockade. Semin Oncol. 2010;37:430–9.

    Article  PubMed  CAS  Google Scholar 

  106. Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011;48:480–9.

    Article  CAS  Google Scholar 

  107. Hodi FS, O'Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23.

    Article  PubMed  CAS  Google Scholar 

  108. Lynch TJ, Bondarenko I, Luft A, et al. Ipilimumab in combination with paclitaxel and carboplatin as first-line treatment in stage IIIB/IV non-small-cell lung cancer: results from a randomized, double-blind, multicenter phase II study. J Clin Oncol. 2012;30:2046–54.

    Article  PubMed  CAS  Google Scholar 

  109. Reck M, Bondarenko I, Luft A, et al. Ipilimumab in combination with paclitaxel and carboplatin as first-line therapy in extensive-disease-small-cell lung cancer: results from a randomized, double-blind, multicenter phase 2 trial. Ann Oncol. 2012;24:75–83.

    Article  PubMed  Google Scholar 

  110. Wolchok JD, Hoos A, O'Day S, et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin Cancer Res. 2009;15:7412–20.

    Article  PubMed  CAS  Google Scholar 

  111. Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.

    Article  PubMed  CAS  Google Scholar 

  112. Brahmer JR, Tykodi SS, Chow LQ, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366:2455–65.

    Article  PubMed  CAS  Google Scholar 

  113. Sienel W, Varwerk C, Linder A, et al. Melanoma associated antigen (MAGE)-A3 expression in Stages I and II non-small cell lung cancer: results of a multi-center study. Eur J Cardiothorac Surg. 2004;25:131–4.

    Article  PubMed  CAS  Google Scholar 

  114. Vansteenkiste J, Zielinski M, Linder A, et al. Final results of a multi-center, double-blind, randomized, placebo-controlled phase II study to assess the efficacy of MAGE-A3 immunotherapeutic as adjuvant therapy in stage IB/II non-small cell lung cancer. J Clin Oncol 25:abstr 7554.

  115. Tyagi P, Mirakhur B. MAGRIT: the largest-ever phase III lung cancer trial aims to establish a novel tumor-specific approach to therapy. Clin Lung Cancer. 2009;10:371–4.

    Article  PubMed  Google Scholar 

  116. Sangha R, Butts C. L-BLP25: a peptide vaccine strategy in non small cell lung cancer. Clin Cancer Res. 2007;13:s4652–4.

    Article  PubMed  CAS  Google Scholar 

  117. Rodriguez PC, Neninger E, García B, et al. Safety, immunogenicity and preliminary efficacy of multiple-site vaccination with an Epidermal Growth Factor (EGF) based cancer vaccine in advanced non small cell lung cancer (NSCLC) patients. J Immune Based Ther Vaccines. 2011;9:7.

    Article  PubMed  CAS  Google Scholar 

  118. Neninger Vinageras E, de la Torre A, Osorio Rodríguez M, et al. Phase II randomized controlled trial of an epidermal growth factor vaccine in advanced non-small-cell lung cancer. J Clin Oncol. 2008;26:1452–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Shirish M. Gadgeel has been a consultant to Boehringer-Ingelheim and has received honoraria from Genentech, Eli-Lilly, and Pfizer.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shirish M. Gadgeel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gadgeel, S.M. New Targets in Non-Small Cell Lung Cancer. Curr Oncol Rep 15, 411–423 (2013). https://doi.org/10.1007/s11912-013-0326-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-013-0326-4

Keywords

Navigation