Skip to main content

Advertisement

Log in

Novel targets with potential therapeutic applications in osteosarcoma

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

For patients with osteosarcoma, the development of metastases, often to the lungs, is the most common cause of death. Long-term outcomes for patients who present with localized or disseminated disease have largely remained unchanged over the past 20 years. Further improvements in outcome are not likely to come from intensification of cytotoxic chemotherapy; as such, new targets for treatment are needed. A view toward such targets in osteosarcoma may be constructed based on three common clinical features of the disease. These include the origin of osteosarcoma in the bone or primitive mesenchymal cells, the predictable process of metastatic progression characterized by this disease, and the development of metastatic lesions almost exclusively in the lung. It is likely and potentially favorable for some targets to be relevant for more than one process. This review summarizes novel targets under evaluation for the treatment of osteosarcoma based on these three features of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Ferrari S, Palmerini E: Adjuvant and neoadjuvant combination chemotherapy for osteogenic sarcoma. Curr Opin Oncol 2007, 19:341–346.

    Article  PubMed  CAS  Google Scholar 

  2. Bruland OS, Pihl A: On the current management of osteosarcoma. A critical evaluation and a proposal for a modified treatment strategy. Eur J Cancer 1997, 33:1725–1731.

    Article  PubMed  CAS  Google Scholar 

  3. Harris MB, Gieser P, Goorin AM, et al.: Treatment of metastatic osteosarcoma at diagnosis: a Pediatric Oncology Group Study. J Clin Oncol 1998, 16:3641–3648.

    PubMed  CAS  Google Scholar 

  4. Atiye J, Wolf M, Kaur S, et al.: Gene amplifications in osteosarcoma-CGH microarray analysis. Genes Chromosomes Cancer 2005, 42:158–163.

    Article  PubMed  CAS  Google Scholar 

  5. Khan J, Wei JS, Ringner M, et al.: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med 2001, 7:673–679.

    Article  PubMed  CAS  Google Scholar 

  6. Ladanyi M, Gorlick R: Molecular pathology and molecular pharmacology of osteosarcoma. Pediatr Pathol Mol Med 2000, 19:391–413.

    Article  CAS  Google Scholar 

  7. Al-Romaih K, Somers GR, Bayani J, et al.: Modulation by decitabine of gene expression and growth of osteosarcoma U2OS cells in vitro and in xenografts: identification of apoptotic genes as targets for demethylation. Cancer Cell Int 2007, 7:14.

    Article  PubMed  Google Scholar 

  8. Selvarajah S, Yoshimoto M, Maire G, et al.: Identification of cryptic microaberrations in osteosarcoma by high-definition oligonucleotide array comparative genomic hybridization. Cancer Genet Cytogenet 2007, 179:52–61.

    Article  PubMed  CAS  Google Scholar 

  9. Gorlick R, Anderson P, Andrulis I, et al.: Biology of childhood osteogenic sarcoma and potential targets for therapeutic development: meeting summary. Clin Cancer Res 2003, 9:5442–5453.

    PubMed  Google Scholar 

  10. Spangler JG: Bone biology and physiology: implications for novel osteoblastic osteosarcoma treatments? Med Hypotheses 2008, 70:281–286.

    Article  PubMed  CAS  Google Scholar 

  11. Kasukawa Y, Miyakoshi N, Mohan S: The anabolic effects of GH/IGF system on bone. Curr Pharm Des 2004, 10:2577–2592.

    Article  PubMed  CAS  Google Scholar 

  12. Samani AA, Yakar S, LeRoith D, Brodt P: The role of the IGF system in cancer growth and metastasis: overview and recent insights. Endocr Rev 2007, 28:20–47.

    Article  PubMed  CAS  Google Scholar 

  13. Khanna C, Prehn J, Hayden D, et al.: A randomized controlled trial of octreotide pamoate long-acting release and carboplatin versus carboplatin alone in dogs with naturally occurring osteosarcoma: evaluation of insulin-like growth factor suppression and chemotherapy. Clin Cancer Res 2002, 8:2406–2412.

    PubMed  CAS  Google Scholar 

  14. Yakar S, Pennisi P, Wu Y, et al.: Clinical relevance of systemic and local IGF-I. Endocr Dev 2005, 9:11–16.

    Article  PubMed  CAS  Google Scholar 

  15. Baserga R: Targeting the IGF-1 receptor: from rags to riches. Eur J Cancer 2004, 40:2013–2015.

    Article  PubMed  Google Scholar 

  16. Kolb EA, Gorlick R, Houghton PJ, et al.: Initial testing (stage 1) of a monoclonal antibody (SCH 717454) against the IGF-1 receptor by the pediatric preclinical testing program. Pediatr Blood Cancer 2008, 50:1190–1197.

    Article  PubMed  Google Scholar 

  17. Phan TC, Xu J, Zheng MH: Interaction between osteoblast and osteoclast: impact in bone disease. Histol Histopathol 2004, 19:1325–1344.

    PubMed  CAS  Google Scholar 

  18. Dougall WC, Chaisson M: The RANK/RANKL/OPG triad in cancer-induced bone diseases. Cancer Metastasis Rev 2006, 25:541–549.

    Article  PubMed  CAS  Google Scholar 

  19. Keller ET, Dai J, Escara-Wilke J, et al.: New trends in the treatment of bone metastasis. J Cell Biochem 2007, 102:1095–1102.

    Article  PubMed  CAS  Google Scholar 

  20. Yuasa T, Kimura S, Ashihara E, et al.: Zoledronic acid: a multiplicity of anti-cancer action. Curr Med Chem 2007, 14:2126–2135.

    Article  PubMed  CAS  Google Scholar 

  21. Dass CR, Choong PF: Zoledronic acid inhibits osteosarcoma growth in an orthotopic model. Mol Cancer Ther 2007, 6(12 Pt 1):3263–3270.

    Article  PubMed  CAS  Google Scholar 

  22. Diel IJ, Fogelman I, Al-Nawas B, et al.: Pathophysiology, risk factors and management of bisphosphonate-associated osteonecrosis of the jaw: is there a diverse relationship of amino-and non-aminobisphosphonates? Crit Rev Oncol Hematol 2007, 64:198–207.

    Article  PubMed  Google Scholar 

  23. Diel IJ, Solomayer EF, Costa SD, et al.: Reduction in new metastases in breast cancer with adjuvant clodronate treatment. N Engl J Med 1998, 339:357–363.

    Article  PubMed  CAS  Google Scholar 

  24. Bruland OS, Hoifodt H, Saeter G, et al.: Hematogenous micrometastases in osteosarcoma patients. Clin Cancer Res 2005, 11:4666–4673.

    Article  PubMed  CAS  Google Scholar 

  25. Satija NK, Gurudutta GU, Sharma S, et al.: Mesenchymal stem cells: molecular targets for tissue engineering. Stem Cells Dev 2007, 16:7–23.

    Article  PubMed  CAS  Google Scholar 

  26. Shindo K, Kawashima N, Sakamoto K, et al.: Osteogenic differentiation of the mesenchymal progenitor cells, Kusa is suppressed by Notch signaling. Exp Cell Res 2003, 290:370–380.

    Article  PubMed  CAS  Google Scholar 

  27. Moss ML, Stoeck A, Yan W, Dempsey PJ: ADAM10 as a target for anti-cancer therapy. Curr Pharm Biotechnol 2008, 9:2–8.

    Article  PubMed  CAS  Google Scholar 

  28. Yan M, Plowman GD: Delta-like 4/Notch signaling and its therapeutic implications. Clin Cancer Res 2007, 13:7243–7246.

    Article  PubMed  CAS  Google Scholar 

  29. Eccles SA, Welch DR: Metastasis: recent discoveries and novel treatment strategies. Lancet 2007, 369:1742–1757.

    Article  PubMed  CAS  Google Scholar 

  30. Blattman JN, Greenberg PD: Cancer immunotherapy: a treatment for the masses. Science 2004, 305:200–205.

    Article  PubMed  CAS  Google Scholar 

  31. Meyers PA, Schwartz CL, Krailo M, et al.: Osteosarcoma: a randomized, prospective trial of the addition of ifosfamide and/or muramyl tripeptide to cisplatin, doxorubicin, and high-dose methotrexate. J Clin Oncol 2005, 23:2004–2011.

    Article  PubMed  CAS  Google Scholar 

  32. Meyers PA, Schwartz CL, Krailo M, et al.: Osteosarcoma: the addition of muramyl tripeptide to chemotherapy improves overall survival—a report from the Children’s Oncology Group. J Clin Oncol 2008, 26:633–638.

    Article  PubMed  CAS  Google Scholar 

  33. Folkman J: Is angiogenesis an organizing principle in biology and medicine? J Pediatr Surg 2007, 42:1–11.

    Article  PubMed  Google Scholar 

  34. DuBois S, Demetri G: Markers of angiogenesis and clinical features in patients with sarcoma. Cancer 2007, 109:813–819.

    Article  PubMed  CAS  Google Scholar 

  35. Ferrara N, Kerbel RS: Angiogenesis as a therapeutic target. Nature 2005, 438:967–974.

    Article  PubMed  CAS  Google Scholar 

  36. Maris JM, Courtright J, Houghton PJ, et al.: Initial testing of the VEGFR inhibitor AZD2171 by the pediatric preclinical testing program. Pediatr Blood Cancer 2008, 50:581–587.

    Article  PubMed  Google Scholar 

  37. Faivre S, Demetri G, Sargent W, Raymond E: Molecular basis for sunitinib efficacy and future clinical development. Nat Rev Drug Discov 2007, 6:734–745.

    Article  PubMed  CAS  Google Scholar 

  38. Rusk A, McKeegan E, Haviv F, et al.: Preclinical evaluation of antiangiogenic thrombospondin-1 peptide mimetics, ABT-526 and ABT-510, in companion dogs with naturally occurring cancers. Clin Cancer Res 2006, 12:7444–7455.

    Article  PubMed  CAS  Google Scholar 

  39. Birchmeier C, Birchmeier W, Gherardi E, Vande Woude GF: Met, metastasis, motility and more. Nat Rev Mol Cell Biol 2003, 4:915–925.

    Article  PubMed  CAS  Google Scholar 

  40. Scotlandi K, Baldini N, Oliviero M, et al.: Expression of Met/hepatocyte growth factor receptor gene and malignant behavior of musculoskeletal tumors. Am J Pathol 1996, 149:1209–1219.

    PubMed  CAS  Google Scholar 

  41. Christensen JG, Burrows J, Salgia R: c-Met as a target for human cancer and characterization of inhibitors for therapeutic intervention. Cancer Lett 2005, 225:1–26.

    Article  PubMed  CAS  Google Scholar 

  42. MacEwen EG, Kutzke J, Carew J, et al.: c-Met tyrosine kinase receptor expression and function in human and canine osteosarcoma cells. Clin Exp Metastasis 2003, 20:421–430.

    Article  PubMed  CAS  Google Scholar 

  43. Corso S, Migliore C, Ghiso E, et al.: Silencing the MET oncogene leads to regression of experimental tumors and metastases. Oncogene 2008, 27:684–693.

    Article  PubMed  CAS  Google Scholar 

  44. Benvenuti S, Comoglio PM: The MET receptor tyrosine kinase in invasion and metastasis. J Cell Physiol 2007, 213:316–325.

    Article  PubMed  CAS  Google Scholar 

  45. Chou AJ, Gorlick R: Chemotherapy resistance in osteosarcoma: current challenges and future directions. Expert Rev Anticancer Ther 2006, 6:1075–1085.

    Article  PubMed  CAS  Google Scholar 

  46. Gu B, España L, Méndez O, et al.: Organ-selective chemoresistance in metastasis from human breast cancer cells: inhibition of apoptosis, genetic variability and microenvironment at the metastatic focus. Carcinogenesis 2004, 25:2293–2301.

    Article  PubMed  CAS  Google Scholar 

  47. Ory B, Moriceau G, Redini F, Heymann D: mTOR inhibitors (rapamycin and its derivatives) and nitrogen containing bisphosphonates: bifunctional compounds for the treatment of bone tumours. Curr Med Chem 2007, 14:1381–1387.

    Article  PubMed  CAS  Google Scholar 

  48. Mita MM, Tolcher AW: The role of mTOR inhibitors for treatment of sarcomas. Curr Oncol Rep 2007, 9:316–322.

    Article  PubMed  CAS  Google Scholar 

  49. Wan X, Mendoza A, Khanna C, Helman LJ: Rapamycin inhibits ezrin-mediated metastatic behavior in a murine model of osteosarcoma. Cancer Res 2005, 65:2406–2411.

    Article  PubMed  CAS  Google Scholar 

  50. Khanna C, Wan X, Bose S, et al.: The membrane-cytoskeleton linker ezrin is necessary for osteosarcoma metastasis. Nat Med 2004, 10:182–186.

    Article  PubMed  CAS  Google Scholar 

  51. Pearl LH, Prodromou C, Workman P: The Hsp90 molecular chaperone: an open and shut case for treatment. Biochem J 2008, 410:439–453.

    Article  PubMed  CAS  Google Scholar 

  52. Xu W, Neckers L: Targeting the molecular chaperone heat shock protein 90 provides a multifaceted effect on diverse cell signaling pathways of cancer cells. Clin Cancer Res 2007, 13:1625–1629.

    Article  PubMed  CAS  Google Scholar 

  53. Workman P, Burrows F, Neckers L, Rosen N: Drugging the cancer chaperone HSP90: combinatorial therapeutic exploitation of oncogene addiction and tumor stress. Ann N Y Acad Sci 2007, 1113:202–216.

    Article  PubMed  CAS  Google Scholar 

  54. Paoloni M, Khanna C: Translation of new cancer treatments from pet dogs to humans. Nat Rev Cancer 2008, 8:147–156.

    Article  PubMed  CAS  Google Scholar 

  55. Mahajan A, Woo SY, Kornguth DG, et al.: Multimodality treatment of osteosarcoma: radiation in a high-risk cohort. Pediatr Blood Cancer 2008, 50:976–982.

    Article  PubMed  Google Scholar 

  56. Lalich M, McNeel DG, Wilding G, Liu G: Endothelin receptor antagonists in cancer therapy. Cancer Invest 2007, 25:785–794.

    Article  PubMed  CAS  Google Scholar 

  57. Hughes DP, Thomas DG, Giordano TJ, et al.: Cell surface expression of epidermal growth factor receptor and Her-2 with nuclear expression of Her-4 in primary osteosarcoma. Cancer Res 2004, 64:2047–2053.

    Article  PubMed  CAS  Google Scholar 

  58. Chang HT, Chen WC, Chen JS, et al.: Effect of miconazole on intracellular Ca2+ levels and proliferation in human osteosarcoma cells. Life Sci 2005, 76:2091–2101.

    Article  PubMed  CAS  Google Scholar 

  59. Yao W, Zhuo J, Burns DM, et al.: Discovery of a potent, selective, and orally active human epidermal growth factor receptor-2 sheddase inhibitor for the treatment of cancer. J Med Chem 2007, 50:603–606.

    Article  PubMed  CAS  Google Scholar 

  60. Yang YA, Dukhanina O, Tang B, et al.: Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. J Clin Invest 2002, 109:1607–1615.

    PubMed  CAS  Google Scholar 

  61. Teicher BA: Transforming growth factor-beta and the immune response to malignant disease. Clin Cancer Res 2007, 13:6247–6251.

    Article  PubMed  CAS  Google Scholar 

  62. Shor AC, Keschman EA, Lee FY, et al.: Dasatinib inhibits migration and invasion in diverse human sarcoma cell lines and induces apoptosis in bone sarcoma cells dependent on SRC kinase for survival. Cancer Res 2007, 67:2800–2808.

    Article  PubMed  CAS  Google Scholar 

  63. Kim SY, Lee CH, Midura BV, et al.: Inhibition of the CXCR4/CXCL12 chemokine pathway reduces the development of murine pulmonary metastases. Clin Exp Metastasis 2008, 25:201–211.

    Article  PubMed  CAS  Google Scholar 

  64. Roberts WG, Ung E, Whalen P, et al.: Antitumor activity and pharmacology of a selective focal adhesion kinase inhibitor, PF-562,271. Cancer Res 2008, 68:1935–1944.

    Article  PubMed  CAS  Google Scholar 

  65. Bagatell R, Beliakoff J, David CL, et al.: Hsp90 inhibitors deplete key anti-apoptotic proteins in pediatric solid tumor cells and demonstrate synergistic anticancer activity with cisplatin. Int J Cancer 2005, 113:179–188.

    Article  PubMed  CAS  Google Scholar 

  66. Gordon EM, Lopez FF, Cornelio GH, et al.: Pathotropic nanoparticles for cancer gene therapy Rexin-G IV: three-year clinical experience. Int J Oncol 2006, 29:1053–1064.

    PubMed  CAS  Google Scholar 

  67. Cunningham CC: Talabostat. Expert Opin Investig Drugs 2007, 16:1459–1465.

    Article  PubMed  CAS  Google Scholar 

  68. Steinert DM, Patel SR: Recent studies in novel therapy for metastatic sarcomas. Hematol Oncol Clin North Am 2005, 19:573–590, viii.

    Article  PubMed  Google Scholar 

  69. Salmon BA, Siemann DW: Characterizing the tumor response to treatment with combretastatin A4 phosphate. Int J Radiat Oncol Biol Phys 2007, 68:211–217.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chand Khanna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khanna, C. Novel targets with potential therapeutic applications in osteosarcoma. Curr Oncol Rep 10, 350–358 (2008). https://doi.org/10.1007/s11912-008-0054-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-008-0054-3

Keywords

Navigation