Skip to main content

Advertisement

Log in

Molecular biology of leukemia

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Identification and characterization of leukemia-related chromosomal translocations have had significant impact on all aspects of the management of acute leukemia, including its diagnosis, assignment of prognosis, and development of an appropriate treatment plan. Several genes are recurrent targets of chromosomal abnormalities, suggesting that they play a key role in leukemogenesis. Significant progress has been made to define potentially unifying molecular mechanisms of leukemic transformation. Hopefully, these findings will provide the basis for molecularly targeted therapies for leukemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Mannervik M, Nibu Y, Zhang H, Levine M: Transcriptional coregulators in development. Science 1999, 284:606–609.

    Article  PubMed  CAS  Google Scholar 

  2. Grignani F, De Matteis S, Nervi C, et al.: Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature 1998, 391:815–818. This paper demonstrates that recruitment of histone deacetylase is critical for the transforming potential of APL fusion proteins; the differential effects of RA on the stability of the PML-RARa versus PLZF-RARa corepressor complex correlates with the retinoic acid-responsiveness of t(15;17) versus t(11;17) APLs.

    Article  PubMed  CAS  Google Scholar 

  3. Wong CW, Privalsky ML: Components of the SMRT corepressor complex exhibit distinctive interactions with the POZ domain oncoproteins PLZF, PLZF-RARalpha, and BCL-6. J Biol Chem 1998, 273:27695–27702.

    Article  PubMed  CAS  Google Scholar 

  4. Gelmetti V, Zhang J, Fanelli M, et al.: Aberrant recruitment of the nuclear receptor corepressor-histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol Cell Biol 1998, 18:7185–7191.

    PubMed  CAS  Google Scholar 

  5. Wang ZG, Ruggero D, Ronchetti S, et al.: PML is essential for multiple apoptotic pathways. Nat Genet 1998, 20:266–272.

    Article  PubMed  CAS  Google Scholar 

  6. Lutterbach B, Westendorf JJ, Linggi B, et al.: ETO, a target of t(8;21) in acute leukemia, interacts with the N-CoR and mSin3 corepressors. Mol Cell Biol 1998, 18:7176–7184. The study demonstrates the interaction of ETO with the corepressors mSin3 and N-CoR and provides a model for how AML1/ETO can repress transcription of AML-1 targets.

    PubMed  CAS  Google Scholar 

  7. Fenrick R, Amann JM, Lutterbach B, et al.: Both TEL and AML-1 contribute repression domains to the t(12;21) fusion protein. Mol Cell Biol 1999, 19:6566–6574.

    PubMed  CAS  Google Scholar 

  8. Lin RJ, Nagy L, Inoue S, et al.: Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 1998, 391:811–814. This study describes the importance of the PML-RARa and PLZF-RARa/histone deacetylase (HDAC) complex in the development of APL. Inhibitors of histone deacetylase dramatically potentiate retinoid-induced differentiation.

    Article  PubMed  CAS  Google Scholar 

  9. Hassig CA, Schreiber SL: Nuclear histone acetylases and deacetylases and transcriptional regulation: HATs off to HDACs. Curr Opin Chem Biol 1997, 1:300–308.

    Article  PubMed  CAS  Google Scholar 

  10. Cheng GX, Zhu XH, Men XQ, et al.: Distinct leukemia phenotypes in transgenic mice and different corepressor interactions generated by promyelocytic leukemia variant fusion genes PLZF-RARalpha and NPM-RARalpha. Proc Natl Acad Sci USA 1999, 96:6318–6323. The study shows the leukemogenic potential of the PLZF-RARa and NPM-RARa fusion genes in vivo using a transgenic mice model.

    Article  PubMed  CAS  Google Scholar 

  11. Pandolfi PP: Knocking in and out genes and trans genes: the use of the engineered mouse to study normal and aberrant hemopoiesis. Semin Hematol 1998, 35:136–148.

    PubMed  CAS  Google Scholar 

  12. Soignet SL, Maslak P, Wang ZG, et al.: Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N Engl J Med 998, 339:1341–1348.

  13. Frank R, Zhang J, Uchida H, et al.: The AML1/ETO fusion protein blocks transactivation of the GM-CSF promoter by AML1B. Oncogene 1995, 11:2667–2674.

    PubMed  CAS  Google Scholar 

  14. Meyers S, Lenny N, Hiebert SW: The t(8;21) fusion protein interferes with AML-1B-dependent transcriptional activation. Mol Cell Biol 1995, 15:1974–1982.

    PubMed  CAS  Google Scholar 

  15. Lutterbach B, Hou Y, Durst KL, Hiebert SW: The inv(16) encodes an acute myeloid leukemia 1 transcriptional corepressor. Proc Natl Acad Sci U S A 1999, 96:12822–12827.

    Article  PubMed  CAS  Google Scholar 

  16. Klampfer L, Zhang J, Zelenetz AO, et al.: The AML1/ETO fusion protein activates transcription of BCL-2. Proc Natl Acad Sci USA 1996, 93:14059–14064.

    Article  PubMed  CAS  Google Scholar 

  17. Frank RC, Sun X, Berguido FJ, et al.: The t(8;21) fusion protein, AML1/ETO, transforms NIH3T3 cells and activates AP-1. Oncogene 1999, 18:1701–1710.

    Article  PubMed  CAS  Google Scholar 

  18. Levanon D, Goldstein RE, Bernstein Y, et al.: Transcriptional repression by AML1 and LEF-1 is mediated by the TLE/ Groucho corepressors. Proc Natl Acad Sci U S A 1998, 95:11590–11595.

    Article  PubMed  CAS  Google Scholar 

  19. Imai Y, Kurokawa M, Tanaka K, et al.: TLE, the human homolog of groucho, interacts with AML1 and acts as a repressor of AML1-induced transactivation. Biochem Biophys Res Commun 1998, 252:582–589.

    Article  PubMed  CAS  Google Scholar 

  20. Hiebert SW, Sun W, Davis JN, et al.: The t(12;21) translocation converts AML-1B from an activator to a repressor of transcription. Mol Cell Biol 1996, 16:1349–1355.

    PubMed  CAS  Google Scholar 

  21. Uchida H, Downing JR, Miyazaki Y, et al.: Three distinct domains in TEL-AML1 are required for transcriptional repression of the IL-3 promoter. Oncogene 1999, 18:1015–1022.

    Article  PubMed  CAS  Google Scholar 

  22. Massague J: TGF-beta signal transduction. Annu Rev Biochem 1998, 67:753–791.

    Article  PubMed  CAS  Google Scholar 

  23. Kurokawa M, Mitani K, Imai Y, et al.: The t(3;21) fusion product, AML1/Evi-1, interacts with Smad3 and blocks transforming growth factor-beta-mediated growth inhibition of myeloid cells. Blood 1998, 92:4003–4012.

    PubMed  CAS  Google Scholar 

  24. Kurokawa M, Mitani K, Irie K, et al.: The oncoprotein Evi-1 represses TGF-beta signalling by inhibiting Smad3. Nature 1998, 394:92–96.

    Article  PubMed  CAS  Google Scholar 

  25. Osato M, Asou N, Abdalla E, et al.: Biallelic and heterozygous point mutations in the runt domain of the AML1/ PEBP2alphaB gene associated with myeloblastic leukemias. Blood 1999, 93:1817–1824.

    PubMed  CAS  Google Scholar 

  26. Song WJ, Sullivan MG, Legare RD, et al.: Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet 1999, 23:166–175. This is the first example of the role of haploinsufficiency (due to genetic mutations within the AML1 gene) in a familial predisposition to developing leukemia.

    Article  PubMed  CAS  Google Scholar 

  27. Liu P, Tarle SA, Hajra A, et al.: Fusion between transcription factor CBF beta/PEBP2 beta and a myosin heavy chain in acute myeloid leukemia. Science 1993, 261:1041–1044.

    Article  PubMed  CAS  Google Scholar 

  28. Goger M, Gupta V, Kim WY, et al.: Molecular insights into PEBP2/ CBF beta-SMMHC associated acute leukemia revealed from the structure of PEBP2/CBF beta. Nat Struct Biol 1999, 6:620–623.

    Article  PubMed  CAS  Google Scholar 

  29. Secker-Walker LM, Moorman AV, Bain BJ, Mehta AB: Secondary acute leukemia and myelodysplastic syndrome with 11q23 abnormalities. EU Concerted Action 11q23 Workshop. Leukemia 1998, 12:840–844.

    Article  PubMed  CAS  Google Scholar 

  30. Grimwade D, Walker H, Oliver F, et al.: The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties. Blood 1998, 92:2322–2333.

    PubMed  CAS  Google Scholar 

  31. Secker-Walker LM: General report on the European Union Concerted Action Workshop on 11q23, London, UK, May 1997. Leukemia 1998, 12:776–778.

    Article  PubMed  CAS  Google Scholar 

  32. Rozenblatt-Rosen O, Rozovskaia T, Burakov D, et al.: The C-terminal SET domains of ALL-1 and TRITHORAX interact with the INI1 and SNR1 proteins, components of the SWI/ SNF complex. Proc Natl Acad Sci U S A 1998, 95:4152–4157.

    Article  PubMed  CAS  Google Scholar 

  33. Yu BD, Hanson RD, Hess JL, et al.: MLL, a mammalian trithorax-group gene, functions as a transcriptional maintenance factor in morphogenesis. Proc Natl Acad Sci U S A 1998, 95:10632–10636.

    Article  PubMed  CAS  Google Scholar 

  34. Dobson CL, Warren AJ, Pannell R, et al.: The mll-AF9 gene fusion in mice controls myeloproliferation and specifies acute myeloid leukaemogenesis. EMBO J 1999, 18:3564–3574.

    Article  PubMed  CAS  Google Scholar 

  35. Shinobu N, Maeda T, Aso T, et al.: Physical interaction and functional antagonism between the RNA polymerase II elongation factor ELL and p53. J Biol Chem 1999, 274:17003–17010.

    Article  PubMed  CAS  Google Scholar 

  36. Caligiuri MA, Strout MP, Lawrence D, et al.: Rearrangement of ALL1 (MLL) in acute myeloid leukemia with normal cytogenetics. Cancer Res 1998, 58:55–59.

    PubMed  CAS  Google Scholar 

  37. Schnittger S, Wormann B, Hiddemann W, Griesinger F: Partial tandem duplications of the MLL gene are detectable in peripheral blood and bone marrow of nearly all healthy donors. Blood 1998, 92:1728–1734.

    PubMed  CAS  Google Scholar 

  38. Blobel G: Unidirectional and bidirectional protein traffic across membranes. Cold Spring Harb Symp Quant Biol 1995, 60:1–10.

    PubMed  CAS  Google Scholar 

  39. Pemberton LF, Blobel G, Rosenblum JS: Transport routes through the nuclear pore complex. Curr Opin Cell Biol 1998, 10:392–399.

    Article  PubMed  CAS  Google Scholar 

  40. Borrow J, Shearman AM, Stanton VP Jr, et al.: The t(7;11)(p15;p15) translocation in acute myeloid leukaemia fuses the genes for nucleoporin NUP98 and class I homeoprotein HOXA9. Nat Genet 1996, 12:159–167.

    Article  PubMed  CAS  Google Scholar 

  41. Nakamura T, Largaespada DA, Lee MP, et al.: Fusion of the nucleoporin gene NUP98 to HOXA9 by the chromosome translocation t(7;11)(p15;p15) in human myeloid leukaemia. Nat Genet 1996, 12:154–158.

    Article  PubMed  CAS  Google Scholar 

  42. Raza-Egilmez SZ, Jani-Sait SN, Grossi M, et al.: NUP98-HOXD13 gene fusion in therapy-related acute myelogenous leukemia. Cancer Res 1998, 58:4269–4273.

    PubMed  CAS  Google Scholar 

  43. Arai Y, Hosoda F, Kobayashi H, et al.: The inv(11)(p15q22) chromosome translocation of de novo and therapy-related myeloid malignancies results in fusion of the nucleoporin gene, NUP98, with the putative RNA helicase gene, DDX10. Blood 1997, 89:3936–3944.

    PubMed  CAS  Google Scholar 

  44. Kasper LH, Brindle PK, Schnabel CA, et al.: CREB binding protein interacts with nucleoporin-specific FG repeats that activate transcription and mediate NUP98-HOXA9 oncogenicity. Mol Cell Biol 1999, 19:764–776. The study demonstrates that the NUP98-HOXA9 fusion protein can dysregulate HOX-responsive genes through the ability of the nucleoporin-specific FG repeats to recruit the coactivator CBP/p300.

    PubMed  CAS  Google Scholar 

  45. Nakamura T, Yamazaki Y, Hatano Y, Miura I: NUP98 is fused to PMX1 homeobox gene in human acute myelogenous leukemia with chromosome translocation t(1;11)(q23;p15). Blood 1999, 94:741–747.

    PubMed  CAS  Google Scholar 

  46. Ahuja HG, Felix CA, Aplan PD: The t(11;20)(p15;q11) chromosomal translocation associated with therapy-related myelodysplastic syndrome results in an NUP98-TOP1 fusion. Blood 1999, 94:3258–3261.

    PubMed  CAS  Google Scholar 

  47. Hussey DJ, Nicola M, Moore S, et al.: The (4;11)(q21;p15) translocation fuses the NUP98 and RAP1GDS1 genes and is recurrent in T-cell acute lymphocytic leukemia. Blood 1999, 94:2072–2079.

    PubMed  CAS  Google Scholar 

  48. Fornerod M, Boer J, van Baal S, et al.: Relocation of the carboxyterminal part of CAN from the nuclear envelope to the nucleus as a result of leukemia-specific chromosome rearrangements. Oncogene 1995, 10:1739–1748.

    PubMed  CAS  Google Scholar 

  49. von Lindern M, Fornerod M, Soekarman N, et al.: Translocation t(6;9) in acute non-lymphocytic leukaemia results in the formation of a DEK-CAN fusion gene. Baillieres Clin Haematol 1992, 5:857–879.

    Google Scholar 

  50. von Lindern M, van Baal S, Wiegant J, et al.: CAN, a putative oncogene associated with myeloid leukemogenesis, may be activated by fusion of its 3′ half to different genes: characterization of the set gene. Mol Cell Biol 1992,12:3346–3355.

    Google Scholar 

  51. Kraemer D, Wozniak RW, Blobel G, Radu A: The human CAN protein, a putative oncogene product associated with myeloid leukemogenesis, is a nuclear pore complex protein that faces the cytoplasm. Proc Natl Acad Sci U S A 1994, 91:1519–1523.

    Article  PubMed  CAS  Google Scholar 

  52. Salvati PD, Watt PM, Thomas WR, Kees UR: Molecular characterization of a complex chromosomal translocation breakpoint t(10;14) including the HOX11 oncogene locus. Leukemia 1999, 13:975–979.

    Article  PubMed  CAS  Google Scholar 

  53. McWhirter JR, Neuteboom ST, Wancewicz EV, et al.: Oncogenic homeodomain transcription factor E2A-Pbx1 activates a novel WNT gene in pre-B acute lymphoblastoid leukemia. Proc Natl Acad Sci U S A 1999, 96:11464–11469.

    Article  PubMed  CAS  Google Scholar 

  54. Asahara H, Dutta S, Kao HY, et al.: Pbx-Hox heterodimers recruit coactivator-corepressor complexes in an isoformspecific manner. Mol Cell Biol 1999,19:8219–8225.

    PubMed  CAS  Google Scholar 

  55. Shen WF, Rozenfeld S, Kwong A, et al.: HOXA9 forms triple complexes with PBX2 and MEIS1 in myeloid cells. Mol Cell Biol 1999,19:3051–3061.

    PubMed  CAS  Google Scholar 

  56. Chase A, Reiter A, Burci L, et al.: Fusion of ETV6 to the caudal-related homeobox gene CDX2 in acute myeloid leukemia with the t(12;13)(p13;q12). Blood 1999, 93:1025–1031.

    PubMed  CAS  Google Scholar 

  57. Tenen DG, Hromas R, Licht JD, Zhang DE: Transcription factors, normal myeloid development, and leukemia. Blood 1997, 90:489–519.

    PubMed  CAS  Google Scholar 

  58. Wang ND, Finegold MJ, Bradley A, et al.: Impaired energy homeostasis in C/EBP alpha knockout mice. Science 1995, 269:1108–1112.

    Article  PubMed  CAS  Google Scholar 

  59. Zhang P, Iwama A, Datta MW, et al.: Upregulation of interleukin 6 and granulocyte colony-stimulating factor receptors by transcription factor CCAAT enhancer binding protein alpha (C/EBP alpha) is critical for granulopoiesis. J Exp Med 1998, 188:1173–1184.

    Article  PubMed  CAS  Google Scholar 

  60. Wang X, Scott E, Sawyers CL, Friedman AD: C/EBPalpha bypasses granulocyte colony-stimulating factor signals to rapidly induce PU.1 gene expression, stimulate granulocytic differentiation, and limit proliferation in 32D cl3 myeloblasts. Blood 1999, 94:560–571.

    PubMed  CAS  Google Scholar 

  61. Westendorf JJ, Yamamoto CM, Lenny N, et al.: The t(8;21) fusion product, AML-1-ETO, associates with C/EBP-alpha, inhibits C/EBP-alpha-dependent transcription, and blocks granulocytic differentiation. Mol Cell Biol 1998,18:322–333.

    PubMed  CAS  Google Scholar 

  62. Pabst T, Mueller EU, Schnittger S, et al.: Dominant negative mutations of the tumor supressor CCAAT/Enhancer Binding Protein alpha (C/EBPalpha): Role in acute myeloid leukemia [abstract]. Blood 1999,94(suppl 1):624a.

    Google Scholar 

  63. Golub TR, Slonim DK, Tamayo P, et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999, 286:531–537. This report demonstrates the feasibility of classifying acute leukemia (myeloid vs lymphoid) based on the pattern of gene expression, using DNA microarray technology.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jakubowiak, A., Cammenga, J., Sokolic, R. et al. Molecular biology of leukemia. Curr Oncol Rep 2, 123–131 (2000). https://doi.org/10.1007/s11912-000-0083-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-000-0083-z

Keywords

Navigation