Skip to main content

Advertisement

Log in

Neurotoxicity of Cancer Immunotherapies Including CAR T Cell Therapy

  • Review
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Purpose of Review

To outline the spectrum of neurotoxicity seen with approved immunotherapies and in pivotal clinical trials including immune checkpoint inhibitors, chimeric antigen receptor T-cell therapy, vaccine therapy, and oncolytic viruses.

Recent Findings

There has been an exponential growth in new immunotherapies, which has transformed the landscape of oncology treatment. With more widespread use of cancer immunotherapies, there have also been advances in characterization of its associated neurotoxicity, research into potential underlying mechanisms, and development of management guidelines. Increasingly, there is also mounting interest in long-term neurologic sequelae.

Summary

Neurologic complications of immunotherapy can impact every aspect of the central and peripheral nervous system. Early recognition and treatment are critical. Expanding indications for immunotherapy to solid and CNS tumors has led to new challenges, such as how to reliably distinguish neurotoxicity from disease progression. Our evolving understanding of immunotherapy neurotoxicity highlights important areas for future research and the need for novel immunomodulatory therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Data availability

Not applicable.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Guidon AC, Burton LB, Chwalisz BK, Hillis J, Schaller TH, Amato AA, et al. Consensus disease definitions for neurologic immune-related adverse events of immune checkpoint inhibitors. J Immunother Cancer. 2021;9:e002890. Consensus guidelines on the definition and classification of ICI-related neurologic complications

    Article  PubMed  PubMed Central  Google Scholar 

  2. • Dubey D, David WS, Reynolds KL, Chute DF, Clement NF, Cohen JV, et al. Severe neurological toxicity of immune checkpoint inhibitors: growing spectrum. Ann Neurol. 2020;87:659–69. Retrospective review on real-world ICI toxicities, overlap syndromes, clinical outcomes, relapsed disease, and approach to treatment

    Article  PubMed  Google Scholar 

  3. • Schneider BJ, Naidoo J, Santomasso BD, Lacchetti C, Adkins S, Anadkat M, et al. Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: ASCO guideline update. J Clin Oncol. 2021;39:4073–126. ASCO guidelines on management of ICI complications including neurologic toxicities

    Article  CAS  PubMed  Google Scholar 

  4. Tawbi HA, Forsyth PA, Algazi A, Hamid O, Hodi FS, Moschos SJ, et al. Combined nivolumab and ipilimumab in melanoma metastatic to the brain. N Engl J Med. 2018;379:722–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tawbi HA, Forsyth PA, Hodi FS, Algazi AP, Hamid O, Lao CD, et al. Long-term outcomes of patients with active melanoma brain metastases treated with combination nivolumab plus ipilimumab (CheckMate 204): final results of an open-label, multicentre, phase 2 study. Lancet Oncol. 2021;22:1692–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Goldberg SB, Schalper KA, Gettinger SN, Mahajan A, Herbst RS, Chiang AC, et al. Pembrolizumab for management of patients with NSCLC and brain metastases: long-term results and biomarker analysis from a non-randomised, open-label, phase 2 trial. Lancet Oncol. 2020;21:655–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Brastianos PK, Kim AE, Giobbie-Hurder A, Lee EQ, Lin NU, Overmoyer B, et al. Pembrolizumab in brain metastases of diverse histologies: phase 2 trial results. Nat Med. 2023;29:1728–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Glitza Oliva IC, Ferguson SD, Bassett R, Foster AP, John I, Hennegan TD, et al. Concurrent intrathecal and intravenous nivolumab in leptomeningeal disease: phase 1 trial interim results. Nat Med. 2023;29:898–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bouffet E, Larouche V, Campbell BB, Merico D, de Borja R, Aronson M, et al. Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J Clin Oncol Off J Am Soc Clin Oncol. 2016;34:2206–11.

    Article  CAS  Google Scholar 

  10. Lim M, Weller M, Idbaih A, Steinbach J, Finocchiaro G, Raval RR, et al. Phase III trial of chemoradiotherapy with temozolomide plus nivolumab or placebo for newly diagnosed glioblastoma with methylated MGMT promoter. Neuro-Oncol. 2022;24:1935–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Omuro A, Brandes AA, Carpentier AF, Idbaih A, Reardon DA, Cloughesy T, et al. Radiotherapy combined with nivolumab or temozolomide for newly diagnosed glioblastoma with unmethylated MGMT promoter: an international randomized phase III trial. Neuro-Oncol. 2023;25:123–34.

    Article  CAS  PubMed  Google Scholar 

  12. Reardon DA, Brandes AA, Omuro A, Mulholland P, Lim M, Wick A, et al. Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 phase 3 randomized clinical trial. JAMA Oncol. 2020;6:1003–10.

    Article  PubMed  Google Scholar 

  13. Brastianos PK, Kim AE, Giobbie-Hurder A, Lee EQ, Wang N, Eichler AF, et al. Phase 2 study of pembrolizumab in patients with recurrent and residual high-grade meningiomas. Nat Commun. 2022;13:1325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nayak L, Iwamoto F, Ferreri AJ, Santoro A, Singer S, Batlevi C, et al. Checkmate 647: a phase 2, open-label study of nivolumab in relapsed/refractory primary central nervous system lymphoma or relapsed/refractory primary testicular lymphoma. Hematol Oncol. 2017;35:420–1.

    Article  Google Scholar 

  15. Schuster SJ, Bishop MR, Tam CS, Waller EK, Borchmann P, McGuirk JP, et al. tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 2019;380:45–56.

    Article  CAS  PubMed  Google Scholar 

  16. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378:439–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Abramson JS, Palomba ML, Gordon LI, Lunning MA, Wang M, Arnason J, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. The Lancet. 2020;396:839–52.

    Article  Google Scholar 

  18. Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377:2531–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang M, Munoz J, Goy A, Locke FL, Jacobson CA, Hill BT, et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2020;382:1331–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Danish H, Santomasso BD. Neurotoxicity biology and management. Cancer J. 2021;27:126.

    Article  CAS  PubMed  Google Scholar 

  21. Wang Y, Jain P, Locke FL, Maurer MJ, Frank MJ, Munoz JL, et al. Brexucabtagene autoleucel for relapsed or refractory mantle cell lymphoma in standard-of-care practice: results from the US lymphoma CAR T consortium. J Clin Oncol. 2023;41:2594–606.

    Article  CAS  PubMed  Google Scholar 

  22. Nastoupil LJ, Jain MD, Feng L, Spiegel JY, Ghobadi A, Lin Y, et al. Standard-of-care axicabtagene ciloleucel for relapsed or refractory large B-cell lymphoma: results from the US lymphoma CAR T consortium. J Clin Oncol Off J Am Soc Clin Oncol. 2020;38:3119–28.

    Article  Google Scholar 

  23. Pasquini MC, Hu Z-H, Curran K, Laetsch T, Locke F, Rouce R, et al. Real-world evidence of tisagenlecleucel for pediatric acute lymphoblastic leukemia and non-Hodgkin lymphoma. Blood Adv. 2020;4:5414–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Spiegel JY, Patel S, Muffly L, Hossain NM, Oak J, Baird JH, et al. CAR T cells with dual targeting of CD19 and CD22 in adult patients with recurrent or refractory B cell malignancies: a phase 1 trial. Nat Med. 2021;27:1419–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang T, Tang Y, Cai J, Wan X, Hu S, Lu X, et al. Coadministration of CD19- and CD22-directed chimeric antigen receptor T-cell therapy in childhood B-cell acute lymphoblastic leukemia: a single-arm, multicenter, phase II trial. J Clin Oncol Off J Am Soc Clin Oncol. 2023;41:1670–83.

    Article  CAS  Google Scholar 

  26. Fergusson NJ, Adeel K, Kekre N, Atkins H, Hay KA. A systematic review and meta-analysis of CD22 CAR T-cells alone or in combination with CD19 CAR T-cells. Front Immunol. 2023;14:1178403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jacobson CA, Chavez JC, Sehgal AR, William BM, Munoz J, Salles G, et al. Axicabtagene ciloleucel in relapsed or refractory indolent non-Hodgkin lymphoma (ZUMA-5): a single-arm, multicentre, phase 2 trial. Lancet Oncol. 2022;23:91–103.

    Article  CAS  PubMed  Google Scholar 

  28. Munshi NC, Anderson LD, Shah N, Madduri D, Berdeja J, Lonial S, et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N Engl J Med. 2021;384:705–16.

    Article  CAS  PubMed  Google Scholar 

  29. Berdeja JG, Madduri D, Usmani SZ, Jakubowiak A, Agha M, Cohen AD, et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): a phase 1b/2 open-label study. The Lancet. 2021;398:314–24.

    Article  CAS  Google Scholar 

  30. Koch C, Fleischer J, Popov T, Frontzek K, Schreiner B, Roth P, et al. Diabetes insipidus and Guillain-Barré-like syndrome following CAR-T cell therapy: a case report. J Immunother Cancer. 2023;11:e006059.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Santomasso BD, Park JH, Salloum D, Riviere I, Flynn J, Mead E, et al. Clinical and biological correlates of neurotoxicity associated with CAR T-cell therapy in patients with B-cell acute lymphoblastic leukemia. Cancer Discov. 2018;8:958–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rubin DB, Danish HH, Ali AB, Li K, LaRose S, Monk AD, et al. Neurological toxicities associated with chimeric antigen receptor T-cell therapy. Brain J Neurol. 2019;142:1334–48.

    Article  Google Scholar 

  33. Lee DW, Santomasso BD, Locke FL, Ghobadi A, Turtle CJ, Brudno JN, et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2019;25:625–38.

    Article  CAS  Google Scholar 

  34. Gust J, Hay KA, Hanafi L-A, Li D, Myerson D, Gonzalez-Cuyar LF, et al. Endothelial activation and blood–brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T Cells. Cancer Discov. 2017;7:1404–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. JCAR015 in ALL: A Root-Cause Investigation. Cancer Discov. 2018;8:4–5.

  36. Gust J, Finney OC, Li D, Brakke HM, Hicks RM, Futrell RB, et al. Glial injury in neurotoxicity after pediatric CD19-directed chimeric antigen receptor T cell therapy. Ann Neurol. 2019;86:42–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Torre M, Solomon IH, Sutherland CL, Nikiforow S, DeAngelo DJ, Stone RM, et al. Neuropathology of a case with fatal CAR T-cell-associated cerebral edema. J Neuropathol Exp Neurol. 2018;77:877–82.

    Article  CAS  PubMed  Google Scholar 

  38. Jung S, Greiner J, von Harsdorf S, Popovic P, Moll R, Schittenhelm J, et al. Fatal late-onset CAR T-cell–mediated encephalitis after axicabtagene-ciloleucel in a patient with large B-cell lymphoma. Blood Adv. 2021;5:3789–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Beuchat I, Danish HH, Rubin DB, Jacobson C, Robertson M, Vaitkevicius H, et al. EEG findings in CAR T-cell-associated neurotoxicity: Clinical and radiological correlations. Neuro-Oncol. 2022;24:313–25.

    Article  PubMed  Google Scholar 

  40. Satyanarayan S, Spiegel J, Hovsepian D, Markert M, Thomas R, Muffly L, et al. Continuous EEG monitoring detects nonconvulsive seizure and ictal-interictal continuum abnormalities in moderate to severe ICANS following systemic CAR-T therapy. The Neurohospitalist. 2023;13:53–60.

    Article  PubMed  Google Scholar 

  41. Karschnia P, Jordan JT, Forst DA, Arrillaga-Romany IC, Batchelor TT, Baehring JM, et al. Clinical presentation, management, and biomarkers of neurotoxicity after adoptive immunotherapy with CAR T cells. Blood. 2019;133:2212–21.

    Article  CAS  PubMed  Google Scholar 

  42. Shah BD, Ghobadi A, Oluwole OO, Logan AC, Boissel N, Cassaday RD, et al. KTE-X19 for relapsed or refractory adult B-cell acute lymphoblastic leukaemia: phase 2 results of the single-arm, open-label, multicentre ZUMA-3 study. The Lancet. 2021;398:491–502.

    Article  CAS  Google Scholar 

  43. Strati P, Ahmed S, Kebriaei P, Nastoupil LJ, Claussen CM, Watson G, et al. Clinical efficacy of anakinra to mitigate CAR T-cell therapy–associated toxicity in large B-cell lymphoma. Blood Adv. 2020;4:3123–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. • Santomasso BD, Nastoupil LJ, Adkins S, Lacchetti C, Schneider BJ, Anadkat M, et al. Management of immune-related adverse events in patients treated with chimeric antigen receptor T-cell therapy: ASCO Guideline. J Clin Oncol. 2021;39:3978–92. ASCO guidelines on CAR-T toxcities including ICANS management

    Article  CAS  PubMed  Google Scholar 

  45. • Maus MV, Alexander S, Bishop MR, Brudno JN, Callahan C, Davila ML, et al. Society for immunotherapy of cancer (SITC) clinical practice guideline on immune effector cell-related adverse events. J Immunother Cancer. 2020;8:e001511. SITC guidelines on definition and management of ICANS

    Article  PubMed  PubMed Central  Google Scholar 

  46. Morris EC, Neelapu SS, Giavridis T, Sadelain M. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nat Rev Immunol. 2022;22:85–96.

    Article  CAS  PubMed  Google Scholar 

  47. Frigault M, Rotte A, Ansari A, Gliner B, Heery C, Shah B. Dose fractionation of CAR-T cells. A systematic review of clinical outcomes. J Exp Clin Cancer Res CR. 2023;42:11.

    Article  PubMed  Google Scholar 

  48. Baur K, Heim D, Beerlage A, Poerings AS, Kopp B, Medinger M, et al. Dasatinib for treatment of CAR T-cell therapy-related complications. J Immunother Cancer. 2022;10:e005956.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Neelapu SS, Dickinson M, Munoz J, Ulrickson ML, Thieblemont C, Oluwole OO, et al. Axicabtagene ciloleucel as first-line therapy in high-risk large B-cell lymphoma: the phase 2 ZUMA-12 trial. Nat Med. 2022;28:735–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Locke FL, Miklos DB, Jacobson CA, Perales M-A, Kersten M-J, Oluwole OO, et al. Axicabtagene ciloleucel as second-line therapy for large B-cell lymphoma. N Engl J Med. 2022;386:640–54.

    Article  CAS  PubMed  Google Scholar 

  51. • Cordeiro A, Bezerra ED, Hirayama AV, Hill JA, Wu QV, Voutsinas J, et al. Late events after treatment with CD19-targeted chimeric antigen receptor modified T cells. Biol Blood Marrow Transplant. 2020;26:26–33. Long-term outcomes, including neurologic effects, of patients at Fred Hutchinson Cancer Research Center treated with anti-CD19 therapies in phase 1 and phase 2 trials

    Article  CAS  PubMed  Google Scholar 

  52. Ruark J, Mullane E, Cleary N, Cordeiro A, Bezerra ED, Wu V, et al. Patient-reported neuropsychiatric outcomes of long-term survivors after chimeric antigen receptor T cell therapy. Biol Blood Marrow Transplant J Am Soc Blood Marrow Transplant. 2020;26:34–43.

    Article  Google Scholar 

  53. • Maillet D, Belin C, Moroni C, Cuzzubbo S, Ursu R, Sirven-Villaros L, et al. Evaluation of mid-term (6-12 months) neurotoxicity in B-cell lymphoma patients treated with CAR T cells: a prospective cohort study. Neuro-Oncol. 2021;23:1569–75. Prospective study of patients treated with anti-CD19 therapy and their neurologic outcome at mid-term evaluation

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Barata A, Hoogland AI, Kommalapati A, Logue J, Welniak T, Hyland KA, et al. Change in patients’ perceived cognition following chimeric antigen receptor T-cell therapy for lymphoma. Transplant Cell Ther. 2022;28:401.e1–7.

    Article  CAS  PubMed  Google Scholar 

  55. Tan BBJ-W, Chua SKK, Soh QY, Chan L-L, Tan E-K. Chimeric antigen receptor (CAR) T therapy and cognitive functions. J Neurol Sci. 2023;444:120495.

    Article  CAS  PubMed  Google Scholar 

  56. • Van Oekelen O, Aleman A, Upadhyaya B, Schnakenberg S, Madduri D, Gavane S, et al. Neurocognitive and hypokinetic movement disorder with features of parkinsonism following BCMA-targeting CAR-T cell therapy. Nat Med. 2021;27:2099–103. Case report of a patient with neurocognitive and parkinsonism after treatment with anti-BCMA CAR-T for multiple myeloma

  57. Cohen AD, Mateos M-V, Cohen YC, Rodriguez-Otero P, Paiva B, van de Donk NWCJ, et al. Efficacy and safety of cilta-cel in patients with progressive multiple myeloma after exposure to other BCMA-targeting agents. Blood. 2023;141:219–30.

    Article  CAS  PubMed  Google Scholar 

  58. •• Cohen AD, Parekh S, Santomasso BD, Gállego Pérez-Larraya J, de Donk NWCJ v, Arnulf B, et al. Incidence and management of CAR-T neurotoxicity in patients with multiple myeloma treated with ciltacabtagene autoleucel in CARTITUDE studies. Blood Cancer J. 2022;12:32. Case series on patients with neurocognitive and movement toxicity after treatment with anti-BCMA CAR-T and strategies implemented for mitigation of neurotoxicity

    Article  PubMed  PubMed Central  Google Scholar 

  59. Siddiqi T, Wang X, Blanchard MS, Wagner JR, Popplewell LL, Budde LE, et al. CD19-directed CAR T-cell therapy for treatment of primary CNS lymphoma. Blood Adv. 2021;5:4059–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Abramson JS, McGree B, Noyes S, Plummer S, Wong C, Chen Y-B, et al. Anti-CD19 CAR T cells in CNS diffuse large-B-cell lymphoma. N Engl J Med. 2017;377:783–4.

    Article  PubMed  Google Scholar 

  61. Frigault MJ, Dietrich J, Martinez-Lage M, Leick M, Choi BD, DeFilipp Z, et al. Tisagenlecleucel CAR T-cell therapy in secondary CNS lymphoma. Blood. 2019;134:860–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Leahy AB, Newman H, Li Y, Liu H, Myers R, DiNofia A, et al. CD19-targeted chimeric antigen receptor T-cell therapy for CNS relapsed or refractory acute lymphocytic leukaemia: a post-hoc analysis of pooled data from five clinical trials. Lancet Haematol. 2021;8:e711–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Qi Y, Zhao M, Hu Y, Wang Y, Li P, Cao J, et al. Efficacy and safety of CD19-specific CAR T cell–based therapy in B-cell acute lymphoblastic leukemia patients with CNSL. Blood. 2022;139:3376–86.

    Article  CAS  PubMed  Google Scholar 

  64. Liu Y, Deng B, Hu B, Zhang W, Zhu Q, Liu Y, et al. Sequential different B-cell antigen-targeted CAR T-cell therapy for pediatric refractory/relapsed Burkitt lymphoma. Blood Adv. 2022;6:717–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Alcantara M, Houillier C, Blonski M, Rubio M-T, Willems L, Rascalou AW, et al. CAR T-cell therapy in primary central nervous system lymphoma: the clinical experience of the French LOC network. Blood. 2022;139:792–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. •• Frigault MJ, Dietrich J, Gallagher K, Roschewski M, Jordan JT, Forst D, et al. Safety and efficacy of tisagenlecleucel in primary CNS lymphoma: a phase 1/2 clinical trial. Blood. 2022;139:2306–15. Phase 1/2 trial of tisa-cel for 12 patients with PCNSL showing CR in 50% of patients with 41.6% of patients with low-grade ICANS and one patient with grade 3 ICANS

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cook MR, Dorris CS, Makambi KH, Luo Y, Munshi PN, Donato M, et al. Toxicity and efficacy of CAR T-cell therapy in primary and secondary CNS lymphoma: a meta-analysis of 128 patients. Blood Adv. 2023;7:32–9.

    Article  CAS  PubMed  Google Scholar 

  68. Tchou J, Zhao Y, Levine BL, Zhang PJ, Davis MM, Melenhorst JJ, et al. Safety and efficacy of intratumoral injections of chimeric antigen receptor (CAR) T cells in metastatic breast cancer. Cancer Immunol Res. 2017;5:1152–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Katz SC, Hardaway J, Prince E, Guha P, Cunetta M, Moody A, et al. HITM-SIR: phase Ib trial of intraarterial chimeric antigen receptor T-cell therapy and selective internal radiation therapy for CEA+ liver metastases. Cancer Gene Ther. 2020;27:341–55.

    Article  CAS  PubMed  Google Scholar 

  70. Narayan V, Barber-Rotenberg JS, Jung I-Y, Lacey SF, Rech AJ, Davis MM, et al. PSMA-targeting TGFβ-insensitive armored CAR T cells in metastatic castration-resistant prostate cancer: a phase 1 trial. Nat Med. 2022;28:724–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. •• Majzner RG, Ramakrishna S, Yeom KW, Patel S, Chinnasamy H, Schultz LM, et al. GD2-CAR T cell therapy for H3K27M-mutated diffuse midline gliomas. Nature. 2022;603:934–41. Initial report of 4 patients treated with GD2 CAR-T therapy and initial description of localized inflammation with CAR-T therapy, termed TIAN

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Mahdi J, Dietrich J, Straathof K, Roddie C, Scott BJ, Davidson TB, et al. Tumor inflammation-associated neurotoxicity. Nat Med. 2023;29:803–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lim WA, June CH. The principles of engineering immune cells to treat cancer. Cell. 2017;168:724–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Brown CE, Badie B, Barish ME, Weng L, Ostberg JR, Chang W-C, et al. Bioactivity and safety of IL13Rα2-redirected chimeric antigen receptor CD8+ T cells in patients with recurrent glioblastoma. Clin Cancer Res. 2015;21:4062–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Brown CE, Alizadeh D, Starr R, Weng L, Wagner JR, Naranjo A, et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med. 2016;375:2561–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ahmed N, Brawley V, Hegde M, Bielamowicz K, Kalra M, Landi D, et al. HER2-specific chimeric antigen receptor–modified virus-specific T cells for progressive glioblastoma: a phase 1 dose-escalation trial. JAMA Oncol. 2017;3:1094–101.

    Article  PubMed  PubMed Central  Google Scholar 

  77. O’Rourke DM, Nasrallah MP, Desai A, Melenhorst JJ, Mansfield K, Morrissette JJD, et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med. 2017;9:eaaa0984.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Goff SL, Morgan RA, Yang JC, Sherry RM, Robbins PF, Restifo NP, et al. Pilot trial of adoptive transfer of chimeric antigen receptor-transduced T cells targeting EGFRvIII in patients with glioblastoma. J Immunother Hagerstown Md. 1997;2019(42):126–35.

    Google Scholar 

  79. Tang X, Liu F, Liu Z, Cao Y, Zhang Z, Wang Y, et al. Bioactivity and safety of B7-H3-targeted chimeric antigen receptor T cells against anaplastic meningioma. Clin Transl Immunol. 2020;9:e1137.

    Article  CAS  Google Scholar 

  80. Tang X, Wang Y, Huang J, Zhang Z, Liu F, Xu J, et al. Administration of B7-H3 targeted chimeric antigen receptor-T cells induce regression of glioblastoma. Signal Transduct Target Ther. 2021;6:1–3.

    Google Scholar 

  81. Vitanza NA, Johnson AJ, Wilson AL, Brown C, Yokoyama JK, Künkele A, et al. Locoregional infusion of HER2-specific CAR T cells in children and young adults with recurrent or refractory CNS tumors: an interim analysis. Nat Med. 2021;27:1544–52.

    Article  CAS  PubMed  Google Scholar 

  82. Vitanza NA, Wilson AL, Huang W, Seidel K, Brown C, Gustafson JA, et al. Intraventricular B7-H3 CAR T cells for diffuse intrinsic pontine glioma: preliminary first-in-human bioactivity and safety. Cancer Discov. 2023;13:114–31.

    Article  CAS  PubMed  Google Scholar 

  83. Sahin U, Derhovanessian E, Miller M, Kloke B-P, Simon P, Löwer M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature. 2017;547:222–6.

    Article  CAS  PubMed  Google Scholar 

  84. Lin MJ, Svensson-Arvelund J, Lubitz GS, Marabelle A, Melero I, Brown BD, et al. Cancer vaccines: the next immunotherapy frontier. Nat Cancer. 2022;3:911–26.

    Article  CAS  PubMed  Google Scholar 

  85. Narita Y, Arakawa Y, Yamasaki F, Nishikawa R, Aoki T, Kanamori M, et al. A randomized, double-blind, phase III trial of personalized peptide vaccination for recurrent glioblastoma. Neuro-Oncol. 2019;21:348–59.

    Article  PubMed  Google Scholar 

  86. Liau LM, Ashkan K, Tran DD, Campian JL, Trusheim JE, Cobbs CS, et al. First results on survival from a large phase 3 clinical trial of an autologous dendritic cell vaccine in newly diagnosed glioblastoma. J Transl Med. 2018;16:142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Platten M, Bunse L, Wick A, Bunse T, Le Cornet L, Harting I, et al. A vaccine targeting mutant IDH1 in newly diagnosed glioma. Nature. 2021;592:463–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Ogino H, Taylor JW, Nejo T, Gibson D, Watchmaker PB, Okada K, et al. Randomized trial of neoadjuvant vaccination with tumor-cell lysate induces T cell response in low-grade gliomas. J Clin Invest. 2022;132:e151239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Carpenter AB, Carpenter AM, Aiken R, Hanft S. Oncolytic virus in gliomas: a review of human clinical investigations. Ann Oncol Off J Eur Soc Med Oncol. 2021;32:968–82.

    Article  CAS  Google Scholar 

  90. Maruyama Y, Sakurai A, Noda S, Fujiwara Y, Okura N, Takagi T, et al. Regulatory issues: PMDA – review of Sakigake designation products: oncolytic virus therapy with delytact injection (teserpaturev) for malignant glioma. The Oncologist. 2023:oyad041.

  91. Todo T, Ino Y, Ohtsu H, Shibahara J, Tanaka M. A phase I/II study of triple-mutated oncolytic herpes virus G47∆ in patients with progressive glioblastoma. Nat Commun. 2022;13:4119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. •• Todo T, Ito H, Ino Y, Ohtsu H, Ota Y, Shibahara J, et al. Intratumoral oncolytic herpes virus G47∆ for residual or recurrent glioblastoma: a phase 2 trial. Nat Med. 2022;28:1630–9. Phase 2 trial with of G47∆ in 19 patients with recurrent GBM with 1 partial response and 18 stable disease at 2 years leading to approval of teserpaturev in Japan for recurrent GBM

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Desjardins A, Gromeier M, Herndon JE, Beaubier N, Bolognesi DP, Friedman AH, et al. Recurrent glioblastoma treated with recombinant poliovirus. N Engl J Med. 2018;379:150–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gállego Pérez-Larraya J, Garcia-Moure M, Labiano S, Patiño-García A, Dobbs J, Gonzalez-Huarriz M, et al. Oncolytic DNX-2401 virus for pediatric diffuse intrinsic pontine glioma. N Engl J Med. 2022;386:2471–81.

    Article  PubMed  Google Scholar 

  95. Nassiri F, Patil V, Yefet LS, Singh O, Liu J, Dang RMA, et al. Oncolytic DNX-2401 virotherapy plus pembrolizumab in recurrent glioblastoma: a phase 1/2 trial. Nat Med. 2023;1–9

  96. Brown CE, Rodriguez A, Palmer J, Ostberg JR, Naranjo A, Wagner JR, et al. Off-the-shelf, steroid-resistant, IL13Rα2-specific CAR T cells for treatment of glioblastoma. Neuro-Oncol. 2022;noac024

  97. Liu E, Marin D, Banerjee P, Macapinlac HA, Thompson P, Basar R, et al. Use of CAR-transduced natural killer cells in CD19-positive lymphoid tumors. N Engl J Med. 2020;382:545–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zadeh G, Lang F, Daras M, Cloughesy T, Colman H, Ong S, et al. ATIM-24Interim results of a phase II multicenter study of the conditionally replicative oncolytic adenovirus DNX-2401 with pembrolizumab (keytruda) for recurrent glioblastoma; captive study (keynote-192). Neuro-Oncol. 2018;20:vi6

Download references

Author information

Authors and Affiliations

Authors

Contributions

Dr. Song, Dr. Scott, and Dr. Lee have all contributed to the conception, writing, revision, and final approval of the text, tables, and figure.

Corresponding author

Correspondence to Kun-Wei Song.

Ethics declarations

Ethical Approval

This article does not contain any studies with human or animal subjects performed by any of the authors.

Competing Interests

Dr. Song does not have conflicts of interest to disclose related to this work. Dr. Scott reports personal fees from Gilead Sciences Pty Ltd, outside the submitted work. Dr. Lee reports royalties from Wolters Kluwer (Up to Date, Inc).

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, KW., Scott, B.J. & Lee, E.Q. Neurotoxicity of Cancer Immunotherapies Including CAR T Cell Therapy. Curr Neurol Neurosci Rep 23, 827–839 (2023). https://doi.org/10.1007/s11910-023-01315-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-023-01315-w

Keywords