Skip to main content

Advertisement

Log in

Cerebral Lactate Metabolism After Traumatic Brain Injury

  • Neurotrauma (M Kumar, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Cerebral energy dysfunction has emerged as an important determinant of prognosis following traumatic brain injury (TBI). A number of studies using cerebral microdialysis, positron emission tomography, and jugular bulb oximetry to explore cerebral metabolism in patients with TBI have demonstrated a critical decrease in the availability of the main energy substrate of brain cells (i.e., glucose). Energy dysfunction induces adaptations of cerebral metabolism that include the utilization of alternative energy resources that the brain constitutively has, such as lactate. Two decades of experimental and human investigations have convincingly shown that lactate stands as a major actor of cerebral metabolism. Glutamate-induced activation of glycolysis stimulates lactate production from glucose in astrocytes, with subsequent lactate transfer to neurons (astrocyte-neuron lactate shuttle). Lactate is not only used as an extra energy substrate but also acts as a signaling molecule and regulator of systemic and brain glucose use in the cerebral circulation. In animal models of brain injury (e.g., TBI, stroke), supplementation with exogenous lactate exerts significant neuroprotection. Here, we summarize the main clinical studies showing the pivotal role of lactate and cerebral lactate metabolism after TBI. We also review pilot interventional studies that examined exogenous lactate supplementation in patients with TBI and found hypertonic lactate infusions had several beneficial properties on the injured brain, including decrease of brain edema, improvement of neuroenergetics via a “cerebral glucose-sparing effect,” and increase of cerebral blood flow. Hypertonic lactate represents a promising area of therapeutic investigation; however, larger studies are needed to further examine mechanisms of action and impact on outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Maas AI, Stocchetti N, Bullock R. Moderate and severe traumatic brain injury in adults. Lancet Neurol. 2008;7(8):728–41. doi:10.1016/S1474-4422(08)70164-9.

    Article  PubMed  Google Scholar 

  2. Rostami E, Engquist H, Enblad P. Imaging of cerebral blood flow in patients with severe traumatic brain injury in the neurointensive care. Front Neurol. 2014;5:114. doi:10.3389/fneur.2014.00114.

    PubMed  PubMed Central  Google Scholar 

  3. Vespa PM, McArthur D, O'Phelan K, Glenn T, Etchepare M, Kelly D, et al. Persistently low extracellular glucose correlates with poor outcome 6 months after human traumatic brain injury despite a lack of increased lactate: a microdialysis study. J Cereb Blood Flow Metab. 2003;23(7):865–77. doi:10.1097/01.WCB.0000076701.45782.EF.

    Article  CAS  PubMed  Google Scholar 

  4. Carre E, Ogier M, Boret H, Montcriol A, Bourdon L, Jean-Jacques R. Metabolic crisis in severely head-injured patients: is ischemia just the tip of the iceberg? Front Neurol. 2013;4:146. doi:10.3389/fneur.2013.00146.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Vespa P, Bergsneider M, Hattori N, Wu HM, Huang SC, Martin NA, et al. Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab. 2005;25(6):763–74. doi:10.1038/sj.jcbfm.9600073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pellerin L, Magistretti PJ. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci U S A. 1994;91(22):10625–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jalloh I, Helmy A, Shannon RJ, Gallagher CN, Menon DK, Carpenter KL, et al. Lactate uptake by the injured human brain: evidence from an arteriovenous gradient and cerebral microdialysis study. J Neurotrauma. 2013;30(24):2031–7. doi:10.1089/neu.2013.2947.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Glenn TC, Kelly DF, Boscardin WJ, McArthur DL, Vespa P, Oertel M, et al. Energy dysfunction as a predictor of outcome after moderate or severe head injury: indices of oxygen, glucose, and lactate metabolism. J Cereb Blood Flow Metab. 2003;23(10):1239–50. doi:10.1097/01.WCB.0000089833.23606.7F.

    Article  CAS  PubMed  Google Scholar 

  9. Bouzat P, Sala N, Suys T, Zerlauth JB, Marques-Vidal P, Feihl F, et al. Cerebral metabolic effects of exogenous lactate supplementation on the injured human brain. Intensive Care Med. 2014;40(3):412–21. doi:10.1007/s00134-013-3203-6. This recent pilot phase II investigational study examined the effect of a short infusion of hypertonic lactate in TBI patients monitored with CMD. It was found a significant and clinically relevant increase of CMD glucose, suggesting a beneficial cerebral glucose sparing-effect. Additional positive effects of hypertonic lactate were the decrease of glutamate (reduced excitotoxicity) and of ICP.

    Article  CAS  PubMed  Google Scholar 

  10. Rice AC, Zsoldos R, Chen T, Wilson MS, Alessandri B, Hamm RJ, et al. Lactate administration attenuates cognitive deficits following traumatic brain injury. Brain Res. 2002;928(1–2):156–9.

    Article  CAS  PubMed  Google Scholar 

  11. Holloway R, Zhou Z, Harvey HB, Levasseur JE, Rice AC, Sun D, et al. Effect of lactate therapy upon cognitive deficits after traumatic brain injury in the rat. Acta Neurochir. 2007;149(9):919–27. doi:10.1007/s00701-007-1241-y. discussion 27.

    Article  CAS  PubMed  Google Scholar 

  12. Oddo M, Schmidt JM, Carrera E, Badjatia N, Connolly ES, Presciutti M, et al. Impact of tight glycemic control on cerebral glucose metabolism after severe brain injury: a microdialysis study. Crit Care Med. 2008;36(12):3233–8. doi:10.1097/CCM.0b013e31818f4026.

    Article  CAS  PubMed  Google Scholar 

  13. Simpson IA, Carruthers A, Vannucci SJ. Supply and demand in cerebral energy metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab. 2007;27(11):1766–91. doi:10.1038/sj.jcbfm.9600521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Felipe A, Beltrán AIA, María Paz M, Castro MA. Brain energy metabolism in health and disease. In: Contreras DCM, editor. Neuroscience—dealing with frontiers. Winchester: InTech; 2012.

    Google Scholar 

  15. Jalloh I, Carpenter KL, Grice P, Howe DJ, Mason A, Gallagher CN, et al. Glycolysis and the pentose phosphate pathway after human traumatic brain injury: microdialysis studies using 1,2-(13)C2 glucose. J Cereb Blood Flow Metab. 2015;35(1):111–20. doi:10.1038/jcbfm.2014.177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Siegel GJAB, Albers RW, et al. Substrates of cerebral metabolism. Basic neurochemistry: molecular, cellular and medical aspects. 6th ed. Philadelphia: Lippincott-Raven; 1999.

    Google Scholar 

  17. Fox PT, Raichle ME. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci U S A. 1986;83(4):1140–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dalsgaard MK. Fuelling cerebral activity in exercising man. J Cereb Blood Flow Metab. 2006;26(6):731–50. doi:10.1038/sj.jcbfm.9600256.

    Article  CAS  PubMed  Google Scholar 

  19. Bergsneider M, Hovda DA, Shalmon E, Kelly DF, Vespa PM, Martin NA, et al. Cerebral hyperglycolysis following severe traumatic brain injury in humans: a positron emission tomography study. J Neurosurg. 1997;86(2):241–51. doi:10.3171/jns.1997.86.2.0241.

    Article  CAS  PubMed  Google Scholar 

  20. Goyal MS, Hawrylycz M, Miller JA, Snyder AZ, Raichle ME. Aerobic glycolysis in the human brain is associated with development and neotenous gene expression. Cell Metab. 2014;19(1):49–57. doi:10.1016/j.cmet.2013.11.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hutchinson PJ, O'Connell MT, Seal A, Nortje J, Timofeev I, Al-Rawi PG, et al. A combined microdialysis and FDG-PET study of glucose metabolism in head injury. Acta Neurochir. 2009;151(1):51–61. doi:10.1007/s00701-008-0169-1. discussion.

    Article  PubMed  Google Scholar 

  22. Carpenter KL, Jalloh I, Hutchinson PJ. Glycolysis and the significance of lactate in traumatic brain injury. Front Neurosci. 2015;9:112. doi:10.3389/fnins.2015.00112.

    Article  PubMed  PubMed Central  Google Scholar 

  23. van Hall G, Stromstad M, Rasmussen P, Jans O, Zaar M, Gam C, et al. Blood lactate is an important energy source for the human brain. J Cereb Blood Flow Metab. 2009;29(6):1121–9. doi:10.1038/jcbfm.2009.35.

    Article  PubMed  Google Scholar 

  24. Patet C, Quintard H, Suys T, Bloch J, Daniel R, Pellerin L, et al. Neuroenergetic response to prolonged cerebral glucose depletion after severe brain injury and the role of lactate. J Neurotrauma. 2015. doi:10.1089/neu.2014.3781.

    Google Scholar 

  25. Hillered L, Vespa PM, Hovda DA. Translational neurochemical research in acute human brain injury: the current status and potential future for cerebral microdialysis. J Neurotrauma. 2005;22(1):3–41. doi:10.1089/neu.2005.22.3.

    Article  PubMed  Google Scholar 

  26. Timofeev I, Carpenter KL, Nortje J, Al-Rawi PG, O'Connell MT, Czosnyka M, et al. Cerebral extracellular chemistry and outcome following traumatic brain injury: a microdialysis study of 223 patients. Brain. 2011;134(Pt 2):484–94. doi:10.1093/brain/awq353.

    Article  PubMed  Google Scholar 

  27. Brooks GA, Martin NA. Cerebral metabolism following traumatic brain injury: new discoveries with implications for treatment. Front Neurosci. 2014;8:408. doi:10.3389/fnins.2014.00408.

    PubMed  PubMed Central  Google Scholar 

  28. Sala N, Suys T, Zerlauth JB, Bouzat P, Messerer M, Bloch J, et al. Cerebral extracellular lactate increase is predominantly nonischemic in patients with severe traumatic brain injury. J Cereb Blood Flow Metab. 2013;33(11):1815–22. doi:10.1038/jcbfm.2013.142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gallagher CN, Carpenter KL, Grice P, Howe DJ, Mason A, Timofeev I, et al. The human brain utilizes lactate via the tricarboxylic acid cycle: a 13C-labelled microdialysis and high-resolution nuclear magnetic resonance study. Brain. 2009;132(Pt 10):2839–49. doi:10.1093/brain/awp202.

    Article  PubMed  Google Scholar 

  30. Sotelo-Hitschfeld T, Fernandez-Moncada I, Barros LF. Acute feedback control of astrocytic glycolysis by lactate. Glia. 2012;60(4):674–80. doi:10.1002/glia.22304.

    Article  CAS  PubMed  Google Scholar 

  31. Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA. Glial and neuronal control of brain blood flow. Nature. 2010;468(7321):232–43. doi:10.1038/nature09613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Vilchez D, Ros S, Cifuentes D, Pujadas L, Valles J, Garcia-Fojeda B, et al. Mechanism suppressing glycogen synthesis in neurons and its demise in progressive myoclonus epilepsy. Nat Neurosci. 2007;10(11):1407–13. doi:10.1038/nn1998.

    Article  CAS  PubMed  Google Scholar 

  33. Godoy DA, Di Napoli M, Rabinstein AA. Treating hyperglycemia in neurocritical patients: benefits and perils. Neurocrit Care. 2010;13(3):425–38. doi:10.1007/s12028-010-9404-8.

    Article  PubMed  Google Scholar 

  34. Benarroch EE. Glycogen metabolism: metabolic coupling between astrocytes and neurons. Neurology. 2010;74(11):919–23. doi:10.1212/WNL.0b013e3181d3e44b.

    Article  CAS  PubMed  Google Scholar 

  35. Matsui T, Soya S, Kawanaka K, Soya H. Brain glycogen decreases during intense exercise without hypoglycemia: the possible involvement of serotonin. Neurochem Res. 2015;40(7):1333–40. doi:10.1007/s11064-015-1594-1.

    Article  CAS  PubMed  Google Scholar 

  36. Berthet C, Castillo X, Magistretti PJ, Hirt L. New evidence of neuroprotection by lactate after transient focal cerebral ischaemia: extended benefit after intracerebroventricular injection and efficacy of intravenous administration. Cerebrovasc Dis. 2012;34(5–6):329–35. doi:10.1159/000343657.

    Article  CAS  PubMed  Google Scholar 

  37. Alessandri B, Schwandt E, Kamada Y, Nagata M, Heimann A, Kempski O. The neuroprotective effect of lactate is not due to improved glutamate uptake after controlled cortical impact in rats. J Neurotrauma. 2012;29(12):2181–91. doi:10.1089/neu.2011.2067.

    Article  PubMed  Google Scholar 

  38. Sanchez-Abarca LI, Tabernero A, Medina JM. Oligodendrocytes use lactate as a source of energy and as a precursor of lipids. Glia. 2001;36(3):321–9.

    Article  CAS  PubMed  Google Scholar 

  39. Castro MA, Beltran FA, Brauchi S, Concha II. A metabolic switch in brain: glucose and lactate metabolism modulation by ascorbic acid. J Neurochem. 2009;110(2):423–40. doi:10.1111/j.1471-4159.2009.06151.x.

    Article  CAS  PubMed  Google Scholar 

  40. Porras OH, Ruminot I, Loaiza A, Barros LF. Na(+)-Ca(2+) cosignaling in the stimulation of the glucose transporter GLUT1 in cultured astrocytes. Glia. 2008;56(1):59–68. doi:10.1002/glia.20589.

    Article  PubMed  Google Scholar 

  41. Gladden LB. Current trends in lactate metabolism: introduction. Med Sci Sports Exerc. 2008;40(3):475–6. doi:10.1249/MSS.0b013e31816154c9.

    Article  CAS  PubMed  Google Scholar 

  42. Dusick JR, Glenn TC, Lee WN, Vespa PM, Kelly DF, Lee SM, et al. Increased pentose phosphate pathway flux after clinical traumatic brain injury: a [1,2-13C2]glucose labeling study in humans. J Cereb Blood Flow Metab. 2007;27(9):1593–602. doi:10.1038/sj.jcbfm.9600458.

    Article  CAS  PubMed  Google Scholar 

  43. Mosienko V, Teschemacher AG, Kasparov S. Is L-lactate a novel signaling molecule in the brain? J Cereb Blood Flow Metab. 2015;35(7):1069–75. doi:10.1038/jcbfm.2015.77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Castillo X, Rosafio K, Wyss MT, Drandarov K, Buck A, Pellerin L, et al. A probable dual mode of action for both L- and D-lactate neuroprotection in cerebral ischemia. J Cereb Blood Flow Metab. 2015. doi:10.1038/jcbfm.2015.115. This study perfusing isotopic D- and L-lactate on an animal model of transient focal cerebral ischemia revealed a strong neuronal expression of the HCA1 receptor in different parts of brain. They also observed a significant increase in HCA1 receptor following ischemia and reinforced by the intravenous injection of L-lactate.

    Google Scholar 

  45. Bozzo L, Puyal J, Chatton JY. Lactate modulates the activity of primary cortical neurons through a receptor-mediated pathway. PLoS One. 2013;8(8), e71721. doi:10.1371/journal.pone.0071721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Glenn TC, Martin NA, McArthur DL, Hovda DA, Vespa P, Johnson ML, et al. Endogenous nutritive support after traumatic brain injury: peripheral lactate production for glucose supply via gluconeogenesis. J Neurotrauma. 2015;32(11):811–9. doi:10.1089/neu.2014.3482. This study extended the ANLS hypothesis to the whole body. The authors evaluated systemic lactate metabolism using isotope tracers of glucose and lactate and sampling blood from the brain through arterial and jugular bulb catheters. They determined that lactate clearance accounted for 67.1% of glucose rate of appearance in TBI patients and concluded that blood lactate is the major precursor of glucose through gluconeogenesis.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sotelo-Hitschfeld T, Niemeyer MI, Machler P, Ruminot I, Lerchundi R, Wyss MT, et al. Channel-mediated lactate release by K(+)-stimulated astrocytes. J Neurosci. 2015;35(10):4168–78. doi:10.1523/JNEUROSCI.5036-14.2015.

    Article  CAS  PubMed  Google Scholar 

  48. Chen T, Qian YZ, Di X, Zhu JP, Bullock R. Evidence for lactate uptake after rat fluid percussion brain injury. Acta Neurochir Suppl. 2000;76:359–64.

    CAS  PubMed  Google Scholar 

  49. Boumezbeur F, Petersen KF, Cline GW, Mason GF, Behar KL, Shulman GI, et al. The contribution of blood lactate to brain energy metabolism in humans measured by dynamic 13C nuclear magnetic resonance spectroscopy. J Neurosci. 2010;30(42):13983–91. doi:10.1523/JNEUROSCI.2040-10.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Quistorff B, Secher NH, Van Lieshout JJ. Lactate fuels the human brain during exercise. FASEB J. 2008;22(10):3443–9. doi:10.1096/fj.08-106104.

    Article  CAS  PubMed  Google Scholar 

  51. Smith D, Pernet A, Hallett WA, Bingham E, Marsden PK, Amiel SA. Lactate: a preferred fuel for human brain metabolism in vivo. J Cereb Blood Flow Metab. 2003;23(6):658–64. doi:10.1097/01.WCB.0000063991.19746.11.

    Article  CAS  PubMed  Google Scholar 

  52. Shackford SR, Zhuang J, Schmoker J. Intravenous fluid tonicity: effect on intracranial pressure, cerebral blood flow, and cerebral oxygen delivery in focal brain injury. J Neurosurg. 1992;76(1):91–8. doi:10.3171/jns.1992.76.1.0091.

    Article  CAS  PubMed  Google Scholar 

  53. Duburcq T, Favory R, Mathieu D, Hubert T, Mangalaboyi J, Gmyr V, et al. Hypertonic sodium lactate improves fluid balance and hemodynamics in porcine endotoxic shock. Crit Care. 2014;18(4):467. doi:10.1186/s13054-014-0467-3.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Ichai C, Armando G, Orban JC, Berthier F, Rami L, Samat-Long C, et al. Sodium lactate versus mannitol in the treatment of intracranial hypertensive episodes in severe traumatic brain-injured patients. Intensive Care Med. 2009;35(3):471–9. doi:10.1007/s00134-008-1283-5.

    Article  CAS  PubMed  Google Scholar 

  55. Ichai C, Payen JF, Orban JC, Quintard H, Roth H, Legrand R, et al. Half-molar sodium lactate infusion to prevent intracranial hypertensive episodes in severe traumatic brain injured patients: a randomized controlled trial. Intensive Care Med. 2013;39(8):1413–22. doi:10.1007/s00134-013-2978-9.

    Article  CAS  PubMed  Google Scholar 

  56. Glenn TC, Martin NA, Horning MA, McArthur DL, Hovda DA, Vespa P, et al. Lactate: brain fuel in human traumatic brain injury: a comparison with normal healthy control subjects. J Neurotrauma. 2015;32(11):820–32. doi:10.1089/neu.2014.3483.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Mauro Oddo is supported by research grants from the Swiss National Science Foundation (Grant no. 32003B_155957) and the Novartis Foundation for Biomedical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Oddo.

Ethics declarations

Conflict of Interest

Camille Patet, Tamarah Suys, Laurent Carteron, and Mauro Oddo have received payments to their institution from the Swiss National Science Foundation and the Novartis Foundation of Biomedical Research.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical collection on Neurotrauma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patet, C., Suys, T., Carteron, L. et al. Cerebral Lactate Metabolism After Traumatic Brain Injury. Curr Neurol Neurosci Rep 16, 31 (2016). https://doi.org/10.1007/s11910-016-0638-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-016-0638-5

Keywords

Navigation