Skip to main content

Advertisement

Log in

The Value of Extent of Resection of Glioblastomas: Clinical Evidence and Current Approach

  • Neuro-Oncology (LE Abrey, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Glioblastomas (GBM), one of the most common tumors of the central nervous system, are associated with poor prognosis, even with all the scientific development of the last decades. Individual survival, however, is not homogenous among GBM patients, and multiple factors are related to their outcome, including age, biological characteristics of the tumor, and extent of treatment. Extent of resection (EOR) plays a major role as an independent modifiable factor associated with improved overall and progression-free survival. Achievement of maximal safe resection, removing as much as possible the tumor while preserving the neurological function, is the main goal of the current surgical treatment of GBM. To reach this objective, different technologies and surgical techniques have been introduced in neuro-oncology surgery, including functional neuronavigation systems, ultrasound surgery, intraoperative MRI scan, and intraoperative cortical and subcortical mapping techniques. In the current manuscript, we examine the impact of EOR on the prognosis of GBM patients and the benefits and limitations of modern adjuvant techniques used for resection of these lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Ostrom QT et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006–2010. Neuro Oncol. 2013;15 Suppl 2:ii1–56.

    PubMed Central  PubMed  Google Scholar 

  2. Lacroix M et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg. 2001;95(2):190–8.

    CAS  PubMed  Google Scholar 

  3. Chaichana KL et al. Supratentorial glioblastoma multiforme: the role of surgical resection versus biopsy among older patients. Ann Surg Oncol. 2011;18(1):239–45.

    PubMed  Google Scholar 

  4. Chaichana KL et al. Establishing percent resection and residual volume thresholds affecting survival and recurrence for patients with newly diagnosed intracranial glioblastoma. Neuro Oncol. 2014;16(1):113–22. Retrospective study evaluating the impact of EOR according to volumetric analyzes on the survival of GBM patients This study observed that extent of resection and residual tumor volume were significantly associated with survival, where the thresholds are 70% and 5 cm3, respectively.

    PubMed Central  PubMed  Google Scholar 

  5. Sanai N et al. An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg. 2011;115(1):3–8. Clinical study based on volumetric analyzes of EOR of glioblastoma. The authors demonstrate a stepwise improvement in survival associated with higher EOR rates. Significant survival advantage was associated with subtotal resection as low as 78 %.

    PubMed  Google Scholar 

  6. Stummer W et al. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 2006;7(5):392–401.

    CAS  PubMed  Google Scholar 

  7. Chaichana K et al. A proposed classification system that projects outcomes based on preoperative variables for adult patients with glioblastoma multiforme. J Neurosurg. 2010;112(5):997–1004.

    PubMed  Google Scholar 

  8. DeAngelis LM. Brain tumors. N Engl J Med. 2001;344(2):114–23.

    CAS  PubMed  Google Scholar 

  9. Leibetseder A et al. Outcome and molecular characteristics of adolescent and young adult patients with newly diagnosed primary glioblastoma: a study of the Society of Austrian Neurooncology (SANO). Neuro Oncol. 2013;15(1):112–21.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Juratli TA et al. The prognostic value of IDH mutations and MGMT promoter status in secondary high-grade gliomas. J Neurooncol. 2012;110(3):325–33.

    CAS  PubMed  Google Scholar 

  11. Lamborn KR, Chang SM, Prados MD. Prognostic factors for survival of patients with glioblastoma: recursive partitioning analysis. Neuro Oncol. 2004;6(3):227–35.

    PubMed Central  PubMed  Google Scholar 

  12. Stupp R et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.

    CAS  PubMed  Google Scholar 

  13. Chaichana KL et al. When gross total resection of a glioblastoma is possible, how much resection should be achieved? World Neurosurg. 2014;82(1–2):e257–65.

    PubMed  Google Scholar 

  14. Chaichana KL et al. Multi-institutional validation of a preoperative scoring system which predicts survival for patients with glioblastoma. J Clin Neurosci. 2013;20(10):1422–6.

    PubMed Central  PubMed  Google Scholar 

  15. Laws ER et al. Surgical management of intracranial gliomas—does radical resection improve outcome? Acta Neurochir Suppl. 2003;85:47–53.

    CAS  PubMed  Google Scholar 

  16. McGirt MJ et al. Independent association of extent of resection with survival in patients with malignant brain astrocytoma. J Neurosurg. 2009;110(1):156–62.

    PubMed  Google Scholar 

  17. Pichlmeier U et al. Resection and survival in glioblastoma multiforme: an RTOG recursive partitioning analysis of ALA study patients. Neuro Oncol. 2008;10(6):1025–34.

    PubMed Central  PubMed  Google Scholar 

  18. Sanai N, Berger MS. Extent of resection influences outcomes for patients with gliomas. Rev Neurol (Paris). 2011;167(10):648–54.

    CAS  Google Scholar 

  19. Ushio Y et al. Effect of surgical removal on survival and quality of life in patients with supratentorial glioblastoma. Neurol Med Chir (Tokyo). 2005;45(9):454–60. discussion 460–1.

    Google Scholar 

  20. McGirt MJ et al. Association of surgically acquired motor and language deficits on overall survival after resection of glioblastoma multiforme. Neurosurgery. 2009;65(3):463–9. discussion 469–70.

    PubMed  Google Scholar 

  21. Vecht CJ et al. The influence of the extent of surgery on the neurological function and survival in malignant glioma. A retrospective analysis in 243 patients. J Neurol Neurosurg Psychiatry. 1990;53(6):466–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Shibamoto Y et al. Supratentorial malignant glioma: an analysis of radiation therapy in 178 cases. Radiother Oncol. 1990;18(1):9–17.

    CAS  PubMed  Google Scholar 

  23. Simpson JR et al. Influence of location and extent of surgical resection on survival of patients with glioblastoma multiforme: results of three consecutive Radiation Therapy Oncology Group (RTOG) clinical trials. Int J Radiat Oncol Biol Phys. 1993;26(2):239–44.

    CAS  PubMed  Google Scholar 

  24. Dinapoli RP et al. Phase III comparative evaluation of PCNU and carmustine combined with radiation therapy for high-grade glioma. J Clin Oncol. 1993;11(7):1316–21.

    CAS  PubMed  Google Scholar 

  25. Jeremic B et al. Influence of extent of surgery and tumor location on treatment outcome of patients with glioblastoma multiforme treated with combined modality approach. J Neurooncol. 1994;21(2):177–85.

    CAS  PubMed  Google Scholar 

  26. Huber A et al. Supratentorial glioma: analysis of clinical and temporal parameters in 163 cases. Neurochirurgia (Stuttg). 1993;36(6):189–93.

    CAS  Google Scholar 

  27. Nitta T, Sato K. Prognostic implications of the extent of surgical resection in patients with intracranial malignant gliomas. Cancer. 1995;75(11):2727–31.

    CAS  PubMed  Google Scholar 

  28. Barker 2nd FG et al. Radiation response and survival time in patients with glioblastoma multiforme. J Neurosurg. 1996;84(3):442–8.

    PubMed  Google Scholar 

  29. Buckner JC et al. A phase III study of radiation therapy plus carmustine with or without recombinant interferon-alpha in the treatment of patients with newly diagnosed high-grade glioma. Cancer. 2001;92(2):420–33.

    CAS  PubMed  Google Scholar 

  30. Brown PD et al. Prospective study of quality of life in adults with newly diagnosed high-grade gliomas. J Neurooncol. 2006;76(3):283–91.

    PubMed  Google Scholar 

  31. Stark AM et al. Glioblastoma multiforme—report of 267 cases treated at a single institution. Surg Neurol. 2005;63(2):162–9. discussion 169.

    PubMed  Google Scholar 

  32. McGirt MJ, Gokaslan ZL, Chaichana KL. Preoperative grading scale to predict survival in patients undergoing resection of malignant primary osseous spinal neoplasms. Spine J. 2011;11(3):190–6.

    PubMed  Google Scholar 

  33. Oszvald A et al. Glioblastoma therapy in the elderly and the importance of the extent of resection regardless of age. J Neurosurg. 2012;116(2):357–64.

    PubMed  Google Scholar 

  34. Hollerhage HG et al. Influence of type and extent of surgery on early results and survival time in glioblastoma multiforme. Acta Neurochir (Wien). 1991;113(1–2):31–7.

    CAS  Google Scholar 

  35. Phillips TL et al. Evaluation of bromodeoxyuridine in glioblastoma multiforme: a Northern California Cancer Center Phase II study. Int J Radiat Oncol Biol Phys. 1991;21(3):709–14.

    CAS  PubMed  Google Scholar 

  36. Duncan GG et al. The treatment of adult supratentorial high grade astrocytomas. J Neurooncol. 1992;13(1):63–72.

    CAS  PubMed  Google Scholar 

  37. Kowalczuk A et al. Quantitative imaging study of extent of surgical resection and prognosis of malignant astrocytomas. Neurosurgery. 1997;41(5):1028–36. discussion 1036–8.

    CAS  PubMed  Google Scholar 

  38. Sandberg-Wollheim M et al. A randomized study of chemotherapy with procarbazine, vincristine, and lomustine with and without radiation therapy for astrocytoma grades 3 and/or 4. Cancer. 1991;68(1):22–9.

    CAS  PubMed  Google Scholar 

  39. Orringer D et al. Extent of resection in patients with glioblastoma: limiting factors, perception of resectability, and effect on survival. J Neurosurg. 2012;117(5):851–9. Retrospective study evaluating the impact of EOR according to volumetric analyzes on the survival of GBM patients. Significant survival advantage associated with an EOR of 90 % or more. It also shows the limitations of the surgeon’s intraoperative assessment of the EOR when compared to postop MRI scan.

    PubMed  Google Scholar 

  40. Grabowski MM et al. Residual tumor volume versus extent of resection: predictors of survival after surgery for glioblastoma. J Neurosurg. 2014;121(5):1115–23. Retrospective study evaluating the impact of EOR according to volumetric analyzes on the survival of GBM patients. This study suggests that residual tumor volume is the most significant radiological predictor of survival in glioblastoma patients.

  41. Gonzalez-Darder JM et al. Multimodal navigation in the functional microsurgical resection of intrinsic brain tumors located in eloquent motor areas: role of tractography. Neurosurg Focus. 2010;28(2):E5.

    PubMed  Google Scholar 

  42. Berntsen EM et al. Functional magnetic resonance imaging and diffusion tensor tractography incorporated into an intraoperative 3-dimensional ultrasound-based neuronavigation system: impact on therapeutic strategies, extent of resection, and clinical outcome. Neurosurgery. 2010;67(2):251–64.

    PubMed  Google Scholar 

  43. Yu CS et al. Diffusion tensor tractography in patients with cerebral tumors: a helpful technique for neurosurgical planning and postoperative assessment. Eur J Radiol. 2005;56(2):197–204.

    PubMed  Google Scholar 

  44. Romano A et al. Role of magnetic resonance tractography in the preoperative planning and intraoperative assessment of patients with intra-axial brain tumours. Radiol Med. 2007;112(6):906–20.

    CAS  PubMed  Google Scholar 

  45. Kumar A et al. The role of neuronavigation-guided functional MRI and diffusion tensor tractography along with cortical stimulation in patients with eloquent cortex lesions. Br J Neurosurg. 2014;28(2):226–33.

    PubMed  Google Scholar 

  46. Mandelli ML et al. Quantifying accuracy and precision of diffusion MR tractography of the corticospinal tract in brain tumors. J Neurosurg. 2014;121(2):349–58.

  47. Wu JS et al. Clinical evaluation and follow-up outcome of diffusion tensor imaging-based functional neuronavigation: a prospective, controlled study in patients with gliomas involving pyramidal tracts. Neurosurgery. 2007;61(5):935–48. discussion 948–9.

    PubMed  Google Scholar 

  48. Barone DG, Lawrie TA, Hart MG. Image guided surgery for the resection of brain tumours. Cochrane Database Syst Rev. 2014;1, CD009685.

    PubMed  Google Scholar 

  49. Berman JI et al. Accuracy of diffusion tensor magnetic resonance imaging tractography assessed using intraoperative subcortical stimulation mapping and magnetic source imaging. J Neurosurg. 2007;107(3):488–94.

    PubMed  Google Scholar 

  50. Berman JI et al. Diffusion-tensor imaging-guided tracking of fibers of the pyramidal tract combined with intraoperative cortical stimulation mapping in patients with gliomas. J Neurosurg. 2004;101(1):66–72.

    PubMed  Google Scholar 

  51. Makuuchi M, Torzilli G, Machi J. History of intraoperative ultrasound. Ultrasound Med Biol. 1998;24(9):1229–42.

    CAS  PubMed  Google Scholar 

  52. Le Roux PD et al. Low grade gliomas: comparison of intraoperative ultrasound characteristics with preoperative imaging studies. J Neurooncol. 1992;13(2):189–98.

    PubMed  Google Scholar 

  53. Dohrmann GJ, Rubin JM. History of intraoperative ultrasound in neurosurgery. Neurosurg Clin N Am. 2001;12(1):155–66. ix.

    CAS  PubMed  Google Scholar 

  54. Moiyadi AV et al. Usefulness of three-dimensional navigable intraoperative ultrasound in resection of brain tumors with a special emphasis on malignant gliomas. Acta Neurochir (Wien). 2013;155(12):2217–25. Large clinical series demonstrating the impact of ultrasound-guided surgery. In this study the use of the intraoperative imaging prompted further resection in 59 % cases. In the malignant gliomas (51 cases), gross-total resection was achieved in 47 % cases, increasing to 88 % in the “resectable” subgroup.

    Google Scholar 

  55. Moiyadi A, Shetty P. Objective assessment of utility of intraoperative ultrasound in resection of central nervous system tumors: a cost-effective tool for intraoperative navigation in neurosurgery. J Neurosci Rural Pract. 2011;2(1):4–11.

    PubMed Central  PubMed  Google Scholar 

  56. Unsgaard G et al. Brain operations guided by real-time two-dimensional ultrasound: new possibilities as a result of improved image quality. Neurosurgery. 2002;51(2):402–11. discussion 411–2.

    PubMed  Google Scholar 

  57. Unsgaard G et al. Neuronavigation by intraoperative three-dimensional ultrasound: initial experience during brain tumor resection. Neurosurgery. 2002;50(4):804–12. discussion 812.

    PubMed  Google Scholar 

  58. Padayachy LC, Fieggen G. Intraoperative ultrasound-guidance in neurosurgery. World Neurosurg. 2013;82(3–4):e409–11.

    PubMed  Google Scholar 

  59. Hervey-Jumper SL, Berger MS. Role of surgical resection in low- and high-grade gliomas. Curr Treat Options Neurol. 2014;16(4):284.

    PubMed  Google Scholar 

  60. Unsgaard G et al. Intra-operative 3D ultrasound in neurosurgery. Acta Neurochir (Wien). 2006;148(3):235–53. discussion 253.

    CAS  Google Scholar 

  61. Solheim O et al. Ultrasound-guided operations in unselected high-grade gliomas—overall results, impact of image quality and patient selection. Acta Neurochir (Wien). 2010;152(11):1873–86.

    Google Scholar 

  62. Saether CA et al. Did survival improve after the implementation of intraoperative neuronavigation and 3D ultrasound in glioblastoma surgery? A retrospective analysis of 192 primary operations. J Neurol Surg A Cent Eur Neurosurg. 2012;73(2):73–8.

    CAS  PubMed  Google Scholar 

  63. Black PM et al. Development and implementation of intraoperative magnetic resonance imaging and its neurosurgical applications. Neurosurgery. 1997;41(4):831–42. discussion 842–5.

    CAS  PubMed  Google Scholar 

  64. Kubben PL et al. Intraoperative MRI-guided resection of glioblastoma multiforme: a systematic review. Lancet Oncol. 2011;12(11):1062–70.

    PubMed  Google Scholar 

  65. Knauth M et al. Intraoperative MR imaging increases the extent of tumor resection in patients with high-grade gliomas. AJNR Am J Neuroradiol. 1999;20(9):1642–6.

    CAS  PubMed  Google Scholar 

  66. Wirtz CR et al. Clinical evaluation and follow-up results for intraoperative magnetic resonance imaging in neurosurgery. Neurosurgery. 2000;46(5):1112–20. discussion 1120–2.

    CAS  PubMed  Google Scholar 

  67. Bohinski RJ et al. Intraoperative magnetic resonance imaging to determine the extent of resection of pituitary macroadenomas during transsphenoidal microsurgery. Neurosurgery. 2001;49(5):1133–43. discussion 1143–4.

    CAS  PubMed  Google Scholar 

  68. Nimsky C et al. Glioma surgery evaluated by intraoperative low-field magnetic resonance imaging. Acta Neurochir Suppl. 2003;85:55–63.

    CAS  PubMed  Google Scholar 

  69. Hirschberg H et al. Impact of intraoperative MRI on the surgical results for high-grade gliomas. Minim Invasive Neurosurg. 2005;48(2):77–84.

    CAS  PubMed  Google Scholar 

  70. Schneider JP et al. Intraoperative MRI to guide the resection of primary supratentorial glioblastoma multiforme—a quantitative radiological analysis. Neuroradiology. 2005;47(7):489–500.

    PubMed  Google Scholar 

  71. Muragaki Y et al. Usefulness of intraoperative magnetic resonance imaging for glioma surgery. Acta Neurochir Suppl. 2006;98:67–75.

    CAS  PubMed  Google Scholar 

  72. Busse H et al. Advanced approach for intraoperative MRI guidance and potential benefit for neurosurgical applications. J Magn Reson Imaging. 2006;24(1):140–51.

    PubMed  Google Scholar 

  73. Nimsky C et al. Intraoperative visualization for resection of gliomas: the role of functional neuronavigation and intraoperative 1.5 T MRI. Neurol Res. 2006;28(5):482–7.

    PubMed  Google Scholar 

  74. Hatiboglu MA et al. Impact of intraoperative high-field magnetic resonance imaging guidance on glioma surgery: a prospective volumetric analysis. Neurosurgery. 2009;64(6):1073–81. discussion 1081.

    PubMed  Google Scholar 

  75. Lenaburg HJ, Inkabi KE, Vitaz TW. The use of intraoperative MRI for the treatment of glioblastoma multiforme. Technol Cancer Res Treat. 2009;8(2):159–62.

    PubMed  Google Scholar 

  76. Senft C et al. Low field intraoperative MRI-guided surgery of gliomas: a single center experience. Clin Neurol Neurosurg. 2010;112(3):237–43.

    PubMed  Google Scholar 

  77. Senft C et al. Intraoperative MRI guidance and extent of resection in glioma surgery: a randomised, controlled trial. Lancet Oncol. 2011;12(11):997–1003. Randomized controlled trial demonstrating the benefits of intraoperative MRI to achieve large resections of glioblastomas. The authors show that more patients in the intraoperative MRI group had complete tumor resection (23 [96 %] of 24 patients) than did in the control group (17 [68 %] of 25, p = 0 · 023).

    PubMed  Google Scholar 

  78. Foroglou N, Zamani A, Black P. Intra-operative MRI (iop-MR) for brain tumour surgery. Br J Neurosurg. 2009;23(1):14–22.

    PubMed  Google Scholar 

  79. Alexander 3rd E et al. The present and future role of intraoperative MRI in neurosurgical procedures. Stereotact Funct Neurosurg. 1997;68(1–4 Pt 1):10–7.

    PubMed  Google Scholar 

  80. Gerlach R et al. Feasibility of Polestar N20, an ultra-low-field intraoperative magnetic resonance imaging system in resection control of pituitary macroadenomas: lessons learned from the first 40 cases. Neurosurgery. 2008;63(2):272–84. discussion 284–5.

    PubMed  Google Scholar 

  81. D’Amico RS, Kennedy BC, Bruce JN. Neurosurgical oncology: advances in operative technologies and adjuncts. J Neurooncol. 2014;119(3):451–63.

    PubMed  Google Scholar 

  82. Albert FK et al. Early postoperative magnetic resonance imaging after resection of malignant glioma: objective evaluation of residual tumor and its influence on regrowth and prognosis. Neurosurgery. 1994;34(1):45–60. discussion 60–1.

    CAS  PubMed  Google Scholar 

  83. Zhao S et al. Intraoperative fluorescence-guided resection of high-grade malignant gliomas using 5-aminolevulinic acid-induced porphyrins: a systematic review and meta-analysis of prospective studies. PLoS ONE. 2013;8(5):e63682.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Regula J et al. Photosensitisation and photodynamic therapy of oesophageal, duodenal, and colorectal tumours using 5 aminolaevulinic acid induced protoporphyrin IX—a pilot study. Gut. 1995;36(1):67–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Kennedy AS. Radiation oncology approaches in liver malignancies. Am Soc Clin Oncol Educ Book. 2014;e150-e155. doi: 10.14694/EdBook_AM.2014.34.e150.

  86. el-Sharabasy MM et al. Porphyrin metabolism in some malignant diseases. Br J Cancer. 1992;65(3):409–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Pottier RH et al. Non-invasive technique for obtaining fluorescence excitation and emission spectra in vivo. Photochem Photobiol. 1986;44(5):679–87.

    CAS  PubMed  Google Scholar 

  88. Roberts DW et al. Glioblastoma multiforme treatment with clinical trials for surgical resection (aminolevulinic acid). Neurosurg Clin N Am. 2012;23(3):371–7.

    PubMed Central  PubMed  Google Scholar 

  89. Stummer W et al. Technical principles for protoporphyrin-IX-fluorescence guided microsurgical resection of malignant glioma tissue. Acta Neurochir (Wien). 1998;140(10):995–1000.

    CAS  Google Scholar 

  90. Duffner F et al. Specific intensity imaging for glioblastoma and neural cell cultures with 5-aminolevulinic acid-derived protoporphyrin IX. J Neurooncol. 2005;71(2):107–11.

    CAS  PubMed  Google Scholar 

  91. Stummer W et al. Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg. 2000;93(6):1003–13.

    CAS  PubMed  Google Scholar 

  92. Lilge L et al. The sensitivity of normal brain and intracranially implanted VX2 tumour to interstitial photodynamic therapy. Br J Cancer. 1996;73(3):332–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Diez Valle R et al. Surgery guided by 5-aminolevulinic fluorescence in glioblastoma: volumetric analysis of extent of resection in single-center experience. J Neurooncol. 2011;102(1):105–13.

    CAS  PubMed  Google Scholar 

  94. Schucht P et al. 5-ALA complete resections go beyond MR contrast enhancement: shift corrected volumetric analysis of the extent of resection in surgery for glioblastoma. Acta Neurochir (Wien). 2014;156(2):305–12. discussion 312.

    Google Scholar 

  95. Stummer W et al. 5-Aminolevulinic acid-derived tumor fluorescence: the diagnostic accuracy of visible fluorescence qualities as corroborated by spectrometry and histology and postoperative imaging. Neurosurgery. 2014;74(3):310–9. discussion 319–20.

    PubMed Central  PubMed  Google Scholar 

  96. Li Y et al. Intraoperative fluorescence-guided resection of high-grade gliomas: a comparison of the present techniques and evolution of future strategies. World Neurosurg. 2014;82(1–2):175–85.

  97. Miyatake S et al. Fluorescence of non-neoplastic, magnetic resonance imaging-enhancing tissue by 5-aminolevulinic acid: case report. Neurosurgery. 2007;61(5):E1101–3. discussion E1103-4.

    PubMed  Google Scholar 

  98. Rasmussen T, Penfield W. Further studies of the sensory and motor cerebral cortex of man. Fed Proc. 1947;6(2):452–60.

    CAS  PubMed  Google Scholar 

  99. Schucht P et al. Subcortical electrostimulation to identify network subserving motor control. Hum Brain Mapp. 2013;34(11):3023–30.

    PubMed  Google Scholar 

  100. Duffau H. Acute functional reorganisation of the human motor cortex during resection of central lesions: a study using intraoperative brain mapping. J Neurol Neurosurg Psychiatry. 2001;70(4):506–13.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Fontaine D, Capelle L, Duffau H. Somatotopy of the supplementary motor area: evidence from correlation of the extent of surgical resection with the clinical patterns of deficit. Neurosurgery. 2002;50(2):297–303. discussion 303–5.

    PubMed  Google Scholar 

  102. Ranck Jr JB. Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res. 1975;98(3):417–40.

    PubMed  Google Scholar 

  103. Sanai N, Berger MS. Intraoperative stimulation techniques for functional pathway preservation and glioma resection. Neurosurg Focus. 2010;28(2):E1.

    PubMed  Google Scholar 

  104. Duffau H. A new philosophy in surgery for diffuse low-grade glioma (DLGG): oncological and functional outcomes. Neurochirurgie. 2013;59(1):2–8.

    CAS  PubMed  Google Scholar 

  105. Sanai N, Mirzadeh Z, Berger MS. Functional outcome after language mapping for glioma resection. N Engl J Med. 2008;358(1):18–27.

    CAS  PubMed  Google Scholar 

  106. Sanai N, Berger MS. Mapping the horizon: techniques to optimize tumor resection before and during surgery. Clin Neurosurg. 2008;55:14–9.

    PubMed  Google Scholar 

  107. De Witt Hamer PC et al. Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. J Clin Oncol. 2012;30(20):2559–65.

    PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Joao Paulo Almeida, Kaisorn L. Chaichana, and Alfredo Quinones-Hinojosa declare that they have no conflict of interest.

Jordina Rincon-Torroella is funded by the Grant Fundació “La Caixa” for postgraduate studies.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Financial Support

Research reported in this publication was supported by the National Institutes of Health under award number R01NS070024. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Quinones-Hinojosa.

Additional information

This article is part of the Topical Collection on Neuro-Oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeida, J.P., Chaichana, K.L., Rincon-Torroella, J. et al. The Value of Extent of Resection of Glioblastomas: Clinical Evidence and Current Approach. Curr Neurol Neurosci Rep 15, 517 (2015). https://doi.org/10.1007/s11910-014-0517-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-014-0517-x

Keywords

Navigation