Skip to main content

Advertisement

Log in

Recent Advances in the Genetics of Dystonia

  • Genetics (V Bonifati, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Dystonia, a common and genetically heterogeneous neurological disorder, was recently defined as “a movement disorder characterized by sustained or intermittent muscle contractions causing abnormal, often repetitive, movements, postures, or both.” Via the application of whole-exome sequencing, the genetic landscape of dystonia and closely related movement disorders is becoming exposed. In particular, several “novel” genetic causes have been causally associated with dystonia or dystonia-related disorders over the past 2 years. These genes include PRRT2 (DYT10), CIZ1 (DYT23), ANO3 (DYT24), GNAL (DYT25), and TUBB4A (DYT4). Despite these advances, major gaps remain in identifying the genetic origins for most cases of adult-onset isolated dystonia. Furthermore, model systems are needed to study the biology of PRRT2, CIZ1, ANO3, Gαolf, and TUBB4A in the context of dystonia. This review focuses on these recent additions to the family of dystonia genes, genotype–phenotype correlations, and possible cellular contributions of the encoded proteins to the development of dystonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. LeDoux MS. The genetics of dystonias. Adv Genet. 2012;79:35–85. This is an encyclopedic review of dystonia genetics.

    Article  CAS  PubMed  Google Scholar 

  2. Albanese A, Bhatia K, Bressman SB, et al. Phenomenology and classification of dystonia: a consensus update. Mov Disord. 2013;28:863–73.

    Article  PubMed Central  PubMed  Google Scholar 

  3. LeDoux MS. Dystonia: phenomenology. Parkinsonism Relat Disord. 2012;18 Suppl 1:S162–4.

    Article  PubMed  Google Scholar 

  4. Fahn S. Classification of movement disorders. Mov Disord. 2011;26:94–57.

    Article  Google Scholar 

  5. Ozelius LJ, Hewett JW, Page CE, et al. The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nat Genet. 1997;17:40–8.

    Article  CAS  PubMed  Google Scholar 

  6. Hersheson J, Mencacci NE, Davis M, et al. Mutations in the autoregulatory domain of beta-tubulin 4a cause hereditary dystonia. Ann Neurol. 2013;73:546–53. The authors used linkage analysis and whole-exome sequencing to identify a TUBB4A mutation in the “whispering dysphonia” pedigree.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Ichinose H, Ohye T, Takahashi E, et al. Hereditary progressive dystonia with marked diurnal fluctuation caused by mutations in the GTP cyclohydrolase I gene. Nat Genet. 1994;8:236–42.

    Article  CAS  PubMed  Google Scholar 

  8. Fuchs T, Gavarini S, Saunders-Pullman R, et al. Mutations in the THAP1 gene are responsible for DYT6 primary torsion dystonia. Nat Genet. 2009;41:286–8.

    Article  CAS  PubMed  Google Scholar 

  9. Rainier S, Thomas D, Tokarz D, et al. Myofibrillogenesis regulator 1 gene mutations cause paroxysmal dystonic choreoathetosis. Arch Neurol. 2004;61:1025–9.

    Article  PubMed  Google Scholar 

  10. Weber YG, Storch A, Wuttke TV, et al. GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak. J Clin Invest. 2008;118:2157–68.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Chen WJ, Lin Y, Xiong ZQ, et al. Exome sequencing identifies truncating mutations in PRRT2 that cause paroxysmal kinesigenic dyskinesia. Nat Genet. 2011;43:1252–5.

    Article  CAS  PubMed  Google Scholar 

  12. Zimprich A, Grabowski M, Asmus F, et al. Mutations in the gene encoding epsilon-sarcoglycan cause myoclonus-dystonia syndrome. Nat Genet. 2001;29:66–9.

    Article  CAS  PubMed  Google Scholar 

  13. Xiao J, Uitti RJ, Zhao Y, et al. Mutations in CIZ1 cause adult onset primary cervical dystonia. Ann Neurol. 2012;71:458–69. With use of linkage analysis and whole-exome sequencing, a pathogenic variant in CIZ1 was identified as the first cause of familial cervical dystonia. This work pointed out the potential role of the G 1 /S checkpoint pathway in the pathogenesis of primary dystonia.

  14. Charlesworth G, Plagnol V, Holmstrom KM, et al. Mutations in ANO3 cause dominant craniocervical dystonia: ion channel implicated in pathogenesis. Am J Hum Genet. 2012;91:1041–50. Mutations in ANO3 were identified as a potential cause of adult-onset dystonia, mainly cervical and segmental dystonia with dystonic tremors. Next-generation targeted sequencing was used to screen patients with familial and sporadic dystonia for SVs in ANO3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Fuchs T, Saunders-Pullman R, Masuho I, et al. Mutations in GNAL cause primary torsion dystonia. Nat Genet. 2013;45:88–92. Fuchs et al. used whole-exome sequencing to identify GNAL mutations in relatively small pedigrees with mainly adult-onset cervical and segmental dystonia. Screening of primary dystonia pedigrees exposed additional putatively pathogenic variants. Impaired function of several of the mutations was shown by bioluminescence resonance energy transfer assays.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Ludecke B, Dworniczak B, Bartholome K. A point mutation in the tyrosine hydroxylase gene associated with Segawa's syndrome. Hum Genet. 1995;95:123–5.

    CAS  PubMed  Google Scholar 

  17. Bonafe L, Thony B, Penzien JM, et al. Mutations in the sepiapterin reductase gene cause a novel tetrahydrobiopterin-dependent monoamine-neurotransmitter deficiency without hyperphenylalaninemia. Am J Hum Genet. 2001;69:269–77.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Camargos S, Scholz S, Simon-Sanchez J, et al. DYT16, a novel young-onset dystonia-parkinsonism disorder: identification of a segregating mutation in the stress-response protein PRKRA. Lancet Neurol. 2008;7:207–15.

    Article  CAS  PubMed  Google Scholar 

  19. Nolte D, Niemann S, Muller U. Specific sequence changes in multiple transcript system DYT3 are associated with X-linked dystonia parkinsonism. Proc Natl Acad Sci U S A. 2003;100:10347–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Vemula SR, Puschmann A, Xiao J, et al. Role of Gα(olf) in familial and sporadic adult-onset primary dystonia. Hum Mol Genet. 2013;22:2510–9. Whole-exome sequencing identified a GNAL missense mutation (V228F) in an African-American pedigree with clinical phenotypes that include cervical, laryngeal ,and hand–forearm dystonia. Screening of 760 subjects with familial or sporadic primary dystonia identified three Caucasian pedigrees with GNAL mutations. Immunohistochemical studies showed that the encoded protein, Gα olf , is highly expressed in striatum and cerebellar Purkinje cells, and colocalized with corticotropin-releasing hormone receptors in Purkinje cells.

  21. Lohmann K, Wilcox RA, Winkler S, et al. Whispering dysphonia (DYT4 dystonia) is caused by a mutation in the TUBB4 gene. Ann Neurol. 2013;73:537–45. The large pedigree was adequately powered for generation of a multipoint logarithm of odds score of 5.3. Then, whole-exome sequencing identified a missense mutation in TUBB4A as the cause of DYT4. Sequencing of TUBB4A in 394 unrelated dystonia patients identified one missense variant possibly associated with a case of segmental dystonia with spasmodic dysphonia.

    Article  CAS  PubMed  Google Scholar 

  22. LeDoux MS, Xiao J, Rudzinska M, et al. Genotype-phenotype correlations in THAP1 dystonia: molecular foundations and description of new cases. Parkinsonism Relat Disord. 2012;18:414–25. This is a detailed and comprehensive analysis of coding and noncoding variants in THAP1 and exacting statistical analysis of THAP1 genotype–phenotype correlations.

    Article  PubMed Central  PubMed  Google Scholar 

  23. Xiao J, Bastian RW, Perlmutter JS, et al. High-throughput mutational analysis of TOR1A in primary dystonia. BMC Med Genet. 2009;10:24.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Parker N. Hereditary whispering dysphonia. J Neurol Neurosurg Psychiatry. 1985;48:218–24.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Wilcox RA, Winkler S, Lohmann K, et al. Whispering dysphonia in an Australian family (DYT4): a clinical and genetic reappraisal. Mov Disord. 2011;26:2404–8.

    Article  PubMed  Google Scholar 

  26. Leandro-Garcia LJ, Leskela S, Landa I, et al. Tumoral and tissue-specific expression of the major human β-tubulin isotypes. Cytoskeleton (Hoboken). 2010;67:214–23.

    Article  CAS  Google Scholar 

  27. Breuss M, Heng JI, Poirier K, et al. Mutations in the β-tubulin gene TUBB5 cause microcephaly with structural brain abnormalities. Cell Rep. 2012;2:1554–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Simons C, Wolf NI, McNeil N, et al. A de novo mutation in the β-tubulin gene TUBB4A results in the leukoencephalopathy hypomyelination with atrophy of the basal ganglia and cerebellum. Am J Hum Genet. 2013;92:767–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Blumkin L, Halevy A, Ben-Ami-Raichman D, et al. Expansion of the spectrum of TUBB4A-related disorders: a new phenotype associated with a novel mutation in the TUBB4A gene. Neurogenetics. 2014;15:107–13.

    Article  CAS  PubMed  Google Scholar 

  30. Vemula SR, Xiao J, Bastian RW, et al. Pathogenic variants in TUBB4A are not found in primary dystonia. Neurology. 2014;82:1227–30. High-resolution melting and Sanger sequencing excluded TUBB4A coding region mutations in 575 subjects with primary laryngeal, segmental, or generalized dystonia.

    Article  CAS  PubMed  Google Scholar 

  31. Veltman JA, Brunner HG. De novo mutations in human genetic disease. Nat Rev Genet. 2012;13:565–75.

    Article  CAS  PubMed  Google Scholar 

  32. Muller U, Steinberger D, Nemeth AH. Clinical and molecular genetics of primary dystonias. Neurogenetics. 1998;1:165–77.

    Article  CAS  PubMed  Google Scholar 

  33. Hedera P, Xiao J, Puschmann A, et al. Novel PRRT2 mutation in an African-American family with paroxysmal kinesigenic dyskinesia. BMC Neurol. 2012;12:93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Caraballo R, Pavek S, Lemainque A, et al. Linkage of benign familial infantile convulsions to chromosome 16p12-q12 suggests allelism to the infantile convulsions and choreoathetosis syndrome. Am J Hum Genet. 2001;68:788–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Heron SE, Dibbens LM. Role of PRRT2 in common paroxysmal neurological disorders: a gene with remarkable pleiotropy. J Med Genet. 2013;50:133–9.

    Article  CAS  PubMed  Google Scholar 

  36. Stelzl U, Worm U, Lalowski M, et al. A human protein-protein interaction network: a resource for annotating the proteome. Cell. 2005;122:957–68.

    Article  CAS  PubMed  Google Scholar 

  37. Uitti RJ, Maraganore DM. Adult onset familial cervical dystonia: report of a family including monozygotic twins. Mov Disord. 1993;8:489–94.

    Article  CAS  PubMed  Google Scholar 

  38. Ma L, Chen R, Wang L, et al. No mutations in CIZ1 in twelve adult-onset primary cervical dystonia families. Mov Disord. 2013;28:1899–901.

    Article  CAS  PubMed  Google Scholar 

  39. LeDoux MS. Exome sequencing for gene discovery: time does not stand still. Ann Neurol. 2012;72:628–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Zhao Y, Xiao J, Gong S, et al. Neural expression of the transcription factor THAP1 during development in rat. Neuroscience. 2013;231:282–95.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Xiao J, Gong S, Zhao Y, et al. Developmental expression of rat torsinA transcript and protein. Brain Res Dev Brain Res. 2004;152:47–60.

    Article  CAS  PubMed  Google Scholar 

  42. Ledoux MS. Non-Parkinson movement disorders: five new things. Neurol Clin Pract. 2013;3:22–9.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Munchau A, Valente EM, Davis MB, et al. A Yorkshire family with adult-onset cranio-cervical primary torsion dystonia. Mov Disord. 2000;15:954–9.

    Article  CAS  PubMed  Google Scholar 

  44. Stamelou M, Charlesworth G, Cordivari C, et al. The phenotypic spectrum of DYT24 due to ANO3 mutations. Mov Disord. 2014. doi:10.1002/mds.25802.

    Google Scholar 

  45. Vermeer S, Hoischen A, Meijer RP, et al. Targeted next-generation sequencing of a 12.5 Mb homozygous region reveals ANO10 mutations in patients with autosomal-recessive cerebellar ataxia. Am J Hum Genet. 2010;87:813–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Huang F, Wang X, Ostertag EM, et al. TMEM16C facilitates Na+-activated K+ currents in rat sensory neurons and regulates pain processing. Nat Neurosci. 2013;16:1284–90.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Zech M, Gross N, Jochim A, et al. Rare sequence variants in ANO3 and GNAL in a primary torsion dystonia series and controls. Mov Disord. 2014;29:143–7.

    Article  CAS  PubMed  Google Scholar 

  48. Hopfner F, Bungeroth M, Pendziwiat M, et al. Rare variants in ANO3 are not a susceptibility factor in essential tremor. Parkinsonism Relat Disord. 2014;20:134–5.

    Article  PubMed  Google Scholar 

  49. Postma AG, Verschuuren-Bemelmans CC, Kok K, et al. Characteristics of dystonia in the 18p deletion syndrome, including a new case. Clin Neurol Neurosurg. 2009;111:880–2.

    Article  PubMed  Google Scholar 

  50. Esposito F, Addor MC, Humm AM, et al. GNAL deletion as a probable cause of dystonia in a patient with the 18p- syndrome. Parkinsonism Relat Disord. 2014;20:351–2.

    Article  PubMed  Google Scholar 

  51. Leube B, Hendgen T, Kessler KR, et al. Evidence for DYT7 being a common cause of cervical dystonia (torticollis) in central Europe. Am J Med Genet. 1997;74:529–32.

    Article  CAS  PubMed  Google Scholar 

  52. Han F, Racacho L, Lang AE, et al. Refinement of the DYT15 locus in myoclonus dystonia. Mov Disord. 2007;22:888–92.

    Article  PubMed  Google Scholar 

  53. Winter P, Kamm C, Biskup S, et al. DYT7 gene locus for cervical dystonia on chromosome 18p is questionable. Mov Disord. 2012;27:1819–21.

    Article  CAS  PubMed  Google Scholar 

  54. Kaur A. Rare autosomal dominant mutations in GNAL are associated with primary torsion dystonia. Clin Genet. 2013;84:211–2.

    Article  CAS  PubMed  Google Scholar 

  55. Miao J, Wan XH, Sun Y, et al. Mutation screening of GNAL gene in patients with primary dystonia from northeast China. Parkinsonism Relat Disord. 2013;19:910–2.

    Article  PubMed  Google Scholar 

  56. Charlesworth G, Bhatia KP, Wood NW. No pathogenic GNAL mutations in 192 sporadic and familial cases of cervical dystonia. Mov Disord. 2014;29:154–5.

    Article  CAS  PubMed  Google Scholar 

  57. Dufke C, Sturm M, Schroeder C, et al. Screening of mutations in GNAL in sporadic dystonia patients. Mov Disord. 2014. doi:10.1002/mds.25794.

    PubMed  Google Scholar 

  58. Kumar KR, Lohmann K, Masuho I, et al. Mutations in GNAL: a novel cause of craniocervical dystonia. JAMA Neurol. 2014;71:490–4.

    Article  PubMed  Google Scholar 

  59. Saunders-Pullman R, Fuchs T, San Luciano M, et al. Heterogeneity in primary dystonia: lessons from THAP1, GNAL, and TOR1A in Amish-Mennonites. Mov Disord. 2014;29:812–8.

    Article  CAS  PubMed  Google Scholar 

  60. Xiao J, Zhao Y, Bastian RW, et al. Novel THAP1 sequence variants in primary dystonia. Neurology. 2010;74:229–38.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Luo AH, Cannon EH, Wekesa KS, et al. Impaired olfactory behavior in mice deficient in the α subunit of Go. Brain Res. 2002;941:62–71.

    Article  CAS  PubMed  Google Scholar 

  62. Ledoux MS, Dauer WT, Warner TT. Emerging common molecular pathways for primary dystonia. Mov Disord. 2013;28:968–81.

    Article  CAS  PubMed  Google Scholar 

  63. Bertran-Gonzalez J, Hakansson K, Borgkvist A, et al. Histone H3 phosphorylation is under the opposite tonic control of dopamine D2 and adenosine A2A receptors in striatopallidal neurons. Neuropsychopharmacology. 2009;34:1710–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Liokatis S, Stutzer A, Elsasser SJ, et al. Phosphorylation of histone H3 Ser10 establishes a hierarchy for subsequent intramolecular modification events. Nat Struct Mol Biol. 2012;19:819–23.

    Article  CAS  PubMed  Google Scholar 

  65. LeDoux MS, Brady KA. Secondary cervical dystonia associated with structural lesions of the central nervous system. Mov Disord. 2003;18:60–9.

    Article  PubMed  Google Scholar 

  66. LeDoux MS, Lorden JF, Ervin JM. Cerebellectomy eliminates the motor syndrome of the genetically dystonic rat. Exp Neurol. 1993;120:302–10.

    Article  CAS  PubMed  Google Scholar 

  67. Neychev VK, Gross RE, Lehericy S, et al. The functional neuroanatomy of dystonia. Neurobiol Dis. 2011;42:185–201.

    Article  PubMed Central  PubMed  Google Scholar 

  68. Makino S, Kaji R, Ando S, et al. Reduced neuron-specific expression of the TAF1 gene is associated with X-linked dystonia-parkinsonism. Am J Hum Genet. 2007;80:393–406.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Weber YG, Kamm C, Suls A, et al. Paroxysmal choreoathetosis/spasticity (DYT9) is caused by a GLUT1 defect. Neurology. 2011;77:959–64.

    Article  CAS  PubMed  Google Scholar 

  70. De Carvalho P, Sweadner KJ, Penniston JT, et al. Mutations in the Na+/K+-ATPase α3 gene ATP1A3 are associated with rapid-onset dystonia parkinsonism. Neuron. 2004;43:169–75.

    Article  Google Scholar 

Download references

Acknowledgements

Our dystonia research has been supported by grants from the National Institutes of Health (K08NS001593, R01EY012232, R01NS048458, R01NS050185, R01NS069936, and U54NS065701), the Dystonia Medical Research Foundation, the Bachmann-Strauss Dystonia & Parkinson Foundation, Tyler’s Hope for a Dystonia Cure, and the University of Tennessee Health Science Center Neuroscience Institute.

Compliance with Ethics Guidelines

Conflict of Interest

Jianfeng Xiao and Satya R. Vemula declare that they have no conflict of interest.

Mark S. LeDoux has received consultancy fees from Teva and Lundbeck. He has also received grants from the National Institutes of Health, the Cure Huntington Disease Initiative, and Prana. He has also received honorarium payments from Teva, Lundbeck, and UCB Pharma, as well as royalty payments from Elsevier.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark S. LeDoux.

Additional information

This article is part of the Topical Collection on Genetics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, J., Vemula, S.R. & LeDoux, M.S. Recent Advances in the Genetics of Dystonia. Curr Neurol Neurosci Rep 14, 462 (2014). https://doi.org/10.1007/s11910-014-0462-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-014-0462-8

Keywords

Navigation