Skip to main content

Advertisement

Log in

Rare Causes of Dystonia Parkinsonism

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

The list of genetic causes of syndromes of dystonia parkinsonism grows constantly. As a consequence, the diagnosis becomes more and more challenging for the clinician. Here, we summarize the important causes of dystonia parkinsonism including autosomal-dominant, recessive, and x-linked forms. We cover dopa-responsive dystonia, Wilson’s disease, Parkin-, PINK1-, and DJ-1-associated parkinsonism (PARK2, 6, and 7), x-linked dystonia-parkinsonism/Lubag (DYT3), rapid-onset dystonia-parkinsonism (DYT12) and DYT16 dystonia, the syndromes of Neurodegeneration with Brain Iron Accumulation (NBIA) including pantothenate kinase (PANK2)- and PLA2G6 (PARK14)-associated neurodegeneration, neuroferritinopathy, Kufor-Rakeb disease (PARK9) and the recently described SENDA syndrome; FBXO7-associated neurodegeneration (PARK15), autosomal-recessive spastic paraplegia with a thin corpus callosum (SPG11), and dystonia parkinsonism due to mutations in the SLC6A3 gene encoding the dopamine transporter. They have in common that in all these syndromes there may be a combination of dystonic and parkinsonian features, which may be complicated by pyramidal tract involvement. The aim of this review is to familiarize the clinician with the phenotypes of these disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Gasser T: Update on the genetics of Parkinson’s disease. Mov Disord 2007, (22 Suppl 17):S343–S350.

    Article  PubMed  Google Scholar 

  2. Healy DG, Abou-Sleiman PM, Wood NW: PINK, PANK, or PARK? A clinicians’ guide to familial parkinsonism. Lancet Neurol 2004, 3:652–662.

    Article  CAS  PubMed  Google Scholar 

  3. Hardy J, Cai H, Cookson MR, et al.: Genetics of Parkinson’s disease and parkinsonism. Ann Neurol 2006, 60:389–398.

    Article  CAS  PubMed  Google Scholar 

  4. Carvalho Aguiar PM, Ozelius LJ: Classification and genetics of dystonia. Lancet Neurol 2002, 1:316–325.

    Article  PubMed  Google Scholar 

  5. Nemeth AH: The genetics of primary dystonias and related disorders. Brain 2002, 125(Pt 4):695–721.

    Article  PubMed  Google Scholar 

  6. Nygaard TG: Dopa-responsive dystonia. Curr Opin Neurol 1995, 8:310–313.

    Article  CAS  PubMed  Google Scholar 

  7. Ludecke B, Dworniczak B, Bartholome K: A point mutation in the tyrosine hydroxylase gene associated with Segawa’s syndrome. Hum Genet 1995, 95:123–125.

    CAS  PubMed  Google Scholar 

  8. Steinberger D, Blau N, Goriuonov D, et al.: Heterozygous mutation in 5′-untranslated region of sepiapterin reductase gene (SPR) in a patient with dopa-responsive dystonia. Neurogenetics 2004, 5:187–190.

    Article  CAS  PubMed  Google Scholar 

  9. Furukawa Y, Guttman M, Sparagana SP, et al.: Dopa-responsive dystonia due to a large deletion in the GTP cyclohydrolase I gene. Ann Neurol 2000, 47:517–520.

    Article  CAS  PubMed  Google Scholar 

  10. Hwu WL, Wang PJ, Hsiao KJ, et al.: Dopa-responsive dystonia induced by a recessive GTP cyclohydrolase I mutation. Hum Genet 1999, 105:226–230.

    Article  CAS  PubMed  Google Scholar 

  11. • Trender-Gerhard I, Sweeney MG, Schwingenschuh P, et al.: Autosomal-dominant GTPCH1-deficient DRD: clinical characteristics and long-term outcome of 34 patients. J Neurol Neurosurg Psychiatry 2009, 80:839–845. This study is a large genotype-phenotype correlation analysis for dopa-responsive dystonia due to the GTPCH1 mutation.

    Article  CAS  PubMed  Google Scholar 

  12. Clot F, Grabli D, Cazeneuve C, et al.: Exhaustive analysis of BH4 and dopamine biosynthesis genes in patients with Dopa-responsive dystonia. Brain 2009, 132(Pt 7):1753–1763.

    Article  PubMed  Google Scholar 

  13. Lucking CB, Durr A, Bonifati V, et al.: Association between early-onset Parkinson’s disease and mutations in the parkin gene. French Parkinson’s Disease Genetics Study Group. N Engl J Med 2000, 342:1560–1567.

    Article  CAS  PubMed  Google Scholar 

  14. Nisipeanu P, Inzelberg R, Abo MS, et al.: Parkin gene causing benign autosomal recessive juvenile parkinsonism. Neurology 2001, 56:1573–1575.

    CAS  PubMed  Google Scholar 

  15. Khan NL, Graham E, Critchley P, et al.: Parkin disease: a phenotypic study of a large case series. Brain 2003, 126(Pt 6):1279–1292.

    Article  PubMed  Google Scholar 

  16. Lohmann E, Periquet M, Bonifati V, et al.: How much phenotypic variation can be attributed to parkin genotype? Ann Neurol 2003, 54:176–185.

    Article  CAS  PubMed  Google Scholar 

  17. Bozi M, Bhatia KP: Paroxysmal exercise-induced dystonia as a presenting feature of young-onset Parkinson’s disease. Mov Disord 2003, 18:1545–1547.

    Article  PubMed  Google Scholar 

  18. Khan NL, Katzenschlager R, Watt H, et al.: Olfaction differentiates parkin disease from early-onset parkinsonism and Parkinson disease. Neurology 2004, 62:1224–1226.

    CAS  PubMed  Google Scholar 

  19. Kitada T, Asakawa S, Hattori N, et al.: Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998, 392:605–608.

    Article  CAS  PubMed  Google Scholar 

  20. Hedrich K, Kann M, Lanthaler AJ, et al.: The importance of gene dosage studies: mutational analysis of the parkin gene in early-onset parkinsonism. Hum Mol Genet 2001, 10:1649–1656.

    Article  CAS  PubMed  Google Scholar 

  21. Valente EM, Salvi S, Ialongo T, et al.: PINK1 mutations are associated with sporadic early-onset parkinsonism. Ann Neurol 2004, 56:336–341.

    Article  CAS  PubMed  Google Scholar 

  22. Valente EM, Bentivoglio AR, Dixon PH, et al.: Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35-p36. Am J Hum Genet 2001, 68:895–900.

    Article  CAS  PubMed  Google Scholar 

  23. Albanese A, Valente EM, Romito LM, et al.: The PINK1 phenotype can be indistinguishable from idiopathic Parkinson disease. Neurology 2005, 64:1958–1960.

    Article  CAS  PubMed  Google Scholar 

  24. Doostzadeh J, Tetrud JW, Allen-Auerbach M, et al.: Novel features in a patient homozygous for the L347P mutation in the PINK1 gene. Parkinsonism Relat Disord 2007, 13:359–361.

    Article  CAS  PubMed  Google Scholar 

  25. Rohe CF, Montagna P, Breedveld G, et al.: Homozygous PINK1 C-terminus mutation causing early-onset parkinsonism. Ann Neurol 2004, 56:427–431.

    Article  CAS  PubMed  Google Scholar 

  26. Li Y, Tomiyama H, Sato K, et al.: Clinicogenetic study of PINK1 mutations in autosomal recessive early-onset parkinsonism. Neurology 2005, 64:1955–1957.

    Article  CAS  PubMed  Google Scholar 

  27. Ibanez P, Lesage S, Lohmann E, et al.: Mutational analysis of the PINK1 gene in early-onset parkinsonism in Europe and North Africa. Brain 2006, 129(Pt 3):686–694.

    Article  PubMed  Google Scholar 

  28. Steinlechner S, Stahlberg J, Volkel B, et al.: Co-occurrence of affective and schizophrenia spectrum disorders with PINK1 mutations. J Neurol Neurosurg Psychiatry 2007, 78:532–535.

    Article  PubMed  Google Scholar 

  29. Ephraty L, Porat O, Israeli D, et al.: Neuropsychiatric and cognitive features in autosomal-recessive early parkinsonism due to PINK1 mutations. Mov Disord 2007, 22:566–569.

    Article  PubMed  Google Scholar 

  30. Weng YH, Chou YH, Wu WS, et al.: PINK1 mutation in Taiwanese early-onset parkinsonism : clinical, genetic, and dopamine transporter studies. J Neurol 2007, 254:1347–1355.

    Article  CAS  PubMed  Google Scholar 

  31. Poole AC, Thomas RE, Andrews LA, et al.: The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci U S A 2008, 105:1638–1643.

    Article  CAS  PubMed  Google Scholar 

  32. Exner N, Treske B, Paquet D, et al.: Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin. J Neurosci 2007, 27:12413–12418.

    Article  CAS  PubMed  Google Scholar 

  33. Bonifati V, Rohe CF, Breedveld GJ, et al.: Early-onset parkinsonism associated with PINK1 mutations: frequency, genotypes, and phenotypes. Neurology 2005, 65:87–95.

    Article  CAS  PubMed  Google Scholar 

  34. Rogaeva E, Johnson J, Lang AE, et al.: Analysis of the PINK1 gene in a large cohort of cases with Parkinson disease. Arch Neurol 2004, 61:1898–1904.

    Article  PubMed  Google Scholar 

  35. Tan EK, Yew K, Chua E, et al.: PINK1 mutations in sporadic early-onset Parkinson’s disease. Mov Disord 2006, 21:789–793.

    Article  PubMed  Google Scholar 

  36. Bonifati V, Rizzu P, van Baren MJ, et al.: Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 2003, 299:256–259.

    Article  CAS  PubMed  Google Scholar 

  37. Hedrich K, Djarmati A, Schafer N, et al.: DJ-1 (PARK7) mutations are less frequent than Parkin (PARK2) mutations in early-onset Parkinson disease. Neurology 2004, 62:389–394.

    CAS  PubMed  Google Scholar 

  38. Hallervorden J, Spatz H: Eigenartige Erkrankung im extrapyramidalen System mit besonderer Beteiligung des Globus pallidus und der Substantia nigra.: Ein Beitrag zu den Beziehungen zwischen diesen beiden Zentren. Z Ges Neurol Psychiat 1922, 79:254–302.

    Article  Google Scholar 

  39. Hartig MB, Hortnagel K, Garavaglia B, et al.: Genotypic and phenotypic spectrum of PANK2 mutations in patients with neurodegeneration with brain iron accumulation. Ann Neurol 2006, 59:248–256.

    Article  CAS  PubMed  Google Scholar 

  40. Hayflick SJ: Neurodegeneration with brain iron accumulation: from genes to pathogenesis. Semin Pediatr Neurol 2006, 13:182–185.

    Article  PubMed  Google Scholar 

  41. Hayflick SJ, Westaway SK, Levinson B, et al.: Genetic, clinical, and radiographic delineation of Hallervorden-Spatz syndrome. N Engl J Med 2003, 348:33–40.

    Article  CAS  PubMed  Google Scholar 

  42. Antonini A, Goldwurm S, Benti R, et al.: Genetic, clinical, and imaging characterization of one patient with late-onset, slowly progressive, pantothenate kinase-associated neurodegeneration. Mov Disord 2006, 21:417–418.

    Article  PubMed  Google Scholar 

  43. Aggarwal A, Schneider SA, Houlden H, et al.: Indian-subcontinent NBIA: Unusual phenotypes—novel PANK2 mutations and evidence of other genetically undetermined forms. Mov Disord 2010 Apr 1 [Epub ahead of print].

  44. Schneider SA, Aggarwal A, Bhatt M, et al.: Severe tongue protrusion dystonia: clinical syndromes and possible treatment. Neurology 2006, 67:940–943.

    Article  CAS  PubMed  Google Scholar 

  45. Marelli C, Piacentini S, Garavaglia B, et al.: Clinical and neuropsychological correlates in two brothers with pantothenate kinase-associated neurodegeneration. Mov Disord 2005, 20:208–212.

    Article  PubMed  Google Scholar 

  46. Sethi KD, Adams RJ, Loring DW, el Gammal T: Hallervorden-Spatz syndrome: clinical and magnetic resonance imaging correlations. Ann Neurol 1988, 24:692–694.

    Article  CAS  PubMed  Google Scholar 

  47. Hayflick SJ, Hartman M, Coryell J, et al.: Brain MRI in neurodegeneration with brain iron accumulation with and without PANK2 mutations. AJNR Am J Neuroradiol 2006, 27:1230–1233.

    CAS  PubMed  Google Scholar 

  48. Valentino P, Annesi G, Ciro Candiano IC, et al.: Genetic heterogeneity in patients with pantothenate kinase-associated neurodegeneration and classic magnetic resonance imaging eye-of-the-tiger pattern. Mov Disord 2006, 21:252–254.

    Article  PubMed  Google Scholar 

  49. McNeill A, Birchall D, Hayflick SJ, et al.: T2* and FSE MRI distinguishes four subtypes of neurodegeneration with brain iron accumulation. Neurology 2008, 70:1614–1619.

    Article  CAS  PubMed  Google Scholar 

  50. Cossu G, Cella C, Melis M, et al.: [123I]FP-CIT SPECT findings in two patients with Hallervorden-Spatz disease with homozygous mutation in PANK2 gene. Neurology 2005, 64:167–168.

    CAS  PubMed  Google Scholar 

  51. Hermann W, Barthel H, Reuter M, et al.: [Hallervorden-Spatz disease: findings in the nigrostriatal system] [in German]. Nervenarzt 2000, 71:660–665.

    Article  CAS  PubMed  Google Scholar 

  52. Morgan NV, Westaway SK, Morton JE, et al.: PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron. Nat Genet 2006, 38:752–754.

    Article  CAS  PubMed  Google Scholar 

  53. Vinters H, Farrell M, Mischel P, Anders K: Diagnostic Neuropathology. New York, NY: Marcel Dekker Incorporated; 1998.

    Google Scholar 

  54. Paisán-Ruiz C, Li A, Schneider S, et al.: Widespread Lewy body and tau accumulation in childhood and adult onset dystonia-parkinsonism cases with PLA2G6 mutations. Neurobiol Aging 2010 Jul 20 [Epub ahead of print].

  55. Kurian MA, Morgan NV, MacPherson L, et al.: Phenotypic spectrum of neurodegeneration associated with mutations in the PLA2G6 gene (PLAN). Neurology 2008, 70:1623–1629.

    Article  CAS  PubMed  Google Scholar 

  56. Khateeb S, Flusser H, Ofir R, et al.: PLA2G6 mutation underlies infantile neuroaxonal dystrophy. Am J Hum Genet 2006, 79:942–948.

    Article  CAS  PubMed  Google Scholar 

  57. Dorfman LJ, Pedley TA, Tharp BR, Scheithauer BW: Juvenile neuroaxonal dystrophy: clinical, electrophysiological, and neuropathological features. Ann Neurol 1978, 3:419–428.

    Article  CAS  PubMed  Google Scholar 

  58. Rozdilsky B, Bolton CF, Takeda M: Neuroaxonal dystrophy. A case of delayed onset and protracted course. Acta Neuropathol 1971, 17:331–340.

    Article  CAS  PubMed  Google Scholar 

  59. • Paisan-Ruiz C, Bhatia KP, Li A, et al.: Characterization of PLA2G6 as a locus for dystonia-parkinsonism. Ann Neurol 2009, 65:19–23. Although PLA2G6 mutations have been associated with INAD, in this paper the role for adult-onset dystonia parkinsonism is being demonstrated. Imaging features classically seen in INAD were absent, highlighting the important of considering this disorder even when the MRI brain scan is normal.

    Article  PubMed  Google Scholar 

  60. Smesny S, Kinder D, Willhardt I, et al.: Increased calcium-independent phospholipase A2 activity in first but not in multiepisode chronic schizophrenia. Biol Psychiatry 2005, 57:399–405.

    Article  CAS  PubMed  Google Scholar 

  61. Yu Y, Tao R, Shi J, et al.: A genetic study of two calcium-independent cytosolic PLA2 genes in schizophrenia. Prostaglandins Leukot Essent Fatty Acids 2005, 73:351–354.

    Article  CAS  PubMed  Google Scholar 

  62. •• Bras J, Singleton A, Cookson MR, Hardy J: Emerging pathways in genetic Parkinson’s disease: potential role of ceramide metabolism in Lewy body disease. FEBS J 2008, 275:5767–5773. The authors demonstrate how ceramide metabolism may be the connecting link between various disorders that are associated with (complicated) dystonia parkinsonism. How further genes link to the same pathway remains to be established.

    Article  CAS  PubMed  Google Scholar 

  63. Schneider SA, Hardy J, Bhatia KP: Iron accumulation in syndromes of neurodegeneration with brain accumulation—causative or consequential? J Neurol Neurosurg Psychiatry 2009, 80:589–590.

    Article  CAS  PubMed  Google Scholar 

  64. Najim al-Din AS, Wriekat A, Mubaidin A, et al.: Pallido-pyramidal degeneration, supranuclear upgaze paresis and dementia: Kufor-Rakeb syndrome. Acta Neurol Scand 1994, 89:347–352.

    Article  CAS  PubMed  Google Scholar 

  65. Di Fonzo A, Chien HF, Socal M, et al.: ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease. Neurology 2007, 68:1557–1562.

    Article  PubMed  Google Scholar 

  66. Ramirez A, Heimbach A, Grundemann J, et al.: Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 2006, 38:1184–1191.

    Article  CAS  PubMed  Google Scholar 

  67. Williams DR, Hadeed A, al Din AS, et al.: Kufor Rakeb disease: autosomal recessive, levodopa-responsive parkinsonism with pyramidal degeneration, supranuclear gaze palsy, and dementia. Mov Disord 2005, 20:1264–1271.

    Article  PubMed  Google Scholar 

  68. Schneider SA, Paisan-Ruiz C, Quinn N, et al.: ATP13A2 mutations (PARK9) cause neurodegeneration with brain iron accumulation. Mov Disord 2010, 25:979–984.

    Article  PubMed  Google Scholar 

  69. Hampshire DJ, Roberts E, Crow Y, et al.: Kufor-Rakeb syndrome, pallido-pyramidal degeneration with supranuclear upgaze paresis and dementia, maps to 1p36. J Med Genet 2001, 38:680–682.

    Article  CAS  PubMed  Google Scholar 

  70. Chinnery PF, Curtis AR, Fey C, et al.: Neuroferritinopathy in a French family with late onset dominant dystonia. J Med Genet 2003, 40:e69.

    Article  CAS  PubMed  Google Scholar 

  71. Chinnery PF, Crompton DE, Birchall D, et al.: Clinical features and natural history of neuroferritinopathy caused by the FTL1 460InsA mutation. Brain 2007, 130(Pt 1):110–119.

    PubMed  Google Scholar 

  72. Shojaee S, Sina F, Banihosseini SS, et al.: Genome-wide linkage analysis of a Parkinsonian-pyramidal syndrome pedigree by 500 K SNP arrays. Am J Hum Genet 2008, 82:1375–1384.

    Article  CAS  PubMed  Google Scholar 

  73. Kurian MA, Zhen J, Cheng SY, et al.: Homozygous loss-of-function mutations in the gene encoding the dopamine transporter are associated with infantile parkinsonism-dystonia. J Clin Invest 2009, 119:1595–1603.

    CAS  PubMed  Google Scholar 

  74. Ritz K, Groen JL, Kruisdijk JJ, et al.: Screening for dystonia genes DYT1, 11 and 16 in patients with writer’s cramp. Mov Disord 2009, 24:1390–1392.

    Article  PubMed  Google Scholar 

  75. Patel RC, Sen GC: PACT, a protein activator of the interferon-induced protein kinase, PKR. EMBO J 1998, 17:4379–4390.

    Article  CAS  PubMed  Google Scholar 

  76. Lee LV, Pascasio FM, Fuentes FD, Viterbo GH: Torsion dystonia in Panay, Philippines. Adv Neurol 1976, 14:137–151.

    CAS  PubMed  Google Scholar 

  77. Wilhelmsen KC, Weeks DE, Nygaard TG, et al.: Genetic mapping of “Lubag” (X-linked dystonia-parkinsonism) in a Filipino kindred to the pericentromeric region of the X chromosome. Ann Neurol 1991, 29:124–131.

    Article  CAS  PubMed  Google Scholar 

  78. Evidente VG, Advincula J, Esteban R, et al.: Phenomenology of “Lubag” or X-linked dystonia-parkinsonism. Mov Disord 2002, 17:1271–1277.

    Article  PubMed  Google Scholar 

  79. Evidente VG, Nolte D, Niemann S, et al.: Phenotypic and molecular analyses of X-linked dystonia-parkinsonism (“lubag”) in women. Arch Neurol 2004, 61:1956–1959.

    Article  PubMed  Google Scholar 

  80. Waters CH, Takahashi H, Wilhelmsen KC, et al.: Phenotypic expression of X-linked dystonia-parkinsonism (lubag) in two women. Neurology 1993, 43:1555–1558.

    CAS  PubMed  Google Scholar 

  81. Lee LV, Maranon E, Demaisip C, et al.: The natural history of sex-linked recessive dystonia parkinsonism of Panay, Philippines (XDP). Parkinsonism Relat Disord 2002, 9:29–38.

    Article  PubMed  Google Scholar 

  82. Waters CH, Faust PL, Powers J, et al.: Neuropathology of lubag (x-linked dystonia parkinsonism). Mov Disord 1993, 8:387–390.

    Article  CAS  PubMed  Google Scholar 

  83. Lee LV, Kupke KG, Caballar-Gonzaga F, et al.: The phenotype of the X-linked dystonia-parkinsonism syndrome. An assessment of 42 cases in the Philippines. Medicine (Baltimore) 1991, 70:179–187.

    CAS  Google Scholar 

  84. Evidente VG, Lyons MK, Wheeler M, et al.: First case of X-linked dystonia-parkinsonism (“Lubag”) to demonstrate a response to bilateral pallidal stimulation. Mov Disord 2007, 22:1790–1793.

    Article  PubMed  Google Scholar 

  85. Martinez-Torres I, Limousin P, Tisch S, et al.: Early and marked benefit with GPi DBS for Lubag syndrome presenting with rapidly progressive life-threatening dystonia. Mov Disord 2009, 24:1710–1712.

    Article  PubMed  Google Scholar 

  86. Makino S, Kaji R, Ando S, et al.: Reduced neuron-specific expression of the TAF1 gene is associated with X-linked dystonia-parkinsonism. Am J Hum Genet 2007, 80:393–406.

    Article  CAS  PubMed  Google Scholar 

  87. de Carvalho AP, Sweadner KJ, Penniston JT, et al.: Mutations in the Na+/K+-ATPase alpha3 gene ATP1A3 are associated with rapid-onset dystonia parkinsonism. Neuron 2004, 43:169–175.

    Article  Google Scholar 

  88. Brashear A, Butler IJ, Ozelius LJ, et al.: Rapid-onset dystonia-parkinsonism: a report of clinical, biochemical, and genetic studies in two families. Adv Neurol 1998, 78:335–339.

    CAS  PubMed  Google Scholar 

  89. • Brashear A, Dobyns WB, de Carvalho AP, et al.: The phenotypic spectrum of rapid-onset dystonia-parkinsonism (RDP) and mutations in the ATP1A3 gene. Brain 2007, 130(Pt 3):828–835. This paper described the phenotypic spectrum of rapid-onset dystonia parkinsonism in patients with molecularly proven ATP13A2 mutations.

    Article  PubMed  Google Scholar 

  90. Anheim M, Lagier-Tourenne C, Stevanin G, et al.: SPG11 spastic paraplegia. A new cause of juvenile parkinsonism. J Neurol 2009, 256:104–108.

    Google Scholar 

  91. Stevanin G, Azzedine H, Denora P, et al.: Mutations in SPG11 are frequent in autosomal recessive spastic paraplegia with thin corpus callosum, cognitive decline and lower motor neuron degeneration. Brain 2008, 131:772–784.

    Article  PubMed  Google Scholar 

  92. Paisan-Ruiz C, Guevara R, Federoff M, et al.: Early-onset L-dopa-responsive parkinsonism with pyramidal signs due to ATP13A2, PLA2G6, FBXO7 and Spatacsin mutations. Mov Disord 2010, in press.

  93. Denora PS, Schlesinger D, Casali C, et al.: Screening of ARHSP-TCC patients expands the spectrum of SPG11 mutations and includes a large scale gene deletion. Hum Mutat 2009, 30:E500–E519.

    Article  PubMed  Google Scholar 

  94. Stevanin G, Santorelli FM, Azzedine H, et al.: Mutations in SPG11, encoding spatacsin, are a major cause of spastic paraplegia with thin corpus callosum. Nat Genet 2007, 39:366–372.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Susanne A. Schneider was supported by a research grant from the University of Lübeck (E48.2009), a grant from the Deutsche Forschungsgemeinschaft (LO1555/3-1), the Novartis Foundation for Therapeutic Research, and the Empiris Foundation for Research in Brain Diseases, CH.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kailash P. Bhatia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, S.A., Bhatia, K.P. Rare Causes of Dystonia Parkinsonism. Curr Neurol Neurosci Rep 10, 431–439 (2010). https://doi.org/10.1007/s11910-010-0136-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-010-0136-0

Keywords