Skip to main content

Advertisement

Log in

Cerebral palsy: New approaches to therapy

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Cerebral palsy is the most common developmental disorder causing a physical disability arising from an injury to the central nervous system. The majority of pediatric neurologists remain minimally involved in the rehabilitation of these children. Recent advances in basic and clinical neuroscience give hope that effective rehabilitation strategies, based on motor learning science, can be developed for these children. The aim of this review is to alert pediatric neurologists to these advances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Hallett M: Plasticity of the human motor cortex and recovery from stroke. Brain Res Rev 2001, 36:169–174.

    Article  PubMed  CAS  Google Scholar 

  2. Monfils MH, Plautz EJ, Kleim JA: In search of the motor engram: motor map plasticity as a mechanism for encoding motor experience. Neuroscientist 2005, 11:471–483.

    Article  PubMed  Google Scholar 

  3. Butefisch C, Hummelsheim H, Denzler P, Mauritz KH: Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand. J Neurol Sci 1995, 130:59–68.

    Article  PubMed  CAS  Google Scholar 

  4. Barbay S, Plautz EJ, Friel KM, et al.: Behavioral and neurophysiological effects of delayed training following a small ischemic infarct in primary motor cortex of squirrel monkeys. Exp Brain Res 2006, 169:106–116.

    Article  PubMed  Google Scholar 

  5. Dancause N, Barbay S, Frost SB, et al.: Extensive cortical rewiring after brain injury. J Neurosci 2005, 25:10167–10179.

    Article  PubMed  CAS  Google Scholar 

  6. Liepert J, Uhde I, Graf S, et al.: Motor cortex plasticity during forced-use therapy in stroke patients: a preliminary study. J Neurol 2001, 248:315–321.

    Article  PubMed  CAS  Google Scholar 

  7. Winstein C: Designing practice for motor learning: clinical implications. In Contemporary Management of Motor Control Problems: Proceedings of the II Step Conference. Edited by Lister M. Alexandria, VA: Foundation for Physical Therapy; 1991:65–76.

    Google Scholar 

  8. Wolf SL, Winstein CJ, Miller JP, et al.: Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA 2006, 296:2095–2104.

    Article  PubMed  CAS  Google Scholar 

  9. Krakauer JW: Arm function after stroke: from physiology to recovery. Semin Neurol 2005, 25:384–395.

    Article  PubMed  Google Scholar 

  10. Ellis MD, Holubar BG, Acosta AM, et al.: Modifiability of abnormal isometric elbow and shoulder joint torque coupling after stroke. Muscle Nerve 2005, 32:170–178.

    Article  PubMed  Google Scholar 

  11. Boyd RN, Morris ME, Graham HK: Management of upper limb dysfunction in children with cerebral palsy: a systematic review. Eur J Neurol 2001, 8(Suppl 5):150–166.

    Article  PubMed  Google Scholar 

  12. Scruton E, Damiano D, Mayston MJ: Management of the Motor Disorders of Children with Cerebral Palsy, vol 161, edn 2. London: MacKeith Press; 2003.

    Google Scholar 

  13. Mayston M: Evidence-based physical therapy for the management of children with cerebral palsy. Dev Med Child Neurol 2005, 47:795.

    Article  PubMed  Google Scholar 

  14. Taub E, Ramey SL, DeLuca S, Echols K: Efficacy of constraint-induced movement therapy for children with cerebral palsy with asymmetric motor impairment. Pediatrics 2004, 113:305–312.

    Article  PubMed  Google Scholar 

  15. Taub E, Uswatte G, King DK, et al.: A placebo-controlled trial of constraint-induced movement therapy for upper extremity after stroke. Stroke 2006, 37:1045–1049.

    Article  PubMed  Google Scholar 

  16. Suputtitada A, Suwanwela NC, Tumvitee S: Effectiveness of constraint-induced movement therapy in chronic stroke patients. J Med Assoc Thai 2004, 87:1482–1490.

    PubMed  Google Scholar 

  17. Page SJ, Sisto S, Levine P, McGrath RE: Efficacy of modified constraint-induced movement therapy in chronic stroke: a single-blinded randomized controlled trial. Arch Phys Med Rehabil 2004, 85:14–18.

    Article  PubMed  Google Scholar 

  18. Page SJ, Levine P, Leonard AC: Modified constraint-induced therapy in acute stroke: a randomized controlled pilot study. Neurorehabil Neural Repair 2005, 19:27–32.

    Article  PubMed  Google Scholar 

  19. Gordon AM, Charles J, Wolf SL: Efficacy of constraint-induced movement therapy on involved upper-extremity use in children with hemiplegic cerebral palsy is not age-dependent. Pediatrics 2006, 117:e363–373.

    Article  PubMed  Google Scholar 

  20. Eliasson AC, Krumlinde-Sundholm L, Shaw K, Wang C: Effects of constraint-induced movement therapy in young children with hemiplegic cerebral palsy: an adapted model. Dev Med Child Neurol 2005, 47:266–275.

    Article  PubMed  Google Scholar 

  21. Charles JR, Wolf SL, Schneider JA, Gordon AM: Efficacy of a child-friendly form of constraint-induced movement therapy in hemiplegic cerebral palsy: a randomized control trial. Dev Med Child Neurol 2006, 48:635–642.

    Article  PubMed  Google Scholar 

  22. Wittenberg GF, Chen R, Ishii K, et al.: Constraint-induced therapy in stroke: magnetic-stimulation motor maps and cerebral activation. Neurorehabil Neural Repair 2003, 17:48–57.

    Article  PubMed  Google Scholar 

  23. Yen JG, Wang RY, Chen HH, Hong CT: Effectiveness of modified constraint-induced movement therapy on upper limb function in stroke subjects. Acta Neurol Taiwan 2005, 14:16–20.

    PubMed  Google Scholar 

  24. Larin HM: Motor learning: theories and strategies for the practitioner. In Physical Therapy for Children, edn 2. Edited by Campbell SK. Philadelphia: WB Saunders; 2000:170–197.

    Google Scholar 

  25. Pascual-Leone A: The brain that plays music and is changed by it. Ann N Y Acad Sci 2001, 930:315–329.

    Article  PubMed  CAS  Google Scholar 

  26. Willingham DB: A neuropsychological theory of motor skill learning. Psychol Rev 1998, 105:558–584.

    Article  PubMed  CAS  Google Scholar 

  27. Hallett M, Grafman J: Executive function and motor skill learning. Int Rev Neurobiol 1997, 41:297–323.

    Article  PubMed  CAS  Google Scholar 

  28. Doyon J, Ungerleider LG: Functional anatomy of motor skill learning. In Neuropsychology of Memory, edn 3. Edited by Squire LR, Schacter DL. New York: The Guilford Press; 2002:225–238.

    Google Scholar 

  29. Nissen MJ, Bullemer P: Attentional requirements of learning-evidence from performance-measures. Cogn Psychol 1987, 19:1–32.

    Article  Google Scholar 

  30. Thomas KM, Nelson CA: Serial reaction time learning in preschool-and school-age children. J Exp Child Psychol 2001, 79:364–387.

    Article  PubMed  CAS  Google Scholar 

  31. Konczak J, Jansen-Osmann P, Kalveram KT: Development of force adaptation during childhood. J Mot Behav 2003, 35:41–52.

    Article  PubMed  Google Scholar 

  32. Gandolfo F, Mussa-Ivaldi FA, Bizzi E: Motor learning by field approximation. Proc Natl Acad Sci U S A 1996, 93:3843–3846.

    Article  PubMed  CAS  Google Scholar 

  33. Classen J, Liepert J, Wise SP, et al.: Rapid plasticity of human cortical movement representation induced by practice. J Neurophysiol 1998, 79:1117–1123.

    PubMed  CAS  Google Scholar 

  34. Luft AR, Buitrago MM: Stages of motor skill learning. Mol Neurobiol 2005, 32:205–216.

    Article  PubMed  CAS  Google Scholar 

  35. Robertson EM, Pascual-Leone A, Miall RC: Current concepts in procedural consolidation. Nat Rev Neurosci 2004, 5:576–582.

    Article  PubMed  CAS  Google Scholar 

  36. Backhaus J, Junghanns K: Daytime naps improve procedural motor memory. Sleep Med 2006, 7:508–512.

    Article  PubMed  Google Scholar 

  37. Brashers-Krug T, Shadmehr R, Bizzi E: Consolidation in human motor memory. Nature 1996, 382:252–255.

    Article  PubMed  CAS  Google Scholar 

  38. Valvano J, Carollo JJ: Practice of a functional bimanual task by children with hemiplegic cerebral palsy: a pilot study. Dev Med Child Neurol 2006, 48(Suppl 106):24–25.

    Google Scholar 

  39. Wright DL, Black CB, Immink MA, et al.: Long-term motor programming improvements occur via concatenation of movement sequences during random but not during blocked practice. J Mot Behav 2004, 36:39–50.

    Article  PubMed  Google Scholar 

  40. Schmidt RA: Motor learning principles for physical therapy. In Contemporary Management of Motor Control Problems: Proceedings of the II Step Conference. Edited by Lister M. Alexandria, VA: Foundation for Physical Therapy; 1991:49–63.

    Google Scholar 

  41. Schmidt RA, Bjork RA: New conceptualizations of practice—common principles in 3 paradigms suggest new concepts for training. Psychol Sci 1992, 3:207–217.

    Article  Google Scholar 

  42. van Vliet PM, Wulf G: Extrinsic feedback for motor learning after stroke: what is the evidence? Disabil Rehabil 2006, 28:831–840.

    Article  PubMed  Google Scholar 

  43. Law LS, Webb CY: Gait adaptation of children with cerebral palsy compared with control children when stepping over an obstacle. Dev Med Child Neurol 2005, 47:321–328.

    Article  PubMed  Google Scholar 

  44. Brogren E, Forssberg H, Hadders-Algra M: Influence of two different sitting positions on postural adjustments in children with spastic diplegia. Dev Med Child Neurol 2001, 43:534–546.

    Article  PubMed  CAS  Google Scholar 

  45. Duff SV, Gordon AM: Learning of grasp control in children with hemiplegic cerebral palsy. Dev Med Child Neurol 2003, 45:746–757.

    Article  PubMed  Google Scholar 

  46. Valvano J, Newell KM: Practice of a precision isometric grip-force task by children with spastic cerebral palsy. Dev Med Child Neurol 1998, 40:464–473.

    Article  PubMed  CAS  Google Scholar 

  47. Carmichael ST: Plasticity of cortical projections after stroke. Neuroscientist 2003, 9:64–75.

    Article  PubMed  Google Scholar 

  48. Johnston MV: Injury and plasticity in the developing brain. Exp Neurol 2003, 184(Suppl 1):S37–41.

    Article  PubMed  Google Scholar 

  49. Schieber MH: Constraints on somatotopic organization in the primary motor cortex. J Neurophysiol 2001, 86:2125–2143.

    PubMed  CAS  Google Scholar 

  50. Kargo WJ, Nitz DA: Early skill learning is expressed through selection and tuning of cortically represented muscle synergies. J Neurosci 2003, 23:11255–11269.

    PubMed  CAS  Google Scholar 

  51. Kleim JA, Barbay S, Nudo RJ: Functional reorganization of the rat motor cortex following motor skill learning. J Neurophysiol 1998, 80:3321–3325.

    PubMed  CAS  Google Scholar 

  52. Kleim JA, Barbay S, Cooper NR, et al.: Motor learning-dependent synaptogenesis is localized to functionally reorganized motor cortex. Neurobiol Learn Mem 2002, 77:63–77.

    Article  PubMed  Google Scholar 

  53. Nudo RJ, Milliken GW, Jenkins WM, Merzenich MM: Use-dependent alterations of movement representations in primary motor cortex of adult squirrel monkeys. J Neurosci 1996, 16:785–807.

    PubMed  CAS  Google Scholar 

  54. Plautz EJ, Milliken GW, Nudo RJ: Effects of repetitive motor training on movement representations in adult squirrel monkeys: role of use versus learning. Neurobiol Learn Mem 2000, 74:27–55.

    Article  PubMed  CAS  Google Scholar 

  55. Jensen JL, Marstrand PC, Nielsen JB: Motor skill training and strength training are associated with different plastic changes in the central nervous system. J Appl Physiol 2005, 99:1558–1568.

    Article  PubMed  Google Scholar 

  56. Pascual-Leone A, Nguyet D, Cohen LG, et al.: Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J Neurophysiol 1995, 74:1037–1045.

    PubMed  CAS  Google Scholar 

  57. Pascual-Leone A, Grafman J, Hallett M: Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science 1994, 263:1287–1289.

    Article  PubMed  CAS  Google Scholar 

  58. Frost SB, Barbay S, Friel KM, et al.: Reorganization of remote cortical regions after ischemic brain injury: a potential substrate for stroke recovery. J Neurophysiol 2003, 89:3205–3214.

    Article  PubMed  CAS  Google Scholar 

  59. Nudo RJ, Wise BM, SiFuentes F, Milliken GW: Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 1996, 272:1791–1794.

    Article  PubMed  CAS  Google Scholar 

  60. Liepert J, Graef S, Uhde I, et al.: Training-induced changes of motor cortex representations in stroke patients. Acta Neurol Scand 2000, 101:321–326.

    Article  PubMed  CAS  Google Scholar 

  61. Liepert J, Bauder H, Wolfgang HR, et al.: Treatment-induced cortical reorganization after stroke in humans. Stroke 2000, 31:1210–1216.

    PubMed  CAS  Google Scholar 

  62. Wittenberg GF, Bastian AJ, Dromerick AW, et al.: Mirror movements complicate interpretation of cerebral activation changes during recovery from subcortical infarction. Neurorehabil Neural Repair 2000, 14:213–221.

    PubMed  CAS  Google Scholar 

  63. Newton J, Sunderland A, Butterworth SE, et al.: A pilot study of event-related functional magnetic resonance imaging of monitored wrist movements in patients with partial recovery. Stroke 2002, 33:2881–2887.

    Article  PubMed  CAS  Google Scholar 

  64. Fetters L: Measurement and treatment in cerebral palsy: an argument for a new approach. Phys Ther 1991, 71:244–247.

    PubMed  CAS  Google Scholar 

  65. Field-Fote EC: Quantification of functional behavior in humans and animals: time for a paradigm shift. J Rehabil Res Dev 2003, 40:19–24.

    Article  PubMed  Google Scholar 

  66. Chang JJ, Wu TI, Wu WL, Su FC: Kinematical measure for spastic reaching in children with cerebral palsy. Clin Biomech (Bristol, Avon) 2005, 20:381–388.

    Article  Google Scholar 

  67. van der Heide JC, Fock JM, Otten B, et al.: Kinematic characteristics of reaching movements in preterm children with cerebral palsy. Pediatr Res 2005, 57:883–889.

    Article  PubMed  Google Scholar 

  68. Ricken AX, Bennett SJ, Savelsbergh GJ: Coordination of reaching in children with spastic hemiparetic cerebral palsy under different task demands. Motor Control 2005, 9:357–371.

    PubMed  Google Scholar 

  69. Fetters L, Kluzik J: The effects of neurodevelopmental treatment versus practice on the reaching of children with spastic cerebral palsy. Phys Ther 1996, 76:346–358.

    PubMed  CAS  Google Scholar 

  70. Kamper DG, McKenna-Cole AN, Kahn LE, Reinkensmeyer DJ: Alterations in reaching after stroke and their relation to movement direction and impairment severity. Arch Phys Med Rehabil 2002, 83:702–707.

    Article  PubMed  Google Scholar 

  71. Vonhofsten C: Structuring of early reaching movements—a longitudinal study. J Motor Behav 1991, 23:280–292.

    Article  CAS  Google Scholar 

  72. Rohrer B, Fasoli S, Krebs HI, et al.: Submovements grow larger, fewer, and more blended during stroke recovery. Motor Control 2004, 8:472–483.

    PubMed  Google Scholar 

  73. Rohrer B, Fasoli S, Krebs HI, et al.: Movement smoothness changes during stroke recovery. J Neurosci 2002, 22:8297–8304.

    PubMed  CAS  Google Scholar 

  74. Cooke JD, Brown SH: Movement-related phasic muscle activation. II. Generation and functional role of the triphasic pattern. J Neurophysiol 1990, 63:465–472.

    PubMed  CAS  Google Scholar 

  75. Brown SH, Cooke JD: Movement-related phasic muscle activation. I. Relations with temporal profile of movement. J Neurophysiol 1990, 63:455–464.

    PubMed  CAS  Google Scholar 

  76. Lum PS, Burgar CG, Shor PC: Evidence for improved muscle activation patterns after retraining of reaching movements with the MIME robotic system in subjects with post-stroke hemiparesis. IEEE Trans Neural Syst Rehabil Engl 2004, 12:186–194.

    Article  Google Scholar 

  77. Dewald JP, Beer RF: Abnormal joint torque patterns in the paretic upper limb of subjects with hemiparesis. Muscle Nerve 2001, 24:273–283.

    Article  PubMed  CAS  Google Scholar 

  78. Thelen DD, Riewald SA, Asakawa DS, et al.: Abnormal coupling of knee and hip moments during maximal exertions in persons with cerebral palsy. Muscle Nerve 2003, 27:486–493.

    Article  PubMed  Google Scholar 

  79. Berardelli A, Hallett M, Rothwell JC, et al.: Single-joint rapid arm movements in normal subjects and in patients with motor disorders. Brain 1996, 119:661–674.

    Article  PubMed  Google Scholar 

  80. Winstein CJ, Rose DK, Tan SM, et al.: A randomized controlled comparison of upper-extremity rehabilitation strategies in acute stroke: a pilot study of immediate and long-term outcomes. Arch Phys Med Rehabil 2004, 85:620–628.

    Article  PubMed  Google Scholar 

  81. Kelly M, Darrah J: Aquatic exercise for children with cerebral palsy. Dev Med Child Neurol 2005, 47:838–842.

    Article  PubMed  Google Scholar 

  82. Ozer K, Chesher SP, Scheker LR: Neuromuscular electrical stimulation and dynamic bracing for the management of upper-extremity spasticity in children with cerebral palsy. Dev Med Child Neurol 2006, 48:559–563.

    Article  PubMed  Google Scholar 

  83. Scheker LR, Chesher SP, Ramirez S: Neuromuscular electrical stimulation and dynamic bracing as a treatment for upper-extremity spasticity in children with cerebral palsy. J Hand Surg 1999, 24:226–232.

    CAS  Google Scholar 

  84. Wright PA, Granat MH: Therapeutic effects of functional electrical stimulation of the upper limb of eight children with cerebral palsy. Dev Med Child Neurol 2000, 42:724–727.

    Article  PubMed  CAS  Google Scholar 

  85. Kerem M, Livanelioglu A, Topcu M: Effects of Johnstone pressure splints combined with neurodevelopmental therapy on spasticity and cutaneous sensory inputs in spastic cerebral palsy. Dev Med Child Neurol 2001, 43:307–313.

    Article  PubMed  CAS  Google Scholar 

  86. Law M, Russell D, Pollock N, et al.: A comparison of intensive neurodevelopmental therapy plus casting and a regular occupational therapy program for children with cerebral palsy. Dev Med Child Neurol 1997, 39:664–670.

    Article  PubMed  CAS  Google Scholar 

  87. Stiller C, Marcoux BC, Olson RE: The effect of conductive education, intensive therapy, and special education services on motor skills in children with cerebral palsy. Phys Occup Ther Pediatr 2003, 23:31–50.

    Article  PubMed  Google Scholar 

  88. Reddihough DS, King J, Coleman G, Catanese T: Efficacy of programmes based on Conductive Education for young children with cerebral palsy. Dev Med Child Neurol 1998, 40:763–770.

    Article  PubMed  CAS  Google Scholar 

  89. Bumin G, Kayihan H: Effectiveness of two different sensory-integration programmes for children with spastic diplegic cerebral palsy. Disabil Rehabil 2001, 23:394–399.

    Article  PubMed  CAS  Google Scholar 

  90. Muller-Bolla M, Collet JP, Ducruet T, Robinson A: Side effects of hyperbaric oxygen therapy in children with cerebral palsy. Undersea Hyperb Med 2006, 33:237–244.

    PubMed  CAS  Google Scholar 

  91. Hardy P, Collet JP, Goldberg J, et al.: Neuropsychological effects of hyperbaric oxygen therapy in cerebral palsy. Dev Med Child Neurol 2002, 44:436–446.

    Article  PubMed  Google Scholar 

  92. Collet JP, Vanasse M, Marois P, et al.: Hyperbaric oxygen for children with cerebral palsy: a randomised multicentre trial. HBO-CP Research Group. Lancet 2001, 357:582–586.

    Article  PubMed  CAS  Google Scholar 

  93. Pierce SR, Daly K, Gallagher KG, et al.: Constraint-induced therapy for a child with hemiplegic cerebral palsy: a case report. Arch Phys Med Rehabil 2002, 83:1462–1463.

    Article  PubMed  Google Scholar 

  94. Glover JE, Mateer CA, Yoell C, Speed S: The effectiveness of constraint induced movement therapy in two young children with hemiplegia. Pediatr Rehabil 2002, 5:125–131.

    Article  PubMed  Google Scholar 

  95. Willis JK, Morello A, Davie A, et al.: Forced use treatment of childhood hemiparesis. Pediatrics 2002, 110:94–96.

    Article  PubMed  Google Scholar 

  96. Bonnier B, Eliasson AC, Krumlinde-Sundholm L: Effects of constraint-induced movement therapy in adolescents with hemiplegic cerebral palsy: a day camp model. Scand J Occup Ther 2006, 13:13–22.

    Article  PubMed  Google Scholar 

  97. Naylor CE, Bower E: Modified constraint-induced movement therapy for young children with hemiplegic cerebral palsy: a pilot study. Dev Med Child Neurol 2005, 47:365–369.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marjorie A. Garvey MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garvey, M.A., Giannetti, M.L., Alter, K.E. et al. Cerebral palsy: New approaches to therapy. Curr Neurol Neurosci Rep 7, 147–155 (2007). https://doi.org/10.1007/s11910-007-0010-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-007-0010-x

Keywords

Navigation