Skip to main content

Advertisement

Log in

Of replications and refutations: The status of Alzheimer’s disease genetic research

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is a genetically complex and heterogeneous disorder. To date, mutations in three genes (APP, PSEN1, PSEN2) have been described to cause familial early-onset AD. In addition, a common polymorphism in the gene encoding apolipoprotein E (APOE) has been associated with the more common late-onset form of the disease. However, many studies have shown that genetic factors other than APOE play an important role in lateonset AD. Along these lines, a recent report predicted the existence of at least four additional late-onset AD genes, one of which was estimated to have a much greater contribution to age of onset variation than the APOE e4-allele. However, most of the nearly three dozen loci that have been proposed as putative AD genes to date have been followed by both replications and refutations, making consensus impossible. In this overview, we discuss the current status of genetic research in AD, including a brief summary of applicable analytic tools, and a summary of recent findings suggesting the existence of novel AD genes on chromosomes 10, 11, and 12.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References and Recommended Reading

  1. Risch N, Merikangas K: The future of genetic studies of complex human diseases. Science 1996, 273:1516–1517.

    Article  PubMed  CAS  Google Scholar 

  2. Ott J: Analysis of Human Genetic Linkage. Baltimore: Johns Hopkins University Press; 1999.

    Google Scholar 

  3. Satten GA, Flanders WD, Yang Q: Accounting for unmeasured population substructure in case-control studies of genetic association using a novel latent-class model. Am J Hum Genet 2001, 68:466–477.

    Article  PubMed  CAS  Google Scholar 

  4. Kruglyak L, Nickerson DA: Variation is the spice of life. Nat Genet 2001, 27:234–236.

    Article  PubMed  CAS  Google Scholar 

  5. Tanzi RE, Kovacs DM, Kim TW, et al.: The gene defects responsible for familial Alzheimer’s disease. Neurobiol Dis 1996, 3:159–168.

    Article  PubMed  CAS  Google Scholar 

  6. Goate A, Chartier-Harlin MC, Mullan M, et al.: Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 1991, 349:704–706.

    Article  PubMed  CAS  Google Scholar 

  7. AD Mutation Database: http://molgen-www.uia.ac.be/AD Mutations. 2001.

  8. Schellenberg GD, Bird TD, Wijsman EM, et al.: Genetic linkage evidence for a familial Alzheimer’s disease locus on chromosome 14. Science 1992, 258:668–671.

    Article  PubMed  CAS  Google Scholar 

  9. St George-Hyslop P, Haines J, Rogaev E, et al.: Genetic evidence for a novel familial Alzheimer’s disease locus on chromosome 14. Nat Genet 1992, 2:330–334.

    Article  PubMed  CAS  Google Scholar 

  10. Van Broeckhoven C, Backhovens H, Cruts M, et al.: Mapping of a gene predisposing to early-onset Alzheimer’s disease to chromosome 14q24.3. Nat Genet 1992, 2:335–339.

    Article  PubMed  Google Scholar 

  11. Mullan M, Houlden H, Windelspecht M, et al.: A locus for familial early-onset Alzheimer’s disease on the long arm of chromosome 14, proximal to the alpha 1-antichymotrypsin gene. Nat Genet 1992, 2:340–342.

    Article  PubMed  CAS  Google Scholar 

  12. Sherrington R, Rogaev EI, Liang Y, et al.: Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 1995, 375:754–760.

    Article  PubMed  CAS  Google Scholar 

  13. Haass C, De Strooper B: The presenilins in Alzheimer’s disease—proteolysis holds the key. Science 1999. 286:916–919.

    Article  PubMed  CAS  Google Scholar 

  14. Levy-Lahad E, Wasco W, Poorkaj P, et al.: Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 1995, 269:973–977.

    Article  PubMed  CAS  Google Scholar 

  15. Rogaev EI, Sherrington R, Rogaeva EA, et al.: Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 1995, 376:775–778.

    Article  PubMed  CAS  Google Scholar 

  16. Wolfe MS, Xia W, Ostaszewski BL, et al.: Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature 1999, 398:513–517. First study indicating that the presenilins themselves may actually function as the elusive g-secretases. If proven correct, this finding may have great implications for our understanding of Alzheimer’s disease and also for the development of drugs that act on an etiologic, rather than symptomatic, level.

    Article  PubMed  CAS  Google Scholar 

  17. Saunders AM, Strittmatter WJ, Schmechel D, et al.: Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 1993, 43:1467–1472.

    PubMed  CAS  Google Scholar 

  18. Strittmatter WJ, Saunders AM, Schmechel D, et al.: Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A 1993, 90:1977–1981.

    Article  PubMed  CAS  Google Scholar 

  19. Warwick Daw E, Payami H, Nemens EJ, et al.: The number of trait loci in late-onset Alzheimer disease. Am J Hum Genet 2000, 66:196–204. First study to actually estimate the number and effect size of the remaining (and as yet unidentified) additional late-onset Alzheimer’s disease (AD) loci on a large sample of families with AD.

    Article  Google Scholar 

  20. Pericak-Vance MA, Bebout JL, Gaskell PC, et al.: Linkage studies in familial Alzheimer disease: evidence for chromosome 19 linkage. Am J Hum Genet 1991, 48:1034–1050.

    PubMed  CAS  Google Scholar 

  21. Farrer LA, Cupples LA, Haines JL, et al.: Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 1997, 278:1349–1356.

    Article  PubMed  CAS  Google Scholar 

  22. Blacker D, Haines JL, Rodes L, et al.: ApoE-4 and age at onset of Alzheimer’s disease: the NIMH genetics initiative. Neurology 1997, 48:139–147.

    PubMed  CAS  Google Scholar 

  23. Meyer MR, Tschanz JT, Norton MC, et al.: APOE genotype predicts when—not whether—one is predisposed to develop Alzheimer disease. Nat Genet 1998, 19:321–322.

    Article  PubMed  CAS  Google Scholar 

  24. Roses AD, Devlin B, Coneally PM, et al.: Measuring the genetic contribution of APOE in late-onset Alzheimer disease. Am J Hum Genet 1995, 57(suppl):A202.

    Google Scholar 

  25. Poirier J: Apolipoprotein E and Alzheimer’s disease. A role in amyloid catabolism. Ann N Y Acad Sci 2000, 924:81–90.

    Article  PubMed  CAS  Google Scholar 

  26. Nacmias B, Latorraca S, Piersanti P, et al.: ApoE genotype and familial Alzheimer’s disease: a possible influence on age of onset in APP717 Val-->Ile mutated families. Neurosci Lett 1995, 183:1–3.

    Article  PubMed  CAS  Google Scholar 

  27. Lambert JC, Berr C, Pasquier F, et al.: Pronounced impact of Th1/E47cs mutation compared with-491 AT mutation on neural APOE gene expression and risk of developing Alzheimer’s disease. Hum Mol Genet 1998. 7:1511–1516.

    Article  PubMed  CAS  Google Scholar 

  28. Bullido MJ, Artiga MJ, Recuero M, et al.: A polymorphism in the regulatory region of APOE associated with risk for Alzheimer’s dementia. Nat Genet 1998, 18:69–71.

    Article  PubMed  CAS  Google Scholar 

  29. Blacker D, Wilcox MA, Laird NM, et al.: Alpha-2 macroglobulin is genetically associated with Alzheimer disease. Nat Genet 1998, 19:357–360.

    Article  PubMed  CAS  Google Scholar 

  30. Pericak-Vance MA, Bass MP, Yamaoka LH, et al.: Complete genomic screen in late-onset familial Alzheimer disease. Evidence for a new locus on chromosome 12. JAMA 1997, 278:1237–1241.

    Article  PubMed  CAS  Google Scholar 

  31. Kehoe P, Wavrant-De Vrieze F, Crook R, et al.: A full genome scan for late onset Alzheimer’s disease. Hum Mol Genet 1999, 8:237–245.

    Article  PubMed  CAS  Google Scholar 

  32. Liao A, Nitsch RM, Greenberg SM, et al.: Genetic association of an alpha2-macroglobulin (Val1000lle) polymorphism and Alzheimer’s disease. Hum Mol Genet 1998, 7:1953–1956.

    Article  PubMed  CAS  Google Scholar 

  33. Kang DE, Saitoh T, Chen X, et al.: Genetic association of the low-density lipoprotein receptor-related protein gene (LRP), an apolipoprotein E receptor, with late-onset Alzheimer’s disease. Neurology 1997, 49:56–61.

    PubMed  CAS  Google Scholar 

  34. Koster MN, Dermaut B, Cruts M, et al.: The alpha2-macroglobulin gene in AD: a population-based study and meta-analysis. Neurology 2000, 55:678–684.

    PubMed  CAS  Google Scholar 

  35. Alvarez V, Alvarez R, Lahoz CH, et al.: Association between an alpha(2) macroglobulin DNA polymorphism and late-onset Alzheimer’s disease. Biochem Biophys Res Commun 1999, 264:48–50.

    Article  PubMed  CAS  Google Scholar 

  36. Dodel RC, Du Y, Bales KR, et al.: Alpha2 macroglobulin and the risk of Alzheimer’s disease. Neurology 2000, 54:438–442.

    PubMed  CAS  Google Scholar 

  37. Jhoo JH, Kim KW, Lee DY, et al.: Association of alpha-2-macroglobulin deletion polymorphism with sporadic Alzheimer’s disease in Koreans. J Neurol Sci 2001, 184:21–25.

    Article  PubMed  CAS  Google Scholar 

  38. Myllykangas L, Polvikoski T, Sulkava R, et al.: Genetic association of alpha2-macroglobulin with Alzheimer’s disease in a Finnish elderly population. Ann Neurol 1999, 46:382–390.

    Article  PubMed  CAS  Google Scholar 

  39. Nacmias B, Tedde A, Cellini E, et al.: alpha2-Macroglobulin polymorphisms in Italian sporadic and familial Alzheimer’s disease. Neurosci Lett 2001, 299:9–12.

    Article  PubMed  CAS  Google Scholar 

  40. Romas SN, Mayeux R, Rabinowitz D, et al.: The deletion polymorphism and Val1000Ile in alpha-2-macroglobulin and Alzheimer disease in Caribbean Hispanics. Neurosci Lett 2000, 279:133–136.

    Article  PubMed  CAS  Google Scholar 

  41. Verpillat P, Bouley S, Hannequin D, et al.: Alpha2-macroglobulin gene and Alzheimer’s disease: confirmation of association by haplotypes analyses. Ann Neurol 2000, 48:400–402.

    Article  PubMed  CAS  Google Scholar 

  42. Ott J: Predicting the range of linkage disequilibrium. Proc Natl Acad Sci U S A 2000, 97:2–3.

    Article  PubMed  CAS  Google Scholar 

  43. Martin ER, Lai EH, Gilbert JR, et al.: SNPing away at complex diseases: analysis of single-nucleotide polymorphisms around APOE in Alzheimer disease. Am J Hum Genet 2000, 67:383–394. First study to show that the APOE locus could have been identified through means of association/linkage-disequilibrium based ’finemapping’ (using both individual SNPs as well as haplotypes) without prior knowledge of the common APOE polymorphism.

    Article  PubMed  CAS  Google Scholar 

  44. Fallin D, Cohen A, Essioux L, et al.: Genetic analysis of case/ control data using estimated haplotype frequencies: application to APOE locus variation and Alzheimer’s disease. Genome Res 2001, 11:143–151.

    Article  PubMed  CAS  Google Scholar 

  45. Lambert JC, Goumidi L, Vrieze FW, et al.: The transcriptional factor LBP-1c/CP2/LSF gene on chromosome 12 is a genetic determinant of Alzheimer’s disease. Hum Mol Genet 2000, 9:2275–2280.

    Article  PubMed  Google Scholar 

  46. Bertram L, Blacker D, Crystal A, et al.: Candidate genes showing no evidence for association or linkage with Alzheimer’s disease using family-based methodologies. Exp Gerontol 2000, 35:1353–1361.

    Article  PubMed  CAS  Google Scholar 

  47. Papassotiropoulos A, Bagli M, Feder O, et al.: Genetic polymorphism of cathepsin D is strongly associated with the risk for developing sporadic Alzheimer’s disease. Neurosci Lett 1999, 262:171–174.

    Article  PubMed  CAS  Google Scholar 

  48. Papassotiropoulos A, Bagli M, Kurz A, et al.: A genetic variation of cathepsin D is a major risk factor for Alzheimer’s disease. Ann Neurol 2000, 47:399–403.

    Article  PubMed  CAS  Google Scholar 

  49. Zubenko GS, Hughes HB, Stiffler JS, et al.: A genome survey for novel Alzheimer disease risk loci: results at 10-cM resolution. Genomics 1998, 50:121–128.

    Article  PubMed  CAS  Google Scholar 

  50. McIlroy SP, Dynan KB, McGleenon BM, et al.: Cathepsin D gene exon 2 polymorphism and sporadic Alzheimer’s disease. Neurosci Lett 1999, 273:140–141.

    Article  PubMed  CAS  Google Scholar 

  51. Bhojak TJ, DeKosky ST, Ganguli M, et al.: Genetic polymorphisms in the cathespin D and interleukin-6 genes and the risk of Alzheimer’s disease. Neurosci Lett 2000, 288:21–24.

    Article  PubMed  CAS  Google Scholar 

  52. Crawford FC, Freeman MJ, Schinka J, et al.: The genetic association between Cathepsin D and Alzheimer’s disease. Neurosci Lett 2000, 289:61–65.

    Article  PubMed  CAS  Google Scholar 

  53. Bertram L, Guenette S, Jones J, et al.: No evidence for genetic association or linkage of the cathepsin D (CTSD) exon 2 polymorphism and Alzheimer disease. Ann Neurol 2001, 49:114–116.

    Article  PubMed  CAS  Google Scholar 

  54. Menzer G, Müller-Thomsen T, Meins W, et al.: Non-replication of association between cathepsin D genotype and late onset Alzheimer disease. Am J Med Genet 2001, in press.

  55. Hu Q, Kukull WA, Bressler SL, et al.: The human FE65 gene: genomic structure and an intronic biallelic polymorphism associated with sporadic dementia of the Alzheimer type. Hum Genet 1998, 103:295–303.

    Article  PubMed  CAS  Google Scholar 

  56. Guenette SY, Bertram L, Crystal A, et al.: Evidence against association of the FE65 gene (APBB1) intron 13 polymorphism in Alzheimer’s patients. Neurosci Lett 2000, 296:17–20.

    Article  PubMed  CAS  Google Scholar 

  57. Papassotiropoulos A, Bagli M, Becker K, et al.: No association between an intronic biallelic polymorphism of the FE65 gene and Alzheimer’s disease. Int J Mol Med 2000, 6:587–589.

    Article  PubMed  CAS  Google Scholar 

  58. Bertram L, Blacker D, Mullin K, et al.: Evidence for genetic linkage of Alzheimer’s disease to chromosome 10q. Science 2000, 290:2302–2303.

    Article  PubMed  CAS  Google Scholar 

  59. Ertekin-Taner N, Graff-Radford N, Younkin LH, et al.: Linkage of plasma Abeta42 to a quantitative locus on chromosome 10 in late-onset Alzheimer’s disease pedigrees. Science 2000, 290:2303–2304.

    Article  PubMed  CAS  Google Scholar 

  60. Myers A, Holmans P, Marshall H, et al.: Susceptibility locus for Alzheimer’s disease on chromosome 10. Science 2000, 290:2304–2305.

    Article  PubMed  CAS  Google Scholar 

  61. Vekrellis K, Ye Z, Qiu WQ, et al.: Neurons regulate extracellular levels of amyloid beta-protein via proteolysis by insulindegrading enzyme. J Neurosci 2000, 20:1657–1665.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertram, L., Tanzi, R.E. Of replications and refutations: The status of Alzheimer’s disease genetic research. Curr Neurol Neurosci Rep 1, 442–450 (2001). https://doi.org/10.1007/s11910-001-0104-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-001-0104-9

Keywords

Navigation