Skip to main content

Advertisement

Log in

Amyloid metabolism and secretases in Alzheimer’s disease

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is characterized by the progressive accumulation of amyloid fibrils composed of the amyloid β-protein (Aβ) in senile plaques. Ab is derived from the β-amyloid precursor protein (APP) after β- and γ-secretase cleavages. β-secretase was recently identified to be a membrane-anchored aspartyl protease that is widely distributed in subcellular compartments, including Golgi, trans-Golgi network, and endosomes. Although definitive identification of γ-secretase will require reconstituting its activity in vitro, mounting evidence suggests that γ-secretase is an unusual intramembrane-cleaving aspartyl protease. Two intramembranous aspartate residues in presenilin (PS) are absolutely required for Aβ generation. Three classes of γ-secretase inhibitors can directly bind to PS, strongly supporting the hypothesis of PS1 as γ-secretase. These results provide the molecular basis for therapeutic interventions that reduce Aβ accumulation in AD patients by inhibiting β- or γ-secretase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Perez RG, Soriano S, Hayes JD, et al.: Mutagenesis identifies new signals for β-amyloid precursor protein endotycosis, turnover and the generation of secreted fragments, including Aß42. J Biol Chem 1999, 274:18851–18856.

    Article  PubMed  CAS  Google Scholar 

  2. Skovronsky DM, Pijak DS, Doms RW, Lee VM: A distinct ER/IC γ-secretase competes with the proteasome for cleavage of APP. Biochemistry 2000, 39:810–817.

    Article  PubMed  CAS  Google Scholar 

  3. Walsh DM, Tseng BP, Rydel RE, et al.: The oligomerization of amyloid β-protein begins intracellularly in cells derived from human brain. Biochemistry 2000, 39:10831–10839.

    Article  PubMed  CAS  Google Scholar 

  4. Gouras GK, Tasi J, Naslund J, et al.: Intraneuronal Aβ42 accumulation in human brain. Am J Pathol 2000, 156:15–20.

    PubMed  CAS  Google Scholar 

  5. Walsh DM, Hartley DM, Kusumoto Y, et al.: Amyloid β-protein fibrillogenesis. Structure and biological activity of protofibrillar intermediates. J Biol Chem 1999, 274:25945–25952.

    Article  PubMed  CAS  Google Scholar 

  6. Hartley D, Walsh DM, Ye CP, et al.: Protofibrillar intermediates of amyloid β-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J. Neurosci 1999, 19:8876–8884.

    PubMed  CAS  Google Scholar 

  7. Kane MD, Lipinski WJ, Callahan MJ, et al.: Evidence for seeding of β-amyloid by intracerebral infusion of Alzheimer brain extracts in beta-amyloid precursor protein-transgenic mice. J Neurosci 2000, 20:3606–3611.

    PubMed  CAS  Google Scholar 

  8. Holtzman DM, Bales KR, Tenkova T, et al.: Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 2000, 97:2892–2897.

    Article  PubMed  CAS  Google Scholar 

  9. Lorenzo A, Yuan M, Zhang Z, et al.: Amyloid b interacts with the amyloid precursor protein: a potential toxic mechanism in Alzheimer’s disease. Nat Neurosci 2000, 3:460–464.

    Article  PubMed  CAS  Google Scholar 

  10. Nakagawa T, Zhu H, Morishima N, et al.: Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-β. Nature 2000, 403:98–103.

    Article  PubMed  CAS  Google Scholar 

  11. Yang LB, Li R, Meri S, et al.: Deficiency of complement defense protein CD59 may contribute to neurodegeneration in Alzheimer’s disease. J Neurosci 2000, 20:7505–7509.

    PubMed  CAS  Google Scholar 

  12. Lee MS, Kwon YT, Li M, et al.: Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 2000, 405:360–364.

    Article  PubMed  CAS  Google Scholar 

  13. Patrick GN, Zukerberg L, Nikolic M, et al.: Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 1999, 402:615–622.

    Article  PubMed  CAS  Google Scholar 

  14. Ahlijanian MK, Barrezueta NX, Williams RD, et al.: Hyperphosphorylated tau and neurofilament and cytoskeletal disruptions in mice overexpressing human p25, an activator of cdk5. Proc Natl Acad Sci U S A 2000, 97:2910–2915.

    Article  PubMed  CAS  Google Scholar 

  15. Li R, Shen Y, Yang LB, et al.: Estrogen enhances uptake of amyloid β-protein by microglia derived from the human cortex. J Neurochem 2000, 75:1447–1454.

    Article  PubMed  CAS  Google Scholar 

  16. Vekrellis K, Ye Z, Qiu WQ, et al.: Neurons regulate extracellular levels of amyloid β-protein via proteolysis by insulin-degrading enzyme. J Neurosci 2000, 20:1657–1665.

    PubMed  CAS  Google Scholar 

  17. Chesneau V, Vekrellis K, Rosner MR, Selkoe DJ: Purified recombinant insulin-degrading enzyme degrades amyloid ßprotein but does not promote its oligomerization. Biochem J 2000, 351:509–516.

    Article  PubMed  CAS  Google Scholar 

  18. Iwata N, Tsubuki S, Takaki Y, et al.: Identification of the major Aß1-42-degrading catabolic pathway in brain parenchyma: suppression leads to biochemical and pathological deposition. Nat Med 2000, 6:143–150.

    Article  PubMed  CAS  Google Scholar 

  19. Vassar R, Bennett BD, Babu-Khan S, et al.: β-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 1999, 286:735–741. This is the first report on the identification of a transmembrane aspartyl protease as the long-sought β-secretase by an expressioncloning approach.

    Article  PubMed  CAS  Google Scholar 

  20. Sinha S, Anderson JP, Barbour R, et al.: Purification and cloning of amyloid precursor protein β-secretase from human brain. Nature 1999, 402:537–540.

    Article  PubMed  CAS  Google Scholar 

  21. Yan R, Bienkowski MJ, Shuck ME, et al.: Membrane-anchored aspartyl protease with Alzheimer’s disease β-secretase activity. Nature 1999, 402:533–537.

    Article  PubMed  CAS  Google Scholar 

  22. Lin X, Koelsch G, Wu S, et al.: Human aspartic protease memapsin 2 cleaves the beta-secretase site of β-amyloid precursor protein. Proc Natl Acad Sci U S A 2000, 97:1456–1460.

    Article  PubMed  CAS  Google Scholar 

  23. Hong L, Koelsch G, Lin X, et al.: Structure of the protease domain of memapsin 2 (β-secretase) complexed with inhibitor. Science 2000, 290:150–153.

    Article  PubMed  CAS  Google Scholar 

  24. Huse JT, Pijak DS, Leslie GJ, et al.: Maturation and endosomal targeting of BACE: The Alzheimer’s disease β-Secretase. J Biol Chem 2000, 275:33729–33737.

    Article  PubMed  CAS  Google Scholar 

  25. Capell A, Steiner H, Willem M, Kaiser H, Meyer C, Walter J, Lammich S, Multhaup G, Haass C: Maturation and propeptide cleavage of β-secretase. J Biol Chem 2000, 275:30849–54.

    Article  PubMed  CAS  Google Scholar 

  26. Bennett BD, Denis P, Haniu M, et al.: A furin-like convertase mediates propeptide cleavage of BACE, the Alzheimer’s β-secretase. J Biol Chem 2000, 275:37712–37717.

    Article  PubMed  CAS  Google Scholar 

  27. Haniu M, Denis P, Young Y, et al.: Characterization of Alzheimer’s β-secretase protein BACE. A pepsin family member with unusual properties. J Biol Chem 2000, 275:21099–21106.

    Article  PubMed  CAS  Google Scholar 

  28. Farzan M, Schnitzler CE, Vasilieva N, et al.: BACE2, a betasecretase homolog, cleaves at the β site and within the amyloid-beta region of the amyloid-beta precursor protein. Proc Natl Acad Sci U S A 2000, 97:9712–9717.

    Article  PubMed  CAS  Google Scholar 

  29. Wolfe MS, Xia W, Ostaszewski BL, et al.: Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity. Nature 1999, 398:513–517. This paper reports the discovery of two critical aspartate residues in transmembrane domain 6 and 7 of presenilin 1 (PS1) that are necessary for amyloid β-peptide production. It led authors to hypothesize that PS1 is the γ-secretase.

    Article  PubMed  CAS  Google Scholar 

  30. Kimberly WT, Xia W, Rahmati R, et al.: The transmembrane aspartates in presenilin 1 and 2 are obligatory for γ-secretase activity and amyloid β-protein generation. J Biol Chem 2000, 275:3173–3178.

    Article  PubMed  CAS  Google Scholar 

  31. Herreman A, Serneels L, Annaert W, et al.: Total inactivation of γ-secretase activity in presenilin-deficient embryonic stem cells. Nat Cell Biol 2000, 2:461–462.

    Article  PubMed  CAS  Google Scholar 

  32. Xia W, Ostaszewski BL, Kimberly WT, et al.: FAD mutations in presenilin-1 or amyloid precursor protein decrease the efficacy of a γ-secretase inhibitor: a direct involvement of PS1 in the γ-secretase cleavage complex. Neurobiol Dis 2000, 7(6 Pt B):673–681.

    Article  PubMed  CAS  Google Scholar 

  33. Xia W, Ray WJ, Ostaszewski BL, et al.: Presenilin complexes with the C-terminal fragments of amyloid precursor protein at the sites of amyloid ß-protein generation. Proc Natl Acad Sci USA 2000, 97:9299–9304.

    Article  PubMed  CAS  Google Scholar 

  34. Verdile G, Martins RN, Duthie M, et al.: Inhibiting amyloid precursor protein C-terminal cleavage promotes an interaction with presenilin 1. J Biol Chem 2000, 275:20794–20798.

    Article  PubMed  CAS  Google Scholar 

  35. Yu G, Chen F, Nishimura M, et al.: Mutation of conserved aspartates affects maturation of both aspartate mutant and endogenous presenilin 1 and presenilin 2 complexes. J Biol Chem 2000, 275:27348–27353.

    PubMed  CAS  Google Scholar 

  36. Yu G, Nishimura M, Arawaka S, et al.: Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and b-APP processing. Nature 2000, 407:48–54.

    Article  PubMed  CAS  Google Scholar 

  37. Li YM, Lai MT, Xu M, et al.: Presenilin 1 is linked with γ-secretase activity in the detergent solubilized state. Proc Natl Acad Sci U S A 2000, 97:6138–6143.

    Article  PubMed  CAS  Google Scholar 

  38. Li YM, Xu M, Lai MT, et al.: Photoactivated γ-secretase inhibitors directed to the active site covalently label presenilin 1. Nature 2000, 405:689–694. This paper describes the photoaffinity labeling of presenilin 1 (PS1) by the photoreactive γ-secretase inhibitors. Because these compounds are the transition state analogs against the active site of an aspartyl protease, it strongly suggests that PS1 may contain the active site of g-secretase.

    Article  PubMed  CAS  Google Scholar 

  39. Esler WP, Kimberly WT, Ostaszewski BL, et al.: Transition-state analogue inhibitors of g-secretase bind directly to presenilin-1. Nat Cell Biol 2000, 2:428–434. This paper describes the binding of the γ-secretase inhibitor to presenelin 1 N-terminal fragments/C-terminal fragments, indicating that the heterodimeric presenilins contain the active site of γ-secretase.

    Article  PubMed  CAS  Google Scholar 

  40. Seiffert D, Bradley JD, Rominger CM, et al.: Presenilin-1 and 2 are molecular targets for g-secretase inhibitors. J Biol Chem 2000, 275:34086–34091.

    Article  PubMed  CAS  Google Scholar 

  41. Steiner H, Kostka M, Romig H, et al.: Glycine 384 is required for presenilin-1 function and is conserved in bacterial polytopic aspartyl proteases. Nat Cell Biol 2000, 2:848–851.

    Article  PubMed  CAS  Google Scholar 

  42. Lammich S, Kojro E, Postina R, et al.: Constitutive and regulated α-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease. Proc Natl Acad Sci U S A 1999, 96:3922–3927.

    Article  PubMed  CAS  Google Scholar 

  43. Brou C, Logeat F, Gupta N, et al.: A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrinmetalloprotease TACE. Mol Cell 2000, 5:207–216.

    Article  PubMed  CAS  Google Scholar 

  44. Mumm JS, Schroeter EH, Saxena MT, et al.: A ligand-induced extracellular cleavage regulates γ-secretase-like proteolytic activation of Notch1. Mol Cell 2000, 5:197–206.

    Article  PubMed  CAS  Google Scholar 

  45. Skovronsky DM, Moore DB, Milla ME, et al.: Protein kinase C-dependent α-secretase competes with β-secretase for cleavage of amyloid-β precursor protein in the trans-Golgi network. J Biol Chem 2000, 275:2568–2575.

    Article  PubMed  CAS  Google Scholar 

  46. Lu DC, Rabizadeh S, Chandra S, et al.: A second cytotoxic proteolytic peptide derived from amyloid β-protein precursor. Nat Med 2000, 6:397–404.

    Article  PubMed  CAS  Google Scholar 

  47. Schenk D, Barbour R, Dunn W, et al.: Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 1999, 400:173–177. This report demonstrates that immunization with amyloid β-peptide (Aβ) can prevent Aβ plaque formation, neuritic dystrophy, and astrogliosis in APP transgenic mice, suggesting a possible vaccine for the treatment of Alzheimer’s disease.

    Article  PubMed  CAS  Google Scholar 

  48. Weiner HL, Lemere CA, Maron R, et al.: Nasal administration of amyloid β-peptide decreases cerebral amyloid burden in a mouse model of Alzheimer’s disease. Ann Neurol 2000, 48:567–579.

    Article  PubMed  CAS  Google Scholar 

  49. Frenkel D, Katz O, Solomon B: Immunization against Alzheimer’s β-amyloid plaques via EFRH phage administration. Proc Natl Acad Sci U S A 2000, 97:11455–11459.

    Article  PubMed  CAS  Google Scholar 

  50. Bard F, Cannon C, Barbour R, et al.: Peripherally administered antibodies against amyloid β-peptide enter the central nervous system and reduce pathology in a mouse model of Alzheimer disease. Nat Med 2000, 6:916–919.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xia, W. Amyloid metabolism and secretases in Alzheimer’s disease. Curr Neurol Neurosci Rep 1, 422–427 (2001). https://doi.org/10.1007/s11910-001-0101-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-001-0101-z

Keywords

Navigation