Skip to main content

Advertisement

Log in

The Ubiquitous Mineralocorticoid Receptor: Clinical Implications

  • Special Situations in the Management of Hypertension (T Kotchen, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Mineralocorticoid receptors (MR) exist in many tissues, in which they mediate diverse functions crucial to normal physiology, including tissue repair and electrolyte and fluid homeostasis. However, inappropriate activation of MR within these tissues, and especially in the brain, causes hypertension and pathological vascular, cardiac, and renal remodeling. MR binds aldosterone, cortisol and corticosterone with equal affinity. In aldosterone-target cells, co-expression with the 11β-hydroxysteroid dehydrogenase 2 (HSD2) allows aldosterone specifically to activate MR. Aldosterone levels are excessive in primary aldosteronism, but in conditions with increased oxidative stress, like CHF, obesity and diabetes, MR may also be inappropriately activated by glucocorticoids. Unlike thiazide diuretics, MR antagonists are diuretics that do not cause insulin resistance. Addition of MR antagonists to standard treatment for hypertension and cardiac or renal disease decreases end-organ pathology and sympathetic nerve activation (SNA), and increases quality of life indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Deming QB, Luetscher Jr JA. Increased sodium-retaining corticoid excretion in edema, with some observations on the effects of cortisone in nephrosis. J Clin Invest. 1950;29:808.

    PubMed  CAS  Google Scholar 

  2. Simpson SA, Tait JF, Wettstein A, et al. Konstitution des aldosterons, des neuen mineralocorticoids. Experientia. 1953;10:132–3.

    Article  Google Scholar 

  3. Conn JW. Primary aldosteronism, a new clinical syndrome. J Lab Clin Med. 1955;45:3–7.

    PubMed  CAS  Google Scholar 

  4. Funder JW. Aldosterone and mineralocorticoid receptors: a personal reflection. Mol Cell Endocrinol. 2012;350:146–50.

    Article  PubMed  CAS  Google Scholar 

  5. Funder JW, Feldman D, Edelman I. Specific Aldosterone binding in rat kidney and parotid. J Steroid Biochem. 1972;3:209–18.

    Article  PubMed  CAS  Google Scholar 

  6. Hood Jr WG, Hill Jr R, Pittman Jr JA, Farmer Jr TA. Studies on the metabolic effects of spironolactone in man. Ann N Y Acad Sci. 1960;88:864–80.

    Article  PubMed  CAS  Google Scholar 

  7. Arriza JW, Weinberger C, Cerelli G, et al. Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science. 1987;237:268–75.

    Article  PubMed  CAS  Google Scholar 

  8. Viengchareun S, Le Menuet D, Martinerie L, et al. The mineralocorticoid receptor: insights into its molecular and (patho)physiological biology. Nucl Recept Signal. 2007;5:e012.

    PubMed  Google Scholar 

  9. Farman N, Bonvalet JP. Aldosterone binding in isolated tubules. III. Autoradiography along the rat nephron. Am J Physiol. 1983;245:F606–614.

    PubMed  CAS  Google Scholar 

  10. Farman N, Oblin ME, Lombes M, et al. Immunolocalization of gluco- and mineralocorticoid receptors in rabbit kidney. Am J Physiol. 1991;260:C226–233.

    PubMed  CAS  Google Scholar 

  11. Funder JW. Mineralocorticoid receptors: distribution and activation. Heart Fail Rev. 2005;10:15–22.

    Article  PubMed  CAS  Google Scholar 

  12. Reul JMH, De Kloet ER. Two receptor systems for coticosterone in rat brain: microdistribution and differential occupation. Endocrinology. 1985;117:2505–11.

    Article  PubMed  CAS  Google Scholar 

  13. De Kloet ER, Vreugdenhil E, Oitzl MS, Joels M. Brain corticosteroid receptor balance in health and disease. Endocr Rev. 1998;19:269–301.

    Article  PubMed  Google Scholar 

  14. Gomez-Sanchez CE, de Rodriguez AF, Romero DG, et al. Development of a panel of monoclonal antibodies against the mineralocorticoid receptor. Endocrinology. 2006;147:1343–8.

    Article  PubMed  CAS  Google Scholar 

  15. Gomez-Sanchez EP. Brain mineralocorticoid receptors: orchestrators of hypertension and end-organ disease. Curr Opin Nephrol Hypertens. 2004;13:191–6.

    Article  PubMed  CAS  Google Scholar 

  16. Gomez-Sanchez EP, Gomez-Sanchez MT, de Rodriguez AF, et al. Immunohistochemical Demonstration of the Mineralocorticoid Receptor, 11{beta}-Hydroxysteroid Dehydrogenase-1 and -2, and Hexose-6-phosphate Dehydrogenase in Rat Ovary. J Histochem Cytochem. 2009;57:633–41.

    Article  PubMed  CAS  Google Scholar 

  17. Gomez-Sanchez CE, Warden M, Gomez-Sanchez MT, et al. Diverse immunostaining patterns of mineralocorticoid receptor monoclonal antibodies. Steroids. 2011;76:1541–5.

    Article  PubMed  CAS  Google Scholar 

  18. De Kloet ER, Versteeg DHG, Kovacs GL. Aldosterone blocks the response to corticosterone in the raphe-hippocampal serotonin system. Brain Res. 1983;264:323–7.

    Article  PubMed  Google Scholar 

  19. Funder J, Myles K. Exclusion of corticosterone from epithelial mineralocorticoid receptors is insufficient for selectivity of aldosterone action: in vivo binding studies. Endocrinology. 1996;137:5264–8.

    Article  PubMed  CAS  Google Scholar 

  20. Krozowski ZS, Funder JW. Renal mineralocorticoid receptors and hippocampal corticosterone-binding species have identical intrinsic steroid specificity. Proc Natl Acad Sci U S A. 1983;80:6056–60.

    Article  PubMed  CAS  Google Scholar 

  21. Funder JW, Pearce PT, Smith R, Smith AI. Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated. Science. 1988;242:583–5.

    Article  PubMed  CAS  Google Scholar 

  22. Edwards CRW, Burt D, McIntyre MA, et al. Localisation of 11b-hydroxysteroid dehydrogenase-tissue specific protector of the mineralocorticoid receptor. Lancet. 1988;ii:986–9.

    Article  Google Scholar 

  23. Stewart PM, Wallace AM, Valentino R, et al. Mineralocorticoid activity of liquorice: 11-Beta-hydroxysteroid dehydrogenase deficiency comes of age. Lancet. 1987;ii:821–4.

    Article  Google Scholar 

  24. van Leeuwen N, Bellingrath S, de Kloet ER, et al. Human mineralocorticoid receptor (MR) gene haplotypes modulate MR expression and transactivation: implication for the stress response. Psychoneuroendocrinology. 2011;36:699–709.

    Article  PubMed  Google Scholar 

  25. Joels M, Karst H, DeRijk R, de Kloet ER. The coming out of the brain mineralocorticoid receptor. Trends Neurosci. 2008;31:1–7.

    Article  PubMed  CAS  Google Scholar 

  26. Gomez-Sanchez EP. The mammalian mineralocorticoid receptor: tying down a promiscuous receptor. Exp Physiol. 2010;95:13–8.

    Article  PubMed  CAS  Google Scholar 

  27. Grossmann C, Benesic A, Krug AW, et al. Human mineralocorticoid receptor expression renders cells responsive for nongenotropic aldosterone actions. Mol Endocrinol. 2005;19:1697–710.

    Article  PubMed  CAS  Google Scholar 

  28. Funder JW. The nongenomic actions of aldosterone. Endocr Rev. 2005;26:313–21.

    Article  PubMed  CAS  Google Scholar 

  29. Groeneweg FL, Karst H, de Kloet ER, Joels M. Mineralocorticoid and glucocorticoid receptors at the neuronal membrane, regulators of nongenomic corticosteroid signalling. Mol Cell Endocrinol. 2011.

  30. Gros R, Ding Q, Sklar LA, et al. GPR30 expression is required for the mineralocorticoid receptor-independent rapid vascular effects of aldosterone. Hypertension. 2011;57:442–51.

    Article  PubMed  CAS  Google Scholar 

  31. Selye H, Hall CE. Production of nephrosclerosis and cardiac hypertrophy in the rat by desoxycorticosterone acetate overdosage. Am Heart J. 1943;27:338–44.

    Article  Google Scholar 

  32. Weber KT, Brilla CG, Janicki JS. Myocardial fibrosis: functional significance and regulatory factors. Cardiovasc Res. 1993;27:341–8.

    Article  PubMed  CAS  Google Scholar 

  33. Robert V, Van Thiem N, Cheav SL, et al. Increased cardiac types I and III collagen mRNAs in aldosterone-salt hypertension. Hypertension. 1994;24:30–6.

    Article  PubMed  CAS  Google Scholar 

  34. Brilla CG, Matsubara LS, Weber KT. Antifibrotic effects of spironolactone in preventing myocardial fibrosis in systemic arterial hypertension. Am J Card. 1993;71:12A–6A.

    Article  PubMed  CAS  Google Scholar 

  35. Rocha R, Rudolph AE, Frierdich GE, et al. Aldosterone induces a vascular inflammatory phenotype in the rat heart. Am J Physiol Heart Circ Physiol. 2002;283:H1802–1810.

    PubMed  CAS  Google Scholar 

  36. Rocha R, Stier CT, Kifor I, et al. Aldosterone: a mediator of myocardial necrosis and renal arteriopathy. Endocrinology. 2000;141:3871–8.

    Article  PubMed  CAS  Google Scholar 

  37. Young M, Fullerton M, Dilley R, Funder J. Mineralocorticoids, hypertension, and cardiac fibrosis. J Clin Invest. 1994;93:2578–83.

    Article  PubMed  CAS  Google Scholar 

  38. Gomez-Sanchez EP. Mineralocorticoid modulation of central control of blood pressure. Steroids. 1995;60:69–72.

    Article  PubMed  CAS  Google Scholar 

  39. Young MJ, Rickard AJ. Mechanisms of mineralocorticoid salt-induced hypertension and cardiac fibrosis. Mol Cell Endocrinol. 2012;350:248–55.

    Article  PubMed  CAS  Google Scholar 

  40. Pitt B. "Escape" of aldosterone production in patients with left ventricular dysfunction treated with an angiotensin converting enzyme inhibitor: implications for therapy. Cardiovasc Drugs Ther. 1995;9:145–9.

    Article  PubMed  CAS  Google Scholar 

  41. Swedberg K, Eneroth P, Kjekshus J, Wilhelmsen L. Hormones regulating cardiovascular function in patients with severe congestive heart failure and their relation to mortality. CONSENSUS Trial Study Group. Circulation. 1990;82:1730–6.

    Article  PubMed  CAS  Google Scholar 

  42. Rossi GP, Sacchetto A, Pavan E, et al. Remodeling of the left ventricle in primary aldosteronism due to Conn's adenoma. Circulation. 1997;95:1471–8.

    Article  PubMed  CAS  Google Scholar 

  43. Pitt B, Zannad F, Cody R, et al. The effect of spironolactone on mobidity and mortality in patients with severe heart failure. Randomized Aldactone evaluation study investigators. N Engl J Med. 1999;341:709–17.

    Article  PubMed  CAS  Google Scholar 

  44. Pitt B, Remme W, Zannad F, et al. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med. 2003;348:1309–21.

    Article  PubMed  CAS  Google Scholar 

  45. •• Zannad F, McMurray JJ, Krum H, et al. Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med. 2011;364:11–21. This paper extended the benefit of the use of mineralocorticoid receptor antagonists in patients with mild systolic congestive heart failure.

    Article  PubMed  CAS  Google Scholar 

  46. • Rossignol P, Menard J, Fay R, et al. Eplerenone survival benefits in heart failure patients post-myocardial infarction are independent from its diuretic and potassium-sparing effects. Insights from an EPHESUS (Eplerenone Post-Acute Myocardial Infarction Heart Failure Efficacy and Survival Study) substudy. J Am Coll Cardiol. 2011;58:1958–66. This study clarified that the beneficial effects of mineralocorticoid receptor antagonists were more direct rather than just as a potassium-sparing diuretic.

    Article  PubMed  CAS  Google Scholar 

  47. Pitt B, Reichek N, Willenbrock R, et al. Effects of eplerenone, enalapril, and eplerenone/enalapril in patients with essential hypertension and left ventricular hypertrophy: the 4E-left ventricular hypertrophy study. Circulation. 2003;108:1831–8.

    Article  PubMed  CAS  Google Scholar 

  48. Juurlink DN, Mamdani MM, Lee DS, et al. Rates of hyperkalemia after publication of the Randomized Aldactone Evaluation Study. N Engl J Med. 2004;351:543–51.

    Article  PubMed  CAS  Google Scholar 

  49. Desai AS, Lewis EF, Li R, et al. Rationale and design of the treatment of preserved cardiac function heart failure with an aldosterone antagonist trial: a randomized, controlled study of spironolactone in patients with symptomatic heart failure and preserved ejection fraction. Am Heart J. 2011;162:966–72. e910.

    Article  PubMed  CAS  Google Scholar 

  50. Beygui F, Vicaut E, Ecollan P, et al. Rationale for an early aldosterone blockade in acute myocardial infarction and design of the ALBATROSS trial. Am Heart J. 2010;160:642–8.

    Article  PubMed  CAS  Google Scholar 

  51. Messaoudi S, Azibani F, Delcayre C, Jaisser F. Aldosterone, mineralocorticoid receptor, and heart failure. Mol Cell Endocrinol. 2012;350:266–72.

    Article  PubMed  CAS  Google Scholar 

  52. Mihailidou AS, Le Loan TY, Mardini M, Funder JW. Glucocorticoids activate cardiac mineralocorticoid receptors during experimental myocardial infarction. Hypertension. 2009;54:1306–12.

    Article  PubMed  CAS  Google Scholar 

  53. Herrada AA, Campino C, Amador CA, et al. Aldosterone as a modulator of immunity: implications in the organ damage. J Hypertens. 2011;29:1684–92.

    Article  PubMed  CAS  Google Scholar 

  54. Rahmouni K, Barthelmebs M, Grima M, et al. Involvement of brain mineralocorticoid receptor in salt-enhanced hypertension in spontaneously hypertensive rats. Hypertension. 2001;38:902–6.

    Article  PubMed  CAS  Google Scholar 

  55. Young MJ, Morgan J, Brolin K, et al. Activation of mineralocorticoid receptors by exogenous glucocorticoids and the development of cardiovascular inflammatory responses in adrenalectomized rats. Endocrinology. 2010;151:2622–8.

    Article  PubMed  CAS  Google Scholar 

  56. Greene EL, Kren S, Hostetter TH. Role of aldosterone in the remnant kidney model in the rat. J Clin Invest. 1996;98:1063–8.

    Article  PubMed  CAS  Google Scholar 

  57. Blasi ER, Rocha R, Rudolph AE, et al. Aldosterone/salt induces renal inflammation and fibrosis in hypertensive rats. Kidney Int. 2003;63:1791–800.

    Article  PubMed  CAS  Google Scholar 

  58. Bienvenu LA, Morgan J, Rickard AJ, et al. Macrophage mineralocorticoid receptor signaling plays a key role in aldosterone-independent cardiac fibrosis. Endocrinology. 2012;153:3416–25.

    Article  PubMed  CAS  Google Scholar 

  59. Rickard AJ, Morgan J, Tesch G, et al. Deletion of mineralocorticoid receptors from macrophages protects against deoxycorticosterone/salt-induced cardiac fibrosis and increased blood pressure. Hypertension. 2009;54:537–43.

    Article  PubMed  CAS  Google Scholar 

  60. • Shibata S, Fujita T. Mineralocorticoid receptors in the pathophysiology of chronic kidney diseases and the metabolic syndrome. Mol Cell Endocrinol. 2012;350:273–80. This is an excellent review of the mechanisms and clinical importance of mineralocorticoid receptor antagonists in kidney diseases, including diabetes and the metabolic syndrome.

    Article  PubMed  CAS  Google Scholar 

  61. Shibata H, Itoh H. Mineralocorticoid receptor-associated hypertension and its organ damage: clinical relevance for resistant hypertension. Am J Hypertens. 2012.

  62. Nishiyama A, Yao L, Fan Y, et al. Involvement of aldosterone and mineralocorticoid receptors in rat mesangial cell proliferation and deformability. Hypertension. 2005;45:710–6.

    Article  PubMed  CAS  Google Scholar 

  63. Guo C, Martinez-Vasquez D, Mendez GP, et al. Mineralocorticoid receptor antagonist reduces renal injury in rodent models of types 1 and 2 diabetes mellitus. Endocrinology. 2006;147:5363–73.

    Article  PubMed  CAS  Google Scholar 

  64. • Nielsen SE, Persson F, Frandsen E, et al. Spironolactone diminishes urinary albumin excretion in patients with type 1 diabetes and microalbuminuria: a randomized placebo-controlled crossover study. Diabet Med. 2012. This study demonstrates the effects of spironolactone improving the excretion of markers of renal dysfunction.

  65. Schjoedt KJ, Rossing K, Juhl TR, et al. Beneficial impact of spironolactone on nephrotic range albuminuria in diabetic nephropathy. Kidney Int. 2006;70:536–42.

    PubMed  CAS  Google Scholar 

  66. Rossing K, Schjoedt KJ, Smidt UM, et al. Beneficial effects of adding spironolactone to recommended antihypertensive treatment in diabetic nephropathy: a randomized, double-masked, cross-over study. Diabetes Care. 2005;28:2106–12.

    Article  PubMed  CAS  Google Scholar 

  67. Sato A, Hayashi K, Naruse M, Saruta T. Effectiveness of aldosterone blockade in patients with diabetic nephropathy. Hypertension. 2003;41:64–8.

    Article  PubMed  CAS  Google Scholar 

  68. Edwards NC, Steeds RP, Chue CD, et al. The safety and tolerability of spironolactone in patients with mild to moderate chronic kidney disease. Br J Clin Pharmacol. 2012;73:447–54.

    Article  PubMed  CAS  Google Scholar 

  69. Penfornis P, Viengchareun S, Le Menuet D, et al. The mineralocorticoid receptor mediates aldosterone-induced differentiation of T37i cells into brown adipocytes. Am J Physiol Endocrinol Metab. 2000;279:386–94.

    Google Scholar 

  70. Viengchareun S, Penfornis P, Zennaro MC, Lombes M. Mineralocorticoid and glucocorticoid receptors inhibit UCP expression and function in brown adipocytes. Am J Physiol Endocrinol Metab. 2001;280:E640–649.

    PubMed  CAS  Google Scholar 

  71. Ehrhart-Bornstein M, Lamounier-Zepter V, Schraven A, et al. Human adipocytes secrete mineralocorticoid-releasing factors. Proc Natl Acad Sci U S A. 2003;100:14211–6.

    Article  PubMed  CAS  Google Scholar 

  72. Ehrhart-Bornstein M, Arakelyan K, Krug AW, et al. Fat cells may be the obesity-hypertension link: human adipogenic factors stimulate aldosterone secretion from adrenocortical cells. Endocr Res. 2004;30:865–70.

    Article  PubMed  CAS  Google Scholar 

  73. Rossi GP, Sticchi D, Giuliani L, et al. Adiponectin receptor expression in the human adrenal cortex and aldosterone-producing adenomas. Int J Mol Med. 2006;17:975–80.

    PubMed  CAS  Google Scholar 

  74. Briones AM, Cat AN, Callera GE, et al. Adipocytes produce aldosterone through calcineurin-dependent signaling pathways: implications in diabetes mellitus-associated obesity and vascular dysfunction. Hypertension. 2012;59:1069–78.

    Article  PubMed  CAS  Google Scholar 

  75. Kraus D, Jager J, Meier B, et al. Aldosterone inhibits uncoupling protein-1, induces insulin resistance, and stimulates proinflammatory adipokines in adipocytes. Horm Metab Res. 2005;37:455–9.

    Article  PubMed  CAS  Google Scholar 

  76. Guo C, Ricchiuti V, Lian BQ, et al. Mineralocorticoid receptor blockade reverses obesity-related changes in expression of adiponectin, peroxisome proliferator-activated receptor-gamma, and proinflammatory adipokines. Circulation. 2008;117:2253–61.

    Article  PubMed  CAS  Google Scholar 

  77. Caprio M, Antelmi A, Chetrite G, et al. Antiadipogenic effects of the mineralocorticoid receptor antagonist drospirenone: potential implications for the treatment of metabolic syndrome. Endocrinology. 2011;152:113–25.

    Article  PubMed  CAS  Google Scholar 

  78. Stumpf WE, Sar M. Glucocorticosteroids and mineralocorticosteroid hormone target sites in the brain. Autoradiographic studies with corticosterone, aldosterone, deoxycorticosterone: in interaction within the brain-pituitary-adrenocortical system. In: Jones MT, Gillham B, Dallman MF, Chattopadhyay S. Interactions within the Brain–Pituitary–Adrenocortical System. London, New York: Academic Press; 1979. pp. 137-147.

  79. Gomez-Sanchez EP, Gomez-Sanchez CE. Central regulation of blood pressure by the mineralocorticoid receptor. Mol Cell Endocrinol. 2012;350:289–98.

    Article  PubMed  CAS  Google Scholar 

  80. Geerling JC, Engeland WC, Kawata M, Loewy AD. Aldosterone target neurons in the nucleus tractus solitarius drive sodium appetite. J Neurosci. 2006;26:411–7.

    Article  PubMed  CAS  Google Scholar 

  81. Sakai RR, Nicolaidis S, Epstein AN. Salt appetite is suppressed by interference with angiotensin II and aldosterone. Am J Physiol. 1986;251:R762–8.

    PubMed  CAS  Google Scholar 

  82. Sakai RR, Ma LY, Zhang DM, et al. Intracerebral administration of mineralocorticoid receptor antisense oligonucleotides attenuate adrenal steroid-induced salt appetite in rats. Neuroendocrinology. 1996;64:425–9.

    Article  PubMed  CAS  Google Scholar 

  83. Kontak AC, Wang Z, Arbique D, et al. Reversible sympathetic overactivity in hypertensive patients with primary aldosteronism. J Clin Endocrinol Metab. 2010;95:4756–61.

    Article  PubMed  CAS  Google Scholar 

  84. Monahan KD, Leuenberger UA, Ray CA. Aldosterone impairs baroreflex sensitivity in healthy adults. Am J Physiol Heart Circ Physiol. 2007;292:H190–197.

    Article  PubMed  CAS  Google Scholar 

  85. Menon DV, Arbique D, Wang Z, et al. Differential effects of chlorthalidone versus spironolactone on muscle sympathetic nerve activity in hypertensive patients. J Clin Endocrinol Metab. 2009;94:1361–6.

    Article  PubMed  CAS  Google Scholar 

  86. • Raheja P, Price A, Wang Z et al. Spironolactone Prevents Chlorthalidone-Induced Sympathetic Activation and Insulin Resistance in Hypertensive Patients. Hypertension. 2012;60:319–25. This study demonstrates the effects of spironolactone improving the excretion of markers of renal dysfunction.

  87. De Kloet ER. Hormones and the stressed brain. Ann N Y Acad Sci. 2004;1018:1–15.

    Article  PubMed  Google Scholar 

  88. Sukor N, Kogovsek C, Gordon RD, et al. Improved quality of life, blood pressure, and biochemical status following laparoscopic adrenalectomy for unilateral primary aldosteronism. J Clin Endocrinol Metab. 2010;95:1360–4.

    Article  PubMed  CAS  Google Scholar 

  89. Yagi S, Akaike M, Aihara K, et al. High plasma aldosterone concentration is a novel risk factor of cognitive impairment in patients with hypertension. Hypertens Res. 2011;34:74–8.

    Article  PubMed  CAS  Google Scholar 

  90. Sonino N, Fallo F, Fava GA. Psychological aspects of primary aldosteronism. Psychother Psychosom. 2006;75:327–30.

    Article  PubMed  Google Scholar 

  91. Emanuele E, Geroldi D, Minoretti P, et al. Increased plasma aldosterone in patients with clinical depression. Arch Med Res. 2005;36:544–8.

    Article  PubMed  CAS  Google Scholar 

  92. Gomez-Sanchez CE, Rossi GP, Fallo F, Mannelli M. Progress in primary aldosteronism: present challenges and perspectives. Horm Metab Res. 2010;42:374–81.

    Article  PubMed  CAS  Google Scholar 

  93. Gomez-Sanchez CE, Gomez-Sanchez EP. The protective side of the mineralocorticoid receptor. Endocrinology. 2012;153:1565–7.

    Article  PubMed  CAS  Google Scholar 

  94. Stranahan AM, Arumugam TV, Lee K, Mattson MP. Mineralocorticoid receptor activation restores medial perforant path LTP in diabetic rats. Synapse. 2010;64:528–32.

    Article  PubMed  CAS  Google Scholar 

  95. Otte C, Hinkelmann K, Moritz S, et al. Modulation of the mineralocorticoid receptor as add-on treatment in depression: a randomized, double-blind, placebo-controlled proof-of-concept study. J Psychiatr Res. 2010;44:339–46.

    Article  PubMed  Google Scholar 

  96. Goritz C, Frisen J. Neural stem cells and neurogenesis in the adult. Cell Stem Cell. 2012;10:657–9.

    Article  PubMed  Google Scholar 

  97. Munier M, Law F, Meduri G et al. Mineralocorticoid receptor overexpression facilitates differentiation and promotes survival of embryonic stem cell-derived neurons. Endocrinology. 2012.

  98. • Kolkhof P, Borden SA. Molecular pharmacology of the mineralocorticoid receptor: prospects for novel therapeutics. Mol Cell Endocrinol. 2012;350:310–7. This is an excellent review of the pharmacology of mineralocorticoid receptor antagonists, old and new.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celso E. Gomez-Sanchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hawkins, U.A., Gomez-Sanchez, E.P., Gomez-Sanchez, C.M. et al. The Ubiquitous Mineralocorticoid Receptor: Clinical Implications. Curr Hypertens Rep 14, 573–580 (2012). https://doi.org/10.1007/s11906-012-0297-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-012-0297-0

Keywords