Skip to main content

Advertisement

Log in

Heart Failure Associated with Sunitinib: Lessons Learned from Animal Models

  • Mediators, Mechanisms, and Pathways in Tissue Injury (Heinrich Taegtmeyer and Steven A. Atlas, Section Editors)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Sunitinib is a highly potent, multitargeted anticancer agent. However, there is growing clinical evidence that sunitinib induces cardiac dysfunction. Disruption of multiple signaling pathways, which are important in the maintenance of adult cardiac function, is likely to result in cardiovascular toxicity. Basic and translational evidence implicates a potential role for specific growth factor signaling pathways. This review discusses the relevant translational data from animal models of heart failure, focusing on three key pathways that are inhibited by sunitinib: AMP-activated protein kinase (AMPK), platelet-derived growth factor receptors (PDGFRs), and the vascular endothelial growth factor receptors (VEGFRs) 1, 2, and 3. We hypothesize that disruption of these pathways by sunitinib results in cardiotoxicity, and present direct and indirect evidence to support the notion that sunitinib-induced cardiac dysfunction likely involves a variety of molecular mechanisms that are critical for cardiac homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Chu TF, Rupnick MA, Kerkela R, et al. Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet. 2007;370(9604):2011–9.

    Article  PubMed  CAS  Google Scholar 

  2. Center for Drug Evaluation and Research: Pharmacology Review. NDA No. 21-938/21-968. SU011248/Sutent. Available at http://www.accessdata.fda.gov/drugsatfda_docs/nda/2006/021938_S000_Sutent_PharmR.pdf. Last accessed June 13, 2011.

  3. Highlights of Prescribing Information: SUTENT® (sunitinib malate) capsules, oral. Available at http://labeling.pfizer.com/ShowLabeling.aspx?id=607. Last accessed June 13, 2011.

  4. Force T, Krause DS, Van Etten RA. Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat Rev Cancer. 2007;7(5):332–44.

    Article  PubMed  CAS  Google Scholar 

  5. Desai J, Shankar S, Heinrich MC, et al. Clonal evolution of resistance to imatinib in patients with metastatic gastrointestinal stromal tumors. Clin Cancer Res. 2007;13(18 Pt 1):5398–405.

    Article  PubMed  CAS  Google Scholar 

  6. • Cheng H, Force T. Molecular mechanisms of cardiovascular toxicity of targeted cancer therapeutics. Circ Res 2010;106(1):21–34. This is a comprehensive review of the potential biologic mechanisms of current targeted cancer therapies.

    Article  PubMed  CAS  Google Scholar 

  7. Motzer RJ, Hutson TE, Tomczak P, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med. 2007;356(2):115–24.

    Article  PubMed  CAS  Google Scholar 

  8. Cancer Therapy Evaluation Program. Common Terminology Criteria for Adverse Events, Version 3.0. DCTD, NCI, NIH, DHHS. Publish Date: August 9, 2006. Available at: http://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/ctcaev3.pdf. Last accessed June 13, 2011.

  9. Telli ML, Witteles RM, Fisher GA, et al. Cardiotoxicity associated with the cancer therapeutic agent sunitinib malate. Ann Oncol. 2008;19(9):1613–8.

    Article  PubMed  CAS  Google Scholar 

  10. Di Lorenzo G, Autorino R, Bruni G, et al. Cardiovascular toxicity following sunitinib therapy in metastatic renal cell carcinoma: a multicenter analysis. Ann Oncol. 2009;20(9):1535–42.

    Article  PubMed  Google Scholar 

  11. Khakoo AY, Kassiotis CM, Tannir N, et al. Heart failure associated with sunitinib malate: a multitargeted receptor tyrosine kinase inhibitor. Cancer. 2008;112(11):2500–8.

    Article  PubMed  CAS  Google Scholar 

  12. • Kerkela R, Woulfe KC, Durand JB, et al. Sunitinib-induced cardiotoxicity is mediated by off-target inhibition of AMP-activated protein kinase. Clin Transl Sci 2009;2(1):15–25. This is one of the few studies defining the effects of administering sunitinib to animals.

    Article  PubMed  CAS  Google Scholar 

  13. Will Y, Dykens JA, Nadanaciva S, et al. Effect of the multitargeted tyrosine kinase inhibitors imatinib, dasatinib, sunitinib, and sorafenib on mitochondrial function in isolated rat heart mitochondria and H9c2 cells. Toxicol Sci. 2008;106(1):153–61.

    Article  PubMed  CAS  Google Scholar 

  14. Hasinoff BB, Patel D, O’Hara KA. Mechanisms of myocyte cytotoxicity induced by the multiple receptor tyrosine kinase inhibitor sunitinib. Mol Pharmacol. 2008;74(6):1722–8.

    Article  PubMed  CAS  Google Scholar 

  15. Arad M, Seidman CE, Seidman JG. AMP-activated protein kinase in the heart: role during health and disease. Circ Res. 2007;100(4):474–88.

    Article  PubMed  CAS  Google Scholar 

  16. Gruber HE, Hoffer ME, McAllister DR, et al. Increased adenosine concentration in blood from ischemic myocardium by AICA riboside. Effects on flow, granulocytes, and injury. Circulation. 1989;80(5):1400–11.

    Article  PubMed  CAS  Google Scholar 

  17. Terai K, Hiramoto Y, Masaki M, et al. AMP-activated protein kinase protects cardiomyocytes against hypoxic injury through attenuation of endoplasmic reticulum stress. Mol Cell Biol. 2005;25(21):9554–75.

    Article  PubMed  CAS  Google Scholar 

  18. • Zhang P, Hu X, Xu X, et al. AMP activated protein kinase-alpha2 deficiency exacerbates pressure-overload-induced left ventricular hypertrophy and dysfunction in mice. Hypertension 2008;52(5):918–24. This is a key article defining the role of AMPK in the cardiovascular system.

    Article  PubMed  CAS  Google Scholar 

  19. Force T, Kerkela R. Cardiotoxicity of the new cancer therapeutics–mechanisms of, and approaches to, the problem. Drug Discov Today. 2008;13(17–18):778–84.

    Article  PubMed  CAS  Google Scholar 

  20. Edelberg JM, Lee SH, Kaur M, et al. Platelet-derived growth factor-AB limits the extent of myocardial infarction in a rat model: feasibility of restoring impaired angiogenic capacity in the aging heart. Circulation. 2002;105(5):608–13.

    Article  PubMed  CAS  Google Scholar 

  21. Hsieh PC, MacGillivray C, Gannon J, et al. Local controlled intramyocardial delivery of platelet-derived growth factor improves postinfarction ventricular function without pulmonary toxicity. Circulation. 2006;114(7):637–44.

    Article  PubMed  CAS  Google Scholar 

  22. • Chintalgattu V, Ai D, Langley RR, et al. Cardiomyocyte PDGFR-beta signaling is an essential component of the mouse cardiac response to load-induced stress. J Clin Invest 2010;120(2):472–84. This is an outstanding study of the role of PDGFR-β in the maintenance of cardiac function.

    Article  PubMed  CAS  Google Scholar 

  23. Hsieh PC, Davis ME, Lisowski LK, et al. Endothelial-cardiomyocyte interactions in cardiac development and repair. Annu Rev Physiol. 2006;68:51–66.

    Article  PubMed  CAS  Google Scholar 

  24. Helotera H, Alitalo K. The VEGF family, the inside story. Cell. 2007;130(4):591–2.

    Article  PubMed  CAS  Google Scholar 

  25. Carmeliet P. Angiogenesis in life, disease and medicine. Nature. 2005;438(7070):932–6.

    Article  PubMed  CAS  Google Scholar 

  26. Abraham D, Hofbauer R, Schafer R, et al. Selective downregulation of VEGF-A(165), VEGF-R(1), and decreased capillary density in patients with dilative but not ischemic cardiomyopathy. Circ Res. 2000;87(8):644–7.

    PubMed  CAS  Google Scholar 

  27. Izumiya Y, Shiojima I, Sato K, et al. Vascular endothelial growth factor blockade promotes the transition from compensatory cardiac hypertrophy to failure in response to pressure overload. Hypertension. 2006;47(5):887–93.

    Article  PubMed  CAS  Google Scholar 

  28. • Pepe M, Mamdani M, Zentilin L, et al. Intramyocardial VEGF-B167 gene delivery delays the progression towards congestive failure in dogs with pacing-induced dilated cardiomyopathy. Circ Res 2010;106(12):1893–903. This excellent study describes the effect of VEGF-B delivery on the nonischemic cardiomyopathy phenotype.

    Article  PubMed  CAS  Google Scholar 

  29. Zhao Q, Ishibashi M, Hiasa K, et al. Essential role of vascular endothelial growth factor in angiotensin II-induced vascular inflammation and remodeling. Hypertension. 2004;44(3):264–70.

    Article  PubMed  CAS  Google Scholar 

  30. Tammela T, Enholm B, Alitalo K, et al. The biology of vascular endothelial growth factors. Cardiovasc Res. 2005;65(3):550–63.

    Article  PubMed  CAS  Google Scholar 

  31. Belgore FM, Blann AD, Li-Saw-Hee FL, et al. Plasma levels of vascular endothelial growth factor and its soluble receptor (SFlt-1) in essential hypertension. Am J Cardiol. 2001;87(6):805–7. A9.

    Article  PubMed  CAS  Google Scholar 

  32. Walsh K, Shiojima I. Cardiac growth and angiogenesis coordinated by intertissue interactions. J Clin Invest. 2007;117(11):3176–9.

    Article  PubMed  CAS  Google Scholar 

  33. Maynard SE, Min JY, Merchan J, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111(5):649–58.

    PubMed  CAS  Google Scholar 

  34. Levine RJ, Maynard SE, Qian C, et al. Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med. 2004;350(7):672–83.

    Article  PubMed  CAS  Google Scholar 

  35. Giordano FJ, Gerber HP, Williams SP, et al. A cardiac myocyte vascular endothelial growth factor paracrine pathway is required to maintain cardiac function. Proc Natl Acad Sci U S A. 2001;98(10):5780–5.

    Article  PubMed  CAS  Google Scholar 

  36. Zentilin L, Puligadda U, Lionetti V, et al. Cardiomyocyte VEGFR-1 activation by VEGF-B induces compensatory hypertrophy and preserves cardiac function after myocardial infarction. FASEB J. 2010;24(5):1467–78.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

Conflicts of Interest: C. Greineder: none; S. Kohnstamm: none; B. Ky: Consulting fee and research grant from Pfizer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bonnie Ky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greineder, C.F., Kohnstamm, S. & Ky, B. Heart Failure Associated with Sunitinib: Lessons Learned from Animal Models. Curr Hypertens Rep 13, 436–441 (2011). https://doi.org/10.1007/s11906-011-0225-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-011-0225-8

Keywords

Navigation