Skip to main content

Advertisement

Log in

Advances in the Experimental Models of HIV-Associated Neurological Disorders

  • Central Nervous System and Cognition (SS Spudich, Section Editor)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Involvement of the central nervous system (CNS) in HIV-1 infection is commonly associated with neurological disorders and cognitive impairment, commonly referred to as HIV-associated neurocognitive disorders (HAND). Severe and progressive neurocognitive impairment is rarely observed in the post-cART era; however, asymptomatic and mild neurocognitive disorders still exist, despite viral suppression. Additionally, comorbid conditions can also contribute to the pathogenesis of HAND.

Recent Findings

In this review, we summarize the characterization of HAND, factors contributing, and the functional impairments in both preclinical and clinical models. Specifically, we also discuss recent advances in the animal models of HAND and in in vitro cultures and the potential role of drugs of abuse in this model system of HAND. Potential peripheral biomarkers associated with HAND are also discussed.

Summary

Overall, this review identifies some of the recent advances in the field of HAND in cell culture studies, animal models, clinical findings, and the limitations of each model system, which can play a key role in developing novel therapeutics in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Spudich S, Gonzalez-Scarano F. HIV-1-related central nervous system disease: current issues in pathogenesis, diagnosis, and treatment. Cold Spring Harbor perspectives in medicine. 2012;2(6):a007120. https://doi.org/10.1101/cshperspect.a007120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ghosh AK, Sarkar A, Mitsuya H. HIV-associated neurocognitive disorder (HAND) and the prospect of brain-penetrating protease inhibitors for antiretroviral treatment. Medical research archives. 2017;5(4).

  3. Clifford DB, Ances BM. HIV-associated neurocognitive disorder. Lancet Infect Dis. 2013;13(11):976–86. https://doi.org/10.1016/S1473-3099(13)70269-X.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cherner M, Masliah E, Ellis RJ, Marcotte TD, Moore DJ, Grant I, et al. Neurocognitive dysfunction predicts postmortem findings of HIV encephalitis. Neurology. 2002;59(10):1563–7. https://doi.org/10.1212/01.wnl.0000034175.11956.79.

    Article  CAS  PubMed  Google Scholar 

  5. Gelman BB. Neuropathology of HAND with suppressive antiretroviral therapy: encephalitis and neurodegeneration reconsidered. Current HIV/AIDS reports. 2015;12(2):272–9. https://doi.org/10.1007/s11904-015-0266-8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Langford D, Grigorian A, Hurford R, Adame A, Ellis RJ, Hansen L, et al. Altered P-glycoprotein expression in AIDS patients with HIV encephalitis. J Neuropathol Exp Neurol. 2004;63(10):1038–47. https://doi.org/10.1093/jnen/63.10.1038.

    Article  CAS  PubMed  Google Scholar 

  7. Smith RL, de Boer R, Brul S, Budovskaya Y, van Spek H. Premature and accelerated aging: HIV or HAART? Front Genet. 2012;3:328. https://doi.org/10.3389/fgene.2012.00328.

    Article  PubMed  Google Scholar 

  8. Haddow LJ, Laverick R, Daskalopoulou M, McDonnell J, Lampe FC, Gilson R, et al. Cognitive impairment in people with HIVitERSG. Multicenter European Prevalence Study of Neurocognitive Impairment and Associated Factors in HIV Positive Patients. AIDS Behav. 2018;22(5):1573–83. https://doi.org/10.1007/s10461-017-1683-z.

    Article  PubMed  Google Scholar 

  9. Nightingale S, Winston A, Letendre S, Michael BD, McArthur JC, Khoo S, et al. Controversies in HIV-associated neurocognitive disorders. The Lancet Neurology. 2014;13(11)):1139–51. https://doi.org/10.1016/S1474-4422(14)70137-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Brew BJ, Chan P. Update on HIV dementia and HIV-associated neurocognitive disorders. Current neurology and neuroscience reports. 2014;14(8):468. https://doi.org/10.1007/s11910-014-0468-2.

    Article  CAS  PubMed  Google Scholar 

  11. McArthur JC, Brew BJ, Nath A. Neurological complications of HIV infection. The Lancet Neurology. 2005;4(9):543–55. https://doi.org/10.1016/S1474-4422(05)70165-4.

    Article  PubMed  Google Scholar 

  12. Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M, et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology. 2007;69(18):1789–99. https://doi.org/10.1212/01.WNL.0000287431.88658.8b.

    Article  CAS  PubMed  Google Scholar 

  13. Snider WD, Simpson DM, Nielsen S, Gold JW, Metroka CE, Posner JB. Neurological complications of acquired immune deficiency syndrome: analysis of 50 patients. Ann Neurol. 1983;14(4):403–18. https://doi.org/10.1002/ana.410140404.

    Article  CAS  PubMed  Google Scholar 

  14. Navia BA, Jordan BD, Price RW. The AIDS dementia complex: I. Clinical features Annals of neurology. 1986;19(6):517–24. https://doi.org/10.1002/ana.410190602.

    Article  CAS  PubMed  Google Scholar 

  15. Grant I, Franklin DR Jr, Deutsch R, Woods SP, Vaida F, Ellis RJ, et al. Asymptomatic HIV-associated neurocognitive impairment increases risk for symptomatic decline. Neurology. 2014;82(23):2055–62. https://doi.org/10.1212/WNL.0000000000000492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Heaton RK, Clifford DB, Franklin DR Jr, Woods SP, Ake C, Vaida F, et al. HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER Study. Neurology. 2010;75(23):2087–96. https://doi.org/10.1212/WNL.0b013e318200d727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Heaton RK, Franklin DR Jr, Deutsch R, Letendre S, Ellis RJ, Casaletto K, et al. Neurocognitive change in the era of HIV combination antiretroviral therapy: the longitudinal CHARTER study. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2015;60(3):473–80. https://doi.org/10.1093/cid/ciu862.

    Article  CAS  Google Scholar 

  18. Heaton RK, Franklin DR, Ellis RJ, JA MC, Letendre SL, Leblanc S, et al. HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neurovirol. 2011;17(1):3–16. https://doi.org/10.1007/s13365-010-0006-1.

    Article  CAS  PubMed  Google Scholar 

  19. Woods SP, Weber E, Weisz BM, Twamley EW, Grant I, Group HIVNRP. Prospective memory deficits are associated with unemployment in persons living with HIV infection. Rehabilitation psychology. 2011;56(1):77–84. https://doi.org/10.1037/a0022753.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hoare J, Westgarth-Taylor J, Fouche JP, Spottiswoode B, Paul R, Thomas K, et al. A diffusion tensor imaging and neuropsychological study of prospective memory impairment in South African HIV positive individuals. Metab Brain Dis. 2012;27(3):289–97. https://doi.org/10.1007/s11011-012-9311-0.

    Article  PubMed  Google Scholar 

  21. Everall I, Vaida F, Khanlou N, Lazzaretto D, Achim C, Letendre S, et al. Cliniconeuropathologic correlates of human immunodeficiency virus in the era of antiretroviral therapy. J Neurovirol. 2009;15(5-6):360–70. https://doi.org/10.3109/13550280903131915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gelman BB, Lisinicchia JG, Morgello S, Masliah E, Commins D, Achim CL, et al. Neurovirological correlation with HIV-associated neurocognitive disorders and encephalitis in a HAART-era cohort. J Acquir Immune Defic Syndr. 2013;62(5):487–95. https://doi.org/10.1097/QAI.0b013e31827f1bdb.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ellis R, Langford D, Masliah E. HIV and antiretroviral therapy in the brain: neuronal injury and repair. Nat Rev Neurosci. 2007;8(1):33–44. https://doi.org/10.1038/nrn2040.

    Article  CAS  PubMed  Google Scholar 

  24. Masliah E, Achim CL, Ge N, DeTeresa R, Terry RD, Wiley CA. Spectrum of human immunodeficiency virus-associated neocortical damage. Ann Neurol. 1992;32(3):321–9. https://doi.org/10.1002/ana.410320304.

    Article  CAS  PubMed  Google Scholar 

  25. Masliah E, Heaton RK, Marcotte TD, Ellis RJ, Wiley CA, Mallory M, et al. Dendritic injury is a pathological substrate for human immunodeficiency virus-related cognitive disorders. HNRC Group. The HIV Neurobehavioral Research Center. Ann Neurol. 1997;42(6):963–72. https://doi.org/10.1002/ana.410420618.

    Article  CAS  PubMed  Google Scholar 

  26. Sa MJ, Madeira MD, Ruela C, Volk B, Mota-Miranda A, Paula-Barbosa MM. Dendritic changes in the hippocampal formation of AIDS patients: a quantitative Golgi study. Acta Neuropathol. 2004;107(2):97–110. https://doi.org/10.1007/s00401-003-0781-3.

    Article  CAS  PubMed  Google Scholar 

  27. Everall IP, Luthert PJ, Lantos PL. Neuronal number and volume alterations in the neocortex of HIV infected individuals. J Neurol Neurosurg Psychiatry. 1993;56(5):481–6. https://doi.org/10.1136/jnnp.56.5.481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Toggas SM, Masliah E, Rockenstein EM, Rall GF, Abraham CR, Mucke L. Central nervous system damage produced by expression of the HIV-1 coat protein gp120 in transgenic mice. Nature. 1994;367(6459):188–93. https://doi.org/10.1038/367188a0.

    Article  CAS  PubMed  Google Scholar 

  29. Eden A, Price RW, Spudich S, Fuchs D, Hagberg L, Gisslen M. Immune activation of the central nervous system is still present after >4 years of effective highly active antiretroviral therapy. J Infect Dis. 2007;196(12):1779–83. https://doi.org/10.1086/523648.

    Article  CAS  PubMed  Google Scholar 

  30. Kamat A, Lyons JL, Misra V, Uno H, Morgello S, Singer EJ, et al. Monocyte activation markers in cerebrospinal fluid associated with impaired neurocognitive testing in advanced HIV infection. J Acquir Immune Defic Syndr. 2012;60(3):234–s. https://doi.org/10.1097/QAI.0b013e318256f3bc.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Budka H, Wiley CA, Kleihues P, Artigas J, Asbury AK, Cho ES, et al. HIV-associated disease of the nervous system: review of nomenclature and proposal for neuropathology-based terminology. Brain Pathol. 1991;1(3):143–52. https://doi.org/10.1111/j.1750-3639.1991.tb00653.x.

    Article  CAS  PubMed  Google Scholar 

  32. Gorry PR, Ong C, Thorpe J, Bannwarth S, Thompson KA, Gatignol A, et al. Astrocyte infection by HIV-1: mechanisms of restricted virus replication, and role in the pathogenesis of HIV-1-associated dementia. Curr HIV Res. 2003;1(4):463–73. https://doi.org/10.2174/1570162033485122.

    Article  CAS  PubMed  Google Scholar 

  33. Power C, Kong PA, Crawford TO, Wesselingh S, Glass JD, McArthur JC, et al. Cerebral white matter changes in acquired immunodeficiency syndrome dementia: alterations of the blood-brain barrier. Ann Neurol. 1993;34(3):339–50. https://doi.org/10.1002/ana.410340307.

    Article  CAS  PubMed  Google Scholar 

  34. Langford TD, Letendre SL, Marcotte TD, Ellis RJ, McCutchan JA, Grant I, et al. Severe, demyelinating leukoencephalopathy in AIDS patients on antiretroviral therapy. Aids. 2002;16(7):1019–29. https://doi.org/10.1097/00002030-200205030-00008.

    Article  PubMed  Google Scholar 

  35. Ances BM, Sisti D, Vaida F, Liang CL, Leontiev O, Perthen JE, et al. Resting cerebral blood flow: a potential biomarker of the effects of HIV in the brain. Neurology. 2009;73(9):702–8. https://doi.org/10.1212/WNL.0b013e3181b59a97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Gelman BB, Chen T, Lisinicchia JG, Soukup VM, Carmical JR, Starkey JM, et al. The National NeuroAIDS Tissue Consortium brain gene array: two types of HIV-associated neurocognitive impairment. PLoS One. 2012;7(9):e46178. https://doi.org/10.1371/journal.pone.0046178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. • Sil S, Hu G, Liao K, Niu F, Callen S, Periyasamy P, et al. HIV-1 Tat-mediated astrocytic amyloidosis involves the HIF-1alpha/lncRNA BACE1-AS axis. PLoS Biol. 2020;18(5):e3000660. https://doi.org/10.1371/journal.pbio.3000660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Achim CL, Adame A, Dumaop W, Everall IP, Masliah E, Neurobehavioral RC. Increased accumulation of intraneuronal amyloid beta in HIV-infected patients. Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology. 2009;4(2):190–9. https://doi.org/10.1007/s11481-009-9152-8.

    Article  Google Scholar 

  39. Liu CC, Liu CC, Kanekiyo T, Xu H, Bu G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol. 2013;9(2):106–18. https://doi.org/10.1038/nrneurol.2012.263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Burt TD, Agan BK, Marconi VC, He W, Kulkarni H, Mold JE, et al. Apolipoprotein (apo) E4 enhances HIV-1 cell entry in vitro, and the APOE epsilon4/epsilon4 genotype accelerates HIV disease progression. Proc Natl Acad Sci U S A. 2008;105(25):8718–23. https://doi.org/10.1073/pnas.0803526105.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Gisslen M, Krut J, Andreasson U, Blennow K, Cinque P, Brew BJ, et al. Amyloid and tau cerebrospinal fluid biomarkers in HIV infection. BMC Neurol. 2009;9:63. https://doi.org/10.1186/1471-2377-9-63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ellis RJ, Seubert P, Motter R, Galasko D, Deutsch R, Heaton RK, et al. Cerebrospinal fluid tau protein is not elevated in HIV-associated neurologic disease in humans. HIV Neurobehavioral Research Center Group (HNRC). Neurosci Lett. 1998;254(1):1–4. https://doi.org/10.1016/s0304-3940(98)00549-7.

    Article  CAS  PubMed  Google Scholar 

  43. Buzhdygan T, Lisinicchia J, Patel V, Johnson K, Neugebauer V, Paessler S, et al. Neuropsychological, Neurovirological and Neuroimmune Aspects of Abnormal GABAergic Transmission in HIV Infection. Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology. 2016;11(2):279–93. https://doi.org/10.1007/s11481-016-9652-2.

    Article  Google Scholar 

  44. Pulliam L, Sun B, Mustapic M, Chawla S, Kapogiannis D. Plasma neuronal exosomes serve as biomarkers of cognitive impairment in HIV infection and Alzheimer's disease. J Neurovirol. 2019;25(5):702–9. https://doi.org/10.1007/s13365-018-0695-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sun B, Fernandes N, Pulliam L. Profile of neuronal exosomes in HIV cognitive impairment exposes sex differences. Aids. 2019;33(11):1683–92. https://doi.org/10.1097/QAD.0000000000002272.

    Article  PubMed  Google Scholar 

  46. Borjabad A, Volsky DJ. Common transcriptional signatures in brain tissue from patients with HIV-associated neurocognitive disorders, Alzheimer's disease, and Multiple Sclerosis. Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology. 2012;7(4):914–26. https://doi.org/10.1007/s11481-012-9409-5.

    Article  Google Scholar 

  47. McLaurin KA, Li H, Booze RM, Mactutus CF. Disruption of Timing: NeuroHIV Progression in the Post-cART Era. Sci Rep. 2019;9(1):827. https://doi.org/10.1038/s41598-018-36822-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schier CJ, Marks WD, Paris JJ, Barbour AJ, McLane VD, Maragos WF, et al. Selective Vulnerability of Striatal D2 versus D1 Dopamine Receptor-Expressing Medium Spiny Neurons in HIV-1 Tat Transgenic Male Mice. J Neurosci. 2017;37(23):5758–69. https://doi.org/10.1523/JNEUROSCI.0622-17.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hahn YK, Podhaizer EM, Farris SP, Miles MF, Hauser KF, Knapp PE. Effects of chronic HIV-1 Tat exposure in the CNS: heightened vulnerability of males versus females to changes in cell numbers, synaptic integrity, and behavior. Brain Struct Funct. 2015;220(2):605–23. https://doi.org/10.1007/s00429-013-0676-6.

    Article  PubMed  Google Scholar 

  50. Nash B, Festa L, Lin C, Meucci O. Opioid and chemokine regulation of cortical synaptodendritic damage in HIV-associated neurocognitive disorders. Brain Res. 2019;1723:146409. https://doi.org/10.1016/j.brainres.2019.146409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. • Festa LK, Irollo E, Platt BJ, Tian Y, Floresco S, Meucci O. CXCL12-induced rescue of cortical dendritic spines and cognitive flexibility. eLife. 2020;9. https://doi.org/10.7554/eLife.49717.

  52. McLaurin KA, Booze RM, Mactutus CF. Evolution of the HIV-1 transgenic rat: utility in assessing the progression of HIV-1-associated neurocognitive disorders. J Neurovirol. 2018;24(2):229–45. https://doi.org/10.1007/s13365-017-0544-x.

    Article  CAS  PubMed  Google Scholar 

  53. Moran LM, Booze RM, Webb KM, Mactutus CF. Neurobehavioral alterations in HIV-1 transgenic rats: evidence for dopaminergic dysfunction. Exp Neurol. 2013;239:139–47. https://doi.org/10.1016/j.expneurol.2012.10.008.

    Article  CAS  PubMed  Google Scholar 

  54. Vigorito M, LaShomb AL, Chang SL. Spatial learning and memory in HIV-1 transgenic rats. Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology. 2007;2(4):319–28. https://doi.org/10.1007/s11481-007-9078-y.

    Article  Google Scholar 

  55. Lashomb AL, Vigorito M, Chang SL. Further characterization of the spatial learning deficit in the human immunodeficiency virus-1 transgenic rat. J Neurovirol. 2009;15(1):14–24. https://doi.org/10.1080/13550280802232996.

    Article  CAS  PubMed  Google Scholar 

  56. Huynh YW, Thompson BM, Larsen CE, Buch S, Guo ML, Bevins RA, et al. Male HIV-1 transgenic rats show reduced cocaine-maintained lever-pressing compared to F344 wildtype rats despite similar baseline locomotion. J Exp Anal Behav. 2020;113(2):468–84. https://doi.org/10.1002/jeab.586.

    Article  PubMed  Google Scholar 

  57. Reid W, Sadowska M, Denaro F, Rao S, Foulke J Jr, Hayes N, et al. An HIV-1 transgenic rat that develops HIV-related pathology and immunologic dysfunction. Proc Natl Acad Sci U S A. 2001;98(16):9271–6. https://doi.org/10.1073/pnas.161290298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. • Denaro F, Benedetti F, Worthington MD, Scapagnini G, Krauss CC, Williams S, et al. The HIV-1 Transgenic Rat: Relevance for HIV Noninfectious Comorbidity Research. Microorganisms. 2020;8(11). https://doi.org/10.3390/microorganisms8111643.

  59. Peng J, Vigorito M, Liu X, Zhou D, Wu X, Chang SL. The HIV-1 transgenic rat as a model for HIV-1 infected individuals on HAART. J Neuroimmunol. 2010;218(1-2):94–101. https://doi.org/10.1016/j.jneuroim.2009.09.014.

    Article  CAS  PubMed  Google Scholar 

  60. Moran LM, Booze RM, Mactutus CF. Modeling deficits in attention, inhibition, and flexibility in HAND. Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology. 2014;9(4):508–21. https://doi.org/10.1007/s11481-014-9539-z.

    Article  Google Scholar 

  61. Royal W 3rd, Zhang L, Guo M, Jones O, Davis H, Bryant JL. Immune activation, viral gene product expression and neurotoxicity in the HIV-1 transgenic rat. J Neuroimmunol. 2012;247(1-2):16–24. https://doi.org/10.1016/j.jneuroim.2012.03.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rowson SA, Harrell CS, Bekhbat M, Gangavelli A, Wu MJ, Kelly SD, et al. Neuroinflammation and Behavior in HIV-1 Transgenic Rats Exposed to Chronic Adolescent Stress. Frontiers in psychiatry. 2016;7:102. https://doi.org/10.3389/fpsyt.2016.00102.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chivero ET, Guo ML, Periyasamy P, Liao K, Callen SE, Buch S. HIV-1 Tat Primes and Activates Microglial NLRP3 Inflammasome-Mediated Neuroinflammation. J Neurosci. 2017;37(13):3599–609. https://doi.org/10.1523/JNEUROSCI.3045-16.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Periyasamy P, Thangaraj A, Guo ML, Hu G, Callen S, Buch S. Epigenetic Promoter DNA Methylation of miR-124 Promotes HIV-1 Tat-Mediated Microglial Activation via MECP2-STAT3 Axis. J Neurosci. 2018;38(23):5367–83. https://doi.org/10.1523/JNEUROSCI.3474-17.2018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Festa L, Gutoskey CJ, Graziano A, Waterhouse BD, Meucci O. Induction of Interleukin-1beta by Human Immunodeficiency Virus-1 Viral Proteins Leads to Increased Levels of Neuronal Ferritin Heavy Chain, Synaptic Injury, and Deficits in Flexible Attention. J Neurosci. 2015;35(29):10550–61. https://doi.org/10.1523/JNEUROSCI.4403-14.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Speidell A, Asuni GP, Wakulski R, Mocchetti I. Up-regulation of the p75 neurotrophin receptor is an essential mechanism for HIV-gp120 mediated synaptic loss in the striatum. Brain Behav Immun. 2020;89:371–9. https://doi.org/10.1016/j.bbi.2020.07.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bachis A, Wenzel E, Boelk A, Becker J, Mocchetti I. The neurotrophin receptor p75 mediates gp120-induced loss of synaptic spines in aging mice. Neurobiol Aging. 2016;46:160–8. https://doi.org/10.1016/j.neurobiolaging.2016.07.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wayman WN, Chen L, Hu XT, Napier TC. HIV-1 Transgenic Rat Prefrontal Cortex Hyper-Excitability is Enhanced by Cocaine Self-Administration. Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology. 2016;41(8):1965–73. https://doi.org/10.1038/npp.2015.366.

    Article  CAS  Google Scholar 

  69. • Barbour AJ, Hauser KF, McQuiston AR, Knapp PE. HIV and opiates dysregulate K(+)- Cl(-) cotransporter 2 (KCC2) to cause GABAergic dysfunction in primary human neurons and Tat-transgenic mice. Neurobiol Dis. 2020;141:104878. https://doi.org/10.1016/j.nbd.2020.104878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Xu C, Fitting S. Inhibition of GABAergic Neurotransmission by HIV-1 Tat and Opioid Treatment in the Striatum Involves mu-Opioid Receptors. Front Neurosci. 2016;10:497. https://doi.org/10.3389/fnins.2016.00497.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ohene-Nyako M, Persons AL, Napier TC. Region-specific changes in markers of neuroplasticity revealed in HIV-1 transgenic rats by low-dose methamphetamine. Brain Struct Funct. 2018;223(7):3503–13. https://doi.org/10.1007/s00429-018-1701-6.

    Article  CAS  PubMed  Google Scholar 

  72. Nookala AR, Schwartz DC, Chaudhari NS, Glazyrin A, Stephens EB, Berman NEJ, et al. Methamphetamine augment HIV-1 Tat mediated memory deficits by altering the expression of synaptic proteins and neurotrophic factors. Brain Behav Immun. 2018;71:37–51. https://doi.org/10.1016/j.bbi.2018.04.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chilunda V, Calderon TM, Martinez-Aguado P, Berman JW. The impact of substance abuse on HIV-mediated neuropathogenesis in the current ART era. Brain Res. 2019;1724:146426. https://doi.org/10.1016/j.brainres.2019.146426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cai Y, Yang L, Callen S, Buch S. Multiple Faceted Roles of Cocaine in Potentiation of HAND. Curr HIV Res. 2016;14(5):412–6. https://doi.org/10.2174/1570162x14666160324125158.

    Article  CAS  PubMed  Google Scholar 

  75. Sil S, Periyasamy P, Guo ML, Callen S, Buch S. Morphine-Mediated Brain Region-Specific Astrocytosis Involves the ER Stress-Autophagy Axis. Mol Neurobiol. 2018;55(8):6713–33. https://doi.org/10.1007/s12035-018-0878-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sil S, Niu F, Tom E, Liao K, Periyasamy P, Buch S. Cocaine Mediated Neuroinflammation: Role of Dysregulated Autophagy in Pericytes. Mol Neurobiol. 2019;56(5):3576–90. https://doi.org/10.1007/s12035-018-1325-0.

    Article  CAS  PubMed  Google Scholar 

  77. Sanchez AB, Varano GP, de Rozieres CM, Maung R, Catalan IC, Dowling CC, et al. Antiretrovirals, Methamphetamine, and HIV-1 Envelope Protein gp120 Compromise Neuronal Energy Homeostasis in Association with Various Degrees of Synaptic and Neuritic Damage. Antimicrob Agents Chemother. 2016;60(1):168–79. https://doi.org/10.1128/AAC.01632-15.

    Article  CAS  PubMed  Google Scholar 

  78. Tripathi A, Thangaraj A, Chivero ET, Periyasamy P, Burkovetskaya ME, Niu F, et al. N-Acetylcysteine Reverses Antiretroviral-Mediated Microglial Activation by Attenuating Autophagy-Lysosomal Dysfunction. Front Neurol. 2020;11:840. https://doi.org/10.3389/fneur.2020.00840.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Tripathi A, Thangaraj A, Chivero ET, Periyasamy P, Callen S, Burkovetskaya ME, et al. Antiretroviral-Mediated Microglial Activation Involves Dysregulated Autophagy and Lysosomal Dysfunction. Cells. 2019;8(10). https://doi.org/10.3390/cells8101168.

  80. Akay C, Cooper M, Odeleye A, Jensen BK, White MG, Vassoler F, et al. Antiretroviral drugs induce oxidative stress and neuronal damage in the central nervous system. J Neurovirol. 2014;20(1):39–53. https://doi.org/10.1007/s13365-013-0227-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Jaeger LB, Nath A. Modeling HIV-associated neurocognitive disorders in mice: new approaches in the changing face of HIV neuropathogenesis. Dis Model Mech. 2012;5(3):313–22. https://doi.org/10.1242/dmm.008763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Gorantla S, Poluektova L, Gendelman HE. Rodent models for HIV-associated neurocognitive disorders. Trends Neurosci. 2012;35(3):197–208. https://doi.org/10.1016/j.tins.2011.12.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Persidsky Y, Gendelman HE. Murine models for human immunodeficiency virus type 1-associated dementia: the development of new treatment testing paradigms. J Neurovirol. 2002;8(Suppl 2):49–52. https://doi.org/10.1080/13550280290167993.

    Article  CAS  PubMed  Google Scholar 

  84. Persidsky Y, Limoges J, McComb R, Bock P, Baldwin T, Tyor W, et al. Human immunodeficiency virus encephalitis in SCID mice. Am J Pathol. 1996;149(3):1027–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Tyor WR, Power C, Gendelman HE, Markham RB. A model of human immunodeficiency virus encephalitis in scid mice. Proc Natl Acad Sci U S A. 1993;90(18):8658–62. https://doi.org/10.1073/pnas.90.18.8658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Aksenov MY, Hasselrot U, Bansal AK, Wu G, Nath A, Anderson C, et al. Oxidative damage induced by the injection of HIV-1 Tat protein in the rat striatum. Neurosci Lett. 2001;305(1):5–8. https://doi.org/10.1016/s0304-3940(01)01786-4.

    Article  CAS  PubMed  Google Scholar 

  87. Bansal AK, Mactutus CF, Nath A, Maragos W, Hauser KF, Booze RM. Neurotoxicity of HIV-1 proteins gp120 and Tat in the rat striatum. Brain Res. 2000;879(1-2):42–9. https://doi.org/10.1016/s0006-8993(00)02725-6.

    Article  CAS  PubMed  Google Scholar 

  88. Hayman M, Arbuthnott G, Harkiss G, Brace H, Filippi P, Philippon V, et al. Neurotoxicity of peptide analogues of the transactivating protein tat from Maedi-Visna virus and human immunodeficiency virus. Neuroscience. 1993;53(1):1–6. https://doi.org/10.1016/0306-4522(93)90278-n.

    Article  CAS  PubMed  Google Scholar 

  89. Jones M, Olafson K, Del Bigio MR, Peeling J, Nath A. Intraventricular injection of human immunodeficiency virus type 1 (HIV-1) tat protein causes inflammation, gliosis, apoptosis, and ventricular enlargement. J Neuropathol Exp Neurol. 1998;57(6):563–70. https://doi.org/10.1097/00005072-199806000-00004.

    Article  CAS  PubMed  Google Scholar 

  90. Philippon V, Vellutini C, Gambarelli D, Harkiss G, Arbuthnott G, Metzger D, et al. The basic domain of the lentiviral Tat protein is responsible for damages in mouse brain: involvement of cytokines. Virology. 1994;205(2):519–29. https://doi.org/10.1006/viro.1994.1673.

    Article  CAS  PubMed  Google Scholar 

  91. Lee PH, Ohtake T, Zaiou M, Murakami M, Rudisill JA, Lin KH, et al. Expression of an additional cathelicidin antimicrobial peptide protects against bacterial skin infection. Proc Natl Acad Sci U S A. 2005;102(10):3750–5. https://doi.org/10.1073/pnas.0500268102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Bruce-Keller AJ, Turchan-Cholewo J, Smart EJ, Geurin T, Chauhan A, Reid R, et al. Morphine causes rapid increases in glial activation and neuronal injury in the striatum of inducible HIV-1 Tat transgenic mice. Glia. 2008;56(13):1414–27. https://doi.org/10.1002/glia.20708.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Fitting S, Zou S, Chen W, Vo P, Hauser KF, Knapp PE. Regional heterogeneity and diversity in cytokine and chemokine production by astroglia: differential responses to HIV-1 Tat, gp120, and morphine revealed by multiplex analysis. J Proteome Res. 2010;9(4):1795–804. https://doi.org/10.1021/pr900926n.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hauser KF, Hahn YK, Adjan VV, Zou S, Buch SK, Nath A, et al. HIV-1 Tat and morphine have interactive effects on oligodendrocyte survival and morphology. Glia. 2009;57(2):194–206. https://doi.org/10.1002/glia.20746.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Fitting S, Ignatowska-Jankowska BM, Bull C, Skoff RP, Lichtman AH, Wise LE, et al. Synaptic dysfunction in the hippocampus accompanies learning and memory deficits in human immunodeficiency virus type-1 Tat transgenic mice. Biol Psychiatry. 2013;73(5):443–53. https://doi.org/10.1016/j.biopsych.2012.09.026.

    Article  CAS  PubMed  Google Scholar 

  96. Gorantla S, Makarov E, Finke-Dwyer J, Castanedo A, Holguin A, Gebhart CL, et al. Links between progressive HIV-1 infection of humanized mice and viral neuropathogenesis. Am J Pathol. 2010;177(6):2938–49. https://doi.org/10.2353/ajpath.2010.100536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kaul M, Lipton SA. Mechanisms of neuroimmunity and neurodegeneration associated with HIV-1 infection and AIDS. Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology. 2006;1(2):138–51. https://doi.org/10.1007/s11481-006-9011-9.

    Article  Google Scholar 

  98. Ketzler S, Weis S, Haug H, Budka H. Loss of neurons in the frontal cortex in AIDS brains. Acta Neuropathol. 1990;80(1):92–4. https://doi.org/10.1007/BF00294228.

    Article  CAS  PubMed  Google Scholar 

  99. Weis S, Haug H, Budka H. Neuronal damage in the cerebral cortex of AIDS brains: a morphometric study. Acta Neuropathol. 1993;85(2):185–9. https://doi.org/10.1007/BF00227766.

    Article  CAS  PubMed  Google Scholar 

  100. Rao VR, Ruiz AP, Prasad VR. Viral and cellular factors underlying neuropathogenesis in HIV associated neurocognitive disorders (HAND). AIDS Res Ther. 2014;11:13. https://doi.org/10.1186/1742-6405-11-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bruce-Keller AJ, Chauhan A, Dimayuga FO, Gee J, Keller JN, Nath A. Synaptic transport of human immunodeficiency virus-Tat protein causes neurotoxicity and gliosis in rat brain. J Neurosci. 2003;23(23):8417–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Li W, Li G, Steiner J, Nath A. Role of Tat protein in HIV neuropathogenesis. Neurotox Res. 2009;16(3):205–20. https://doi.org/10.1007/s12640-009-9047-8.

    Article  CAS  PubMed  Google Scholar 

  103. Fitting S, Knapp PE, Zou S, Marks WD, Bowers MS, Akbarali HI, et al. Interactive HIV-1 Tat and morphine-induced synaptodendritic injury is triggered through focal disruptions in Na(+) influx, mitochondrial instability, and Ca(2)(+) overload. J Neurosci. 2014;34(38):12850–64. https://doi.org/10.1523/JNEUROSCI.5351-13.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Magnuson DS, Knudsen BE, Geiger JD, Brownstone RM, Nath A. Human immunodeficiency virus type 1 tat activates non-N-methyl-D-aspartate excitatory amino acid receptors and causes neurotoxicity. Ann Neurol. 1995;37(3):373–80. https://doi.org/10.1002/ana.410370314.

    Article  CAS  PubMed  Google Scholar 

  105. Chang JR, Mukerjee R, Bagashev A, Del Valle L, Chabrashvili T, Hawkins BJ, et al. HIV-1 Tat protein promotes neuronal dysfunction through disruption of microRNAs. J Biol Chem. 2011;286(47):41125–34. https://doi.org/10.1074/jbc.M111.268466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Norman JP, Perry SW, Kasischke KA, Volsky DJ, Gelbard HA. HIV-1 trans activator of transcription protein elicits mitochondrial hyperpolarization and respiratory deficit, with dysregulation of complex IV and nicotinamide adenine dinucleotide homeostasis in cortical neurons. J Immunol. 2007;178(2):869–76. https://doi.org/10.4049/jimmunol.178.2.869.

    Article  CAS  PubMed  Google Scholar 

  107. Iskander S, Walsh KA, Hammond RR. Human CNS cultures exposed to HIV-1 gp120 reproduce dendritic injuries of HIV-1-associated dementia. J Neuroinflammation. 2004;1(1):7. https://doi.org/10.1186/1742-2094-1-7.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Everall IP, Heaton RK, Marcotte TD, Ellis RJ, McCutchan JA, Atkinson JH, et al. Cortical synaptic density is reduced in mild to moderate human immunodeficiency virus neurocognitive disorder. HNRC Group. HIV Neurobehavioral Research Center. Brain Pathol. 1999;9(2):209–17. https://doi.org/10.1111/j.1750-3639.1999.tb00219.x.

    Article  CAS  PubMed  Google Scholar 

  109. Cull-Candy S, Brickley S, Farrant M. NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol. 2001;11(3):327–35. https://doi.org/10.1016/s0959-4388(00)00215-4.

    Article  CAS  PubMed  Google Scholar 

  110. Hayashi H, Campenot RB, Vance DE, Vance JE. Apolipoprotein E-containing lipoproteins protect neurons from apoptosis via a signaling pathway involving low-density lipoprotein receptor-related protein-1. J Neurosci. 2007;27(8):1933–41. https://doi.org/10.1523/JNEUROSCI.5471-06.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Alam MZ, Alam Q, Kamal MA, Jiman-Fatani AA, Azhar EI, Khan MA, et al. Infectious Agents and Neurodegenerative Diseases: Exploring the Links. Curr Top Med Chem. 2017;17(12):1390–9. https://doi.org/10.2174/1568026617666170103164040.

    Article  CAS  PubMed  Google Scholar 

  112. • Dos Reis RS, Sant S, Keeney H, Wagner MCE, Ayyavoo V. Modeling HIV-1 neuropathogenesis using three-dimensional human brain organoids (hBORGs) with HIV-1 infected microglia. Sci Rep. 2020;10(1):15209. https://doi.org/10.1038/s41598-020-72214-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Guha D, Nagilla P, Redinger C, Srinivasan A, Schatten GP, Ayyavoo V. Neuronal apoptosis by HIV-1 Vpr: contribution of proinflammatory molecular networks from infected target cells. J Neuroinflammation. 2012;9:138. https://doi.org/10.1186/1742-2094-9-138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Kerr SJ, Armati PJ, Guillemin GJ, Brew BJ. Chronic exposure of human neurons to quinolinic acid results in neuronal changes consistent with AIDS dementia complex. Aids. 1998;12(4):355–63. https://doi.org/10.1097/00002030-199804000-00003.

    Article  CAS  PubMed  Google Scholar 

  115. Kaul M, Lipton SA. Mechanisms of neuronal injury and death in HIV-1 associated dementia. Curr HIV Res. 2006;4(3):307–18. https://doi.org/10.2174/157016206777709384.

    Article  CAS  PubMed  Google Scholar 

  116. Nath A, Geiger J. Neurobiological aspects of human immunodeficiency virus infection: neurotoxic mechanisms. Prog Neurobiol. 1998;54(1):19–33. https://doi.org/10.1016/s0301-0082(97)00053-1.

    Article  CAS  PubMed  Google Scholar 

  117. Wesselingh SL, Power C, Glass JD, Tyor WR, McArthur JC, Farber JM, et al. Intracerebral cytokine messenger RNA expression in acquired immunodeficiency syndrome dementia. Ann Neurol. 1993;33(6):576–82. https://doi.org/10.1002/ana.410330604.

    Article  CAS  PubMed  Google Scholar 

  118. Adamson DC, Wildemann B, Sasaki M, Glass JD, McArthur JC, Christov VI, et al. Immunologic NO synthase: elevation in severe AIDS dementia and induction by HIV-1 gp41. Science. 1996;274(5294):1917–21. https://doi.org/10.1126/science.274.5294.1917.

    Article  CAS  PubMed  Google Scholar 

  119. Lannuzel A, Lledo PM, Lamghitnia HO, Vincent JD, Tardieu M. HIV-1 envelope proteins gp120 and gp160 potentiate NMDA-induced [Ca2+]i increase, alter [Ca2+]i homeostasis and induce neurotoxicity in human embryonic neurons. Eur J Neurosci. 1995;7(11):2285–93. https://doi.org/10.1111/j.1460-9568.1995.tb00649.x.

    Article  CAS  PubMed  Google Scholar 

  120. Catani MV, Corasaniti MT, Navarra M, Nistico G, Finazzi-Agro A, Melino G. gp120 induces cell death in human neuroblastoma cells through the CXCR4 and CCR5 chemokine receptors. J Neurochem. 2000;74(6):2373–9. https://doi.org/10.1046/j.1471-4159.2000.0742373.x.

    Article  CAS  PubMed  Google Scholar 

  121. Zhang X, Green MV, Thayer SA. HIV gp120-induced neuroinflammation potentiates NMDA receptors to overcome basal suppression of inhibitory synapses by p38 MAPK. J Neurochem. 2019;148(4):499–515. https://doi.org/10.1111/jnc.14640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Zhang X, Thayer SA. Monoacylglycerol lipase inhibitor JZL184 prevents HIV-1 gp120-induced synapse loss by altering endocannabinoid signaling. Neuropharmacology. 2018;128:269–81. https://doi.org/10.1016/j.neuropharm.2017.10.023.

    Article  CAS  PubMed  Google Scholar 

  123. Nath A, Psooy K, Martin C, Knudsen B, Magnuson DS, Haughey N, et al. Identification of a human immunodeficiency virus type 1 Tat epitope that is neuroexcitatory and neurotoxic. J Virol. 1996;70(3):1475–80. https://doi.org/10.1128/JVI.70.3.1475-1480.1996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Liu Y, Jones M, Hingtgen CM, Bu G, Laribee N, Tanzi RE, et al. Uptake of HIV-1 tat protein mediated by low-density lipoprotein receptor-related protein disrupts the neuronal metabolic balance of the receptor ligands. Nat Med. 2000;6(12):1380–7. https://doi.org/10.1038/82199.

    Article  CAS  PubMed  Google Scholar 

  125. Eugenin EA, King JE, Nath A, Calderon TM, Zukin RS, Bennett MV, et al. HIV-tat induces formation of an LRP-PSD-95- NMDAR-nNOS complex that promotes apoptosis in neurons and astrocytes. Proc Natl Acad Sci U S A. 2007;104(9):3438–43. https://doi.org/10.1073/pnas.0611699104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Peng F, Yao H, Akturk HK, Buch S. Platelet-derived growth factor CC-mediated neuroprotection against HIV Tat involves TRPC-mediated inactivation of GSK 3beta. PLoS One. 2012;7(10):e47572. https://doi.org/10.1371/journal.pone.0047572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Rahimian P, He JJ. HIV-1 Tat-shortened neurite outgrowth through regulation of microRNA-132 and its target gene expression. J Neuroinflammation. 2016;13(1):247. https://doi.org/10.1186/s12974-016-0716-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Xu C, Hermes DJ, Nwanguma B, Jacobs IR, Mackie K, Mukhopadhyay S, et al. Endocannabinoids exert CB1 receptor-mediated neuroprotective effects in models of neuronal damage induced by HIV-1 Tat protein. Mol Cell Neurosci. 2017;83:92–102. https://doi.org/10.1016/j.mcn.2017.07.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. van Marle G, Henry S, Todoruk T, Sullivan A, Silva C, Rourke SB, et al. Human immunodeficiency virus type 1 Nef protein mediates neural cell death: a neurotoxic role for IP-10. Virology. 2004;329(2):302–18. https://doi.org/10.1016/j.virol.2004.08.024.

    Article  CAS  PubMed  Google Scholar 

  130. Sami Saribas A, Cicalese S, Ahooyi TM, Khalili K, Amini S, Sariyer IK. HIV-1 Nef is released in extracellular vesicles derived from astrocytes: evidence for Nef-mediated neurotoxicity. Cell Death Dis. 2017;8(1):e2542. https://doi.org/10.1038/cddis.2016.467.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Ditiatkovski M, Mukhamedova N, Dragoljevic D, Hoang A, Low H, Pushkarsky T, et al. Modification of lipid rafts by extracellular vesicles carrying HIV-1 protein Nef induces redistribution of amyloid precursor protein and Tau, causing neuronal dysfunction. J Biol Chem. 2020;295(38):13377–92. https://doi.org/10.1074/jbc.RA120.014642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Piller SC, Jans P, Gage PW, Jans DA. Extracellular HIV-1 virus protein R causes a large inward current and cell death in cultured hippocampal neurons: implications for AIDS pathology. Proc Natl Acad Sci U S A. 1998;95(8):4595–600. https://doi.org/10.1073/pnas.95.8.4595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sabbah EN, Roques BP. Critical implication of the (70-96) domain of human immunodeficiency virus type 1 Vpr protein in apoptosis of primary rat cortical and striatal neurons. J Neurovirol. 2005;11(6):489–502. https://doi.org/10.1080/13550280500384941.

    Article  CAS  PubMed  Google Scholar 

  134. Patel CA, Mukhtar M, Pomerantz RJ. Human immunodeficiency virus type 1 Vpr induces apoptosis in human neuronal cells. J Virol. 2000;74(20):9717–26. https://doi.org/10.1128/jvi.74.20.9717-9726.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Jones GJ, Barsby NL, Cohen EA, Holden J, Harris K, Dickie P, et al. HIV-1 Vpr causes neuronal apoptosis and in vivo neurodegeneration. J Neurosci. 2007;27(14):3703–11. https://doi.org/10.1523/JNEUROSCI.5522-06.2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Brabers NA, Nottet HS. Role of the pro-inflammatory cytokines TNF-alpha and IL-1beta in HIV-associated dementia. Eur J Clin Investig. 2006;36(7):447–58. https://doi.org/10.1111/j.1365-2362.2006.01657.x.

    Article  CAS  Google Scholar 

  137. Kaul M, Zheng J, Okamoto S, Gendelman HE, Lipton SA. HIV-1 infection and AIDS: consequences for the central nervous system. Cell Death Differ. 2005;12(Suppl 1):878–92. https://doi.org/10.1038/sj.cdd.4401623.

    Article  CAS  PubMed  Google Scholar 

  138. Kovalevich J, Langford D. Neuronal toxicity in HIV CNS disease. Futur Virol. 2012;7(7):687–98. https://doi.org/10.2217/fvl.12.57.

    Article  CAS  Google Scholar 

  139. Kaul M, Garden GA, Lipton SA. Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature. 2001;410(6831):988–94. https://doi.org/10.1038/35073667.

    Article  CAS  PubMed  Google Scholar 

  140. Olmos G, Llado J. Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity. Mediat Inflamm. 2014;2014:861231. https://doi.org/10.1155/2014/861231.

    Article  CAS  Google Scholar 

  141. Peng H, Erdmann N, Whitney N, Dou H, Gorantla S, Gendelman HE, et al. HIV-1-infected and/or immune activated macrophages regulate astrocyte SDF-1 production through IL-1beta. Glia. 2006;54(6):619–29. https://doi.org/10.1002/glia.20409.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Rostasy K, Egles C, Chauhan A, Kneissl M, Bahrani P, Yiannoutsos C, et al. SDF-1alpha is expressed in astrocytes and neurons in the AIDS dementia complex: an in vivo and in vitro study. J Neuropathol Exp Neurol. 2003;62(6):617–26. https://doi.org/10.1093/jnen/62.6.617.

    Article  CAS  PubMed  Google Scholar 

  143. Vergote D, Butler GS, Ooms M, Cox JH, Silva C, Hollenberg MD, et al. Proteolytic processing of SDF-1alpha reveals a change in receptor specificity mediating HIV-associated neurodegeneration. Proc Natl Acad Sci U S A. 2006;103(50):19182–7. https://doi.org/10.1073/pnas.0604678103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sui Y, Stehno-Bittel L, Li S, Loganathan R, Dhillon NK, Pinson D, et al. CXCL10-induced cell death in neurons: role of calcium dysregulation. Eur J Neurosci. 2006;23(4):957–64. https://doi.org/10.1111/j.1460-9568.2006.04631.x.

    Article  PubMed  Google Scholar 

  145. Sui Y, Potula R, Dhillon N, Pinson D, Li S, Nath A, et al. Neuronal apoptosis is mediated by CXCL10 overexpression in simian human immunodeficiency virus encephalitis. Am J Pathol. 2004;164(5):1557–66. https://doi.org/10.1016/S0002-9440(10)63714-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Kelder W, McArthur JC, Nance-Sproson T, McClernon D, Griffin DE. Beta-chemokines MCP-1 and RANTES are selectively increased in cerebrospinal fluid of patients with human immunodeficiency virus-associated dementia. Ann Neurol. 1998;44(5):831–5. https://doi.org/10.1002/ana.410440521.

    Article  CAS  PubMed  Google Scholar 

  147. Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): an overview. Journal of interferon & cytokine research : the official journal of the International Society for Interferon and Cytokine Research. 2009;29(6):313–26. https://doi.org/10.1089/jir.2008.0027.

    Article  CAS  Google Scholar 

  148. Ragin AB, Wu Y, Storey P, Cohen BA, Edelman RR, Epstein LG. Monocyte chemoattractant protein-1 correlates with subcortical brain injury in HIV infection. Neurology. 2006;66(8):1255–7. https://doi.org/10.1212/01.wnl.0000208433.34723.65.

    Article  CAS  PubMed  Google Scholar 

  149. Letendre SL, Zheng JC, Kaul M, Yiannoutsos CT, Ellis RJ, Taylor MJ, et al. Chemokines in cerebrospinal fluid correlate with cerebral metabolite patterns in HIV-infected individuals. J Neurovirol. 2011;17(1):63–9. https://doi.org/10.1007/s13365-010-0013-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Tong N, Perry SW, Zhang Q, James HJ, Guo H, Brooks A, et al. Neuronal fractalkine expression in HIV-1 encephalitis: roles for macrophage recruitment and neuroprotection in the central nervous system. J Immunol. 2000;164(3):1333–9. https://doi.org/10.4049/jimmunol.164.3.1333.

    Article  CAS  PubMed  Google Scholar 

  151. Pereira CF, Middel J, Jansen G, Verhoef J, Nottet HS. Enhanced expression of fractalkine in HIV-1 associated dementia. J Neuroimmunol. 2001;115(1-2):168–75. https://doi.org/10.1016/s0165-5728(01)00262-4.

    Article  CAS  PubMed  Google Scholar 

  152. Cotter R, Williams C, Ryan L, Erichsen D, Lopez A, Peng H, et al. Fractalkine (CX3CL1) and brain inflammation: Implications for HIV-1-associated dementia. J Neurovirol. 2002;8(6):585–98. https://doi.org/10.1080/13550280290100950.

    Article  CAS  PubMed  Google Scholar 

  153. Limatola C, Lauro C, Catalano M, Ciotti MT, Bertollini C, Di Angelantonio S, et al. Chemokine CX3CL1 protects rat hippocampal neurons against glutamate-mediated excitotoxicity. J Neuroimmunol. 2005;166(1-2):19–28. https://doi.org/10.1016/j.jneuroim.2005.03.023.

    Article  CAS  PubMed  Google Scholar 

  154. • He X, Yang W, Zeng Z, Wei Y, Gao J, Zhang B, et al. NLRP3-dependent pyroptosis is required for HIV-1 gp120-induced neuropathology. Cell Mol Immunol. 2020;17(3):283–99. https://doi.org/10.1038/s41423-019-0260-y.

    Article  CAS  PubMed  Google Scholar 

  155. Thangaraj A, Periyasamy P, Liao K, Bendi VS, Callen S, Pendyala G, et al. HIV-1 TAT-mediated microglial activation: role of mitochondrial dysfunction and defective mitophagy. Autophagy. 2018;14(9):1596–619. https://doi.org/10.1080/15548627.2018.1476810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. • Thangaraj A, Chivero ET, Tripathi A, Singh S, Niu F, Guo ML, et al. HIV TAT-mediated microglial senescence: Role of SIRT3-dependent mitochondrial oxidative stress. Redox Biol. 2021;40:101843. https://doi.org/10.1016/j.redox.2020.101843.

    Article  CAS  PubMed  Google Scholar 

  157. Ru W, Liu X, Bae C, Shi Y, Walikonis R, Mo Chung J, et al. Microglia Mediate HIV-1 gp120-Induced Synaptic Degeneration in Spinal Pain Neural Circuits. J Neurosci. 2019;39(42):8408–21. https://doi.org/10.1523/JNEUROSCI.2851-18.2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Medders KE, Sejbuk NE, Maung R, Desai MK, Kaul M. Activation of p38 MAPK is required in monocytic and neuronal cells for HIV glycoprotein 120-induced neurotoxicity. J Immunol. 2010;185(8):4883–95. https://doi.org/10.4049/jimmunol.0902535.

    Article  CAS  PubMed  Google Scholar 

  159. Acharjee S, Branton WG, Vivithanaporn P, Maingat F, Paul AM, Dickie P, et al. HIV-1 Nef expression in microglia disrupts dopaminergic and immune functions with associated mania-like behaviors. Brain Behav Immun. 2014;40:74–84. https://doi.org/10.1016/j.bbi.2014.02.016.

    Article  CAS  PubMed  Google Scholar 

  160. Mangino G, Famiglietti M, Capone C, Veroni C, Percario ZA, Leone S, et al. HIV-1 Myristoylated Nef Treatment of Murine Microglial Cells Activates Inducible Nitric Oxide Synthase, NO2 Production and Neurotoxic Activity. PLoS One. 2015;10(6):e0130189. https://doi.org/10.1371/journal.pone.0130189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Russell RA, Chojnacki J, Jones DM, Johnson E, Do T, Eggeling C, et al. Astrocytes Resist HIV-1 Fusion but Engulf Infected Macrophage Material. Cell Rep. 2017;18(6):1473–83. https://doi.org/10.1016/j.celrep.2017.01.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Do T, Murphy G, Earl LA, Del Prete GQ, Grandinetti G, Li GH, et al. Three-dimensional imaging of HIV-1 virological synapses reveals membrane architectures involved in virus transmission. J Virol. 2014;88(18):10327–39. https://doi.org/10.1128/JVI.00788-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Luo X, He JJ. Cell-cell contact viral transfer contributes to HIV infection and persistence in astrocytes. J Neurovirol. 2015;21(1):66–80. https://doi.org/10.1007/s13365-014-0304-0.

    Article  CAS  PubMed  Google Scholar 

  164. Chauhan A, Mehla R, Vijayakumar TS, Handy I. Endocytosis-mediated HIV-1 entry and its significance in the elusive behavior of the virus in astrocytes. Virology. 2014;456-457:1–19. https://doi.org/10.1016/j.virol.2014.03.002.

    Article  CAS  PubMed  Google Scholar 

  165. Hao HN, Chiu FC, Losev L, Weidenheim KM, Rashbaum WK, Lyman WD. HIV infection of human fetal neural cells is mediated by gp120 binding to a cell membrane-associated molecule that is not CD4 nor galactocerebroside. Brain Res. 1997;764(1-2):149–57. https://doi.org/10.1016/s0006-8993(97)00441-1.

    Article  CAS  PubMed  Google Scholar 

  166. Conant K, Tornatore C, Atwood W, Meyers K, Traub R, Major EO. In vivo and in vitro infection of the astrocyte by HIV-1. Adv Neuroimmunol. 1994;4(3):287–9. https://doi.org/10.1016/s0960-5428(06)80269-x.

    Article  CAS  PubMed  Google Scholar 

  167. Churchill MJ, Gorry PR, Cowley D, Lal L, Sonza S, Purcell DF, et al. Use of laser capture microdissection to detect integrated HIV-1 DNA in macrophages and astrocytes from autopsy brain tissues. J Neurovirol. 2006;12(2):146–52. https://doi.org/10.1080/13550280600748946.

    Article  CAS  PubMed  Google Scholar 

  168. Ton H, Xiong H. Astrocyte Dysfunctions and HIV-1 Neurotoxicity. Journal of AIDS & clinical research. 2013;4(11):255. https://doi.org/10.4172/2155-6113.1000255.

    Article  Google Scholar 

  169. Ranki A, Nyberg M, Ovod V, Haltia M, Elovaara I, Raininko R, et al. Abundant expression of HIV Nef and Rev proteins in brain astrocytes in vivo is associated with dementia. Aids. 1995;9(9):1001–8. https://doi.org/10.1097/00002030-199509000-00004.

    Article  CAS  PubMed  Google Scholar 

  170. Gorry P, Purcell D, Howard J, McPhee D. Restricted HIV-1 infection of human astrocytes: potential role of nef in the regulation of virus replication. J Neurovirol. 1998;4(4):377–86. https://doi.org/10.3109/13550289809114536.

    Article  CAS  PubMed  Google Scholar 

  171. Shah A, Verma AS, Patel KH, Noel R, Rivera-Amill V, Silverstein PS, et al. HIV-1 gp120 induces expression of IL-6 through a nuclear factor-kappa B-dependent mechanism: suppression by gp120 specific small interfering RNA. PLoS One. 2011;6(6):e21261. https://doi.org/10.1371/journal.pone.0021261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Williams R, Yao H, Dhillon NK, Buch SJ. HIV-1 Tat co-operates with IFN-gamma and TNF-alpha to increase CXCL10 in human astrocytes. PLoS One. 2009;4(5):e5709. https://doi.org/10.1371/journal.pone.0005709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Williams R, Yao H, Peng F, Yang Y, Bethel-Brown C, Buch S. Cooperative induction of CXCL10 involves NADPH oxidase: Implications for HIV dementia. Glia. 2010;58(5):611–21. https://doi.org/10.1002/glia.20949.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Reddy PV, Gandhi N, Samikkannu T, Saiyed Z, Agudelo M, Yndart A, et al. HIV-1 gp120 induces antioxidant response element-mediated expression in primary astrocytes: role in HIV associated neurocognitive disorder. Neurochem Int. 2012;61(5):807–14. https://doi.org/10.1016/j.neuint.2011.06.011.

    Article  CAS  PubMed  Google Scholar 

  175. Eugenin EA, Clements JE, Zink MC, Berman JW. Human immunodeficiency virus infection of human astrocytes disrupts blood-brain barrier integrity by a gap junction-dependent mechanism. J Neurosci. 2011;31(26):9456–65. https://doi.org/10.1523/JNEUROSCI.1460-11.2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Hu G, Yao H, Chaudhuri AD, Duan M, Yelamanchili SV, Wen H, et al. Exosome-mediated shuttling of microRNA-29 regulates HIV Tat and morphine-mediated neuronal dysfunction. Cell Death Dis. 2012;3:e381. https://doi.org/10.1038/cddis.2012.114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Yelamanchili SV, Lamberty BG, Rennard DA, Morsey BM, Hochfelder CG, Meays BM, et al. MiR-21 in Extracellular Vesicles Leads to Neurotoxicity via TLR7 Signaling in SIV Neurological Disease. PLoS Pathog. 2015;11(7):e1005032. Epub 2015/07/15. https://doi.org/10.1371/journal.ppat.1005032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. • Sil S, Niu F, Chivero ET, Singh S, Periyasamy P, Buch S. Role of Inflammasomes in HIV-1 and Drug Abuse Mediated Neuroinflammaging. Cells. 2020;9(8). https://doi.org/10.3390/cells9081857.

  179. Fitting S, Xu R, Bull C, Buch SK, El-Hage N, Nath A, et al. Interactive comorbidity between opioid drug abuse and HIV-1 Tat: chronic exposure augments spine loss and sublethal dendritic pathology in striatal neurons. Am J Pathol. 2010;177(3):1397–410. https://doi.org/10.2353/ajpath.2010.090945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Robinson TE, Gorny G, Savage VR, Kolb B. Widespread but regionally specific effects of experimenter- versus self-administered morphine on dendritic spines in the nucleus accumbens, hippocampus, and neocortex of adult rats. Synapse. 2002;46(4):271–9. https://doi.org/10.1002/syn.10146.

    Article  CAS  PubMed  Google Scholar 

  181. Liao D, Lin H, Law PY, Loh HH. Mu-opioid receptors modulate the stability of dendritic spines. Proc Natl Acad Sci U S A. 2005;102(5):1725–30. https://doi.org/10.1073/pnas.0406797102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Pitcher J, Abt A, Myers J, Han R, Snyder M, Graziano A, et al. Neuronal ferritin heavy chain and drug abuse affect HIV-associated cognitive dysfunction. J Clin Invest. 2014;124(2):656–69. https://doi.org/10.1172/JCI70090.

  183. Robinson TE, Kolb B. Alterations in the morphology of dendrites and dendritic spines in the nucleus accumbens and prefrontal cortex following repeated treatment with amphetamine or cocaine. Eur J Neurosci. 1999;11(5):1598–604. https://doi.org/10.1046/j.1460-9568.1999.00576.x.

Download references

Funding

This research was funded by NIH NIDA, grant numbers MH112848, DA050545, DA044586, DA040397, DA047156, DA043138, DA052266, and AG069541. The support by CHAIN (Chronic HIV infection and Aging in NeuroAIDS) Center grant (MH062261) and NCSAR (Nebraska Center for Substance Abuse Research) is also highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Susmita Sil or Palsamy Periyasamy.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Topical Collection on Central Nervous System and Cognition

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sil, S., Periyasamy, P., Thangaraj, A. et al. Advances in the Experimental Models of HIV-Associated Neurological Disorders. Curr HIV/AIDS Rep 18, 459–474 (2021). https://doi.org/10.1007/s11904-021-00570-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-021-00570-1

Keywords

Navigation