Skip to main content

Advertisement

Log in

Role of T Lymphocytes in HIV Neuropathogenesis

  • Central Nervous System and Cognition (S Spudich, Section Editor)
  • Published:
Current HIV/AIDS Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this review is to summarize the current knowledge on the role of CD4+ T lymphocytes leading to HIV assault and persistence in the central nervous system (CNS) and the elimination of HIV-infected CNS resident cells by CD8+ T lymphocytes.

Recent Findings

HIV targets the CNS early in infection, and HIV-infected individuals suffer from mild forms of neurological impairments even under antiretroviral therapy (ART). CD4+ T cells and monocytes mediate HIV entry into the brain and constitute a source for HIV persistence and neuronal damage. HIV-specific CD8+ T cells are also massively recruited in the CNS in acute infection to control viral replication but cannot eliminate HIV-infected cells within the CNS.

Summary

This review summarizes the involvement of CD4+ T cells in seeding and maintaining HIV infection in the brain and describes the involvement of CD8+ T cells in HIV neuropathogenesis, playing a role still to be deciphered, either beneficial in eliminating HIV-infected cells or deleterious in releasing inflammatory cytokines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Saloner R, Cysique LA. HIV-associated neurocognitive disorders: a global perspective. J Int Neuropsychol Soc. 2017;23(9–10):860–9. https://doi.org/10.1017/S1355617717001102.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Spudich S. HIV and neurocognitive dysfunction. Curr HIV/AIDS Rep. 2013;10(3):235–43. https://doi.org/10.1007/s11904-013-0171-y.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Farhadian S, Patel P, Spudich S. Neurological complications of HIV infection. Curr Infect Dis Rep. 2017;19(12):50. https://doi.org/10.1007/s11908-017-0606-5.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hong S, Banks WA. Role of the immune system in HIV-associated neuroinflammation and neurocognitive implications. Brain Behav Immun. 2015;45:1–12. https://doi.org/10.1016/j.bbi.2014.10.008.

    Article  CAS  PubMed  Google Scholar 

  5. • Do TC, Kerr SJ, Avihingsanon A, Suksawek S, Klungkang S, Channgam T, et al. HIV-associated cognitive performance and psychomotor impairment in a Thai cohort on long-term cART. J Virus Erad. 2018;4(1):41–7 This cross-sectional study evaluated the cognitive and psychomotor performance in well-supressed HIV-infected Thai individuals after long-term treatment compared with healthy individuals.

    PubMed  PubMed Central  Google Scholar 

  6. Heaton RK, Clifford DB, Franklin DR Jr, Woods SP, Ake C, Vaida F, et al. HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER study. Neurology. 2010;75(23):2087–96. https://doi.org/10.1212/WNL.0b013e318200d727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Anderson AM, Harezlak J, Bharti A, Mi D, Taylor MJ, Daar ES, et al. Plasma and cerebrospinal fluid biomarkers predict cerebral injury in HIV-infected individuals on stable combination antiretroviral therapy. J Acquir Immune Defic Syndr. 2015;69(1):29–35. https://doi.org/10.1097/QAI.0000000000000532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. • Anderson AM, Munoz-Moreno JA, McClernon DR, Ellis RJ, Cookson D, Clifford DB, et al. Prevalence and correlates of persistent HIV-1 RNA in cerebrospinal fluid during antiretroviral therapy. J Infect Dis. 2017;215(1):105–13. https://doi.org/10.1093/infdis/jiw505 In this study, the authors were able to detect a low level of HIV-1 RNA in the CSF of US HIV-infected participants under ART, using a sensitive detection method, and the discordent detection in the CSF compared with blood was associated with lower neurocognitive performance.

    Article  CAS  PubMed  Google Scholar 

  9. Chan P, Hellmuth J, Spudich S, Valcour V. Cognitive impairment and persistent CNS injury in treated HIV. Curr HIV/AIDS Rep. 2016;13(4):209–17. https://doi.org/10.1007/s11904-016-0319-7.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Garvey LJ, Pavese N, Politis M, Ramlackhansingh A, Brooks DJ, Taylor-Robinson SD, et al. Increased microglia activation in neurologically asymptomatic HIV-infected patients receiving effective ART. AIDS. 2014;28(1):67–72. https://doi.org/10.1097/01.aids.0000432467.54003.f7.

    Article  CAS  PubMed  Google Scholar 

  11. Heaton RK, Franklin DR, Ellis RJ, McCutchan JA, Letendre SL, Leblanc S, et al. HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. J Neuro-Oncol. 2011;17(1):3–16. https://doi.org/10.1007/s13365-010-0006-1.

    Article  CAS  Google Scholar 

  12. Ragin AB, Wu Y, Gao Y, Keating S, Du H, Sammet C, et al. Brain alterations within the first 100 days of HIV infection. Ann Clin Transl Neurol. 2015;2(1):12–21. https://doi.org/10.1002/acn3.136.

    Article  PubMed  Google Scholar 

  13. Fiebig EW, Wright DJ, Rawal BD, Garrett PE, Schumacher RT, Peddada L, et al. Dynamics of HIV viremia and antibody seroconversion in plasma donors: implications for diagnosis and staging of primary HIV infection. AIDS. 2003;17(13):1871–9. https://doi.org/10.1097/01.aids.0000076308.76477.b8.

    Article  PubMed  Google Scholar 

  14. Kore I, Ananworanich J, Valcour V, Fletcher JL, Chalermchai T, Paul R, et al. Neuropsychological impairment in acute HIV and the effect of immediate antiretroviral therapy. J Acquir Immune Defic Syndr. 2015;70(4):393–9. https://doi.org/10.1097/QAI.0000000000000746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. D’Antoni ML, Byron MM, Chan P, Sailasuta N, Sacdalan C, Sithinamsuwan P, et al. Normalization of soluble CD163 after institution of antiretroviral therapy during acute HIV infection tracks with fewer neurological abnormalities. J Infect Dis. 2018;218:1453–63. https://doi.org/10.1093/infdis/jiy337.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ellis RJ, Badiee J, Vaida F, Letendre S, Heaton RK, Clifford D, et al. CD4 nadir is a predictor of HIV neurocognitive impairment in the era of combination antiretroviral therapy. AIDS. 2011;25(14):1747–51. https://doi.org/10.1097/QAD.0b013e32834a40cd.

    Article  CAS  PubMed  Google Scholar 

  17. Louveau A, Smirnov I, Keyes TJ, Eccles JD, Rouhani SJ, Peske JD, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015;523(7560):337–41. https://doi.org/10.1038/nature14432.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Absinta M, Ha SK, Nair G, Sati P, Luciano NJ, Palisoc M, et al. Human and nonhuman primate meninges harbor lymphatic vessels that can be visualized noninvasively by MRI. Elife. 2017;6. https://doi.org/10.7554/eLife.29738.

  19. Baruch K, Schwartz M. CNS-specific T cells shape brain function via the choroid plexus. Brain Behav Immun. 2013;34:11–6. https://doi.org/10.1016/j.bbi.2013.04.002.

    Article  CAS  PubMed  Google Scholar 

  20. Aspelund A, Antila S, Proulx ST, Karlsen TV, Karaman S, Detmar M, et al. A dural lymphatic vascular system that drains brain interstitial fluid and macromolecules. J Exp Med. 2015;212(7):991–9. https://doi.org/10.1084/jem.20142290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. • Honeycutt JB, Liao B, Nixon CC, Cleary RA, Thayer WO, Birath SL, et al. T cells establish and maintain CNS viral infection in HIV-infected humanized mice. J Clin Invest. 2018;128:2862–76. https://doi.org/10.1172/JCI98968 This study used two mouse models to demonstrate that CD4 + T cells are sufficient to drive HIV infection in the brain.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Joseph SB, Arrildt KT, Sturdevant CB, Swanstrom R. HIV-1 target cells in the CNS. J Neuro-Oncol. 2015;21(3):276–89. https://doi.org/10.1007/s13365-014-0287-x.

    Article  CAS  Google Scholar 

  23. Smolders J, Remmerswaal EB, Schuurman KG, Melief J, van Eden CG, van Lier RA, et al. Characteristics of differentiated CD8(+) and CD4 (+) T cells present in the human brain. Acta Neuropathol. 2013;126(4):525–35. https://doi.org/10.1007/s00401-013-1155-0.

    Article  CAS  PubMed  Google Scholar 

  24. Ho EL, Ronquillo R, Altmeppen H, Spudich SS, Price RW, Sinclair E. Cellular composition of cerebrospinal fluid in HIV-1 infected and uninfected subjects. PLoS One. 2013;8(6):e66188. https://doi.org/10.1371/journal.pone.0066188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Valcour V, Chalermchai T, Sailasuta N, Marovich M, Lerdlum S, Suttichom D, et al. Central nervous system viral invasion and inflammation during acute HIV infection. J Infect Dis. 2012;206(2):275–82. https://doi.org/10.1093/infdis/jis326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zayyad Z, Spudich S. Neuropathogenesis of HIV: from initial neuroinvasion to HIV-associated neurocognitive disorder (HAND). Curr HIV/AIDS Rep. 2015;12(1):16–24. https://doi.org/10.1007/s11904-014-0255-3.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Spudich SS. Immune activation in the central nervous system throughout the course of HIV infection. Curr Opin HIV AIDS. 2016;11(2):226–33. https://doi.org/10.1097/COH.0000000000000243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hellmuth J, Valcour V, Spudich S. CNS reservoirs for HIV: implications for eradication. J Virus Erad. 2015;1(2):67–71.

    PubMed  PubMed Central  Google Scholar 

  29. • Chan P, Patel P, Hellmuth J, Colby DJ, Kroon E, Sacdalan C, et al. Distribution of HIV RNA in CSF and blood is linked to CD4/CD8 ratio during acute HIV. J Infect Dis. 2018;218:937–45. https://doi.org/10.1093/infdis/jiy260 This study describes the detection of HIV RNA in CSF in most of the HIV individuals in acute infection and shows CSF HIV RNA peak at Fiebig IV subsequent to the peak in plasma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Spudich SS, Ances BM. CROI 2017: neurologic complications of HIV infection. Top Antivir Med. 2017;25(2):69–76.

    PubMed  PubMed Central  Google Scholar 

  31. • Sturdevant CB, Joseph SB, Schnell G, Price RW, Swanstrom R, Spudich S. Compartmentalized replication of R5 T cell-tropic HIV-1 in the central nervous system early in the course of infection. PLoS Pathog. 2015;11(3):e1004720. https://doi.org/10.1371/journal.ppat.1004720 This study compared CSF and blood viral populations in ART-naïve subjects within 2 years post-HIV infection and demonstrated four different mechanisms in HIV brain infection in which both T cell pleocyosis and local viral replication in the CNS occur in early infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Campbell JH, Ratai EM, Autissier P, Nolan DJ, Tse S, Miller AD, et al. Anti-alpha4 antibody treatment blocks virus traffic to the brain and gut early, and stabilizes CNS injury late in infection. PLoS Pathog. 2014;10(12):e1004533. https://doi.org/10.1371/journal.ppat.1004533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. • Hsu DC, Sunyakumthorn P, Wegner M, Schuetz A, Silsorn D, Estes JD, et al. Central nervous system inflammation and infection during early, non-accelerated simian-human immunodeficiency virus infection in rhesus macaques. J Virol. 2018;92:e00222–18. https://doi.org/10.1128/JVI.00222-18 This work addresses the very early events occuring in the brain after SIV infection and shows T cell infiltration without BBB damage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Williams DW, Veenstra M, Gaskill PJ, Morgello S, Calderon TM, Berman JW. Monocytes mediate HIV neuropathogenesis: mechanisms that contribute to HIV associated neurocognitive disorders. Curr HIV Res. 2014;12(2):85–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pulliam L, Gascon R, Stubblebine M, McGuire D, McGrath MS. Unique monocyte subset in patients with AIDS dementia. Lancet. 1997;349(9053):692–5. https://doi.org/10.1016/S0140-6736(96)10178-1.

    Article  CAS  PubMed  Google Scholar 

  36. Kusao I, Shiramizu B, Liang CY, Grove J, Agsalda M, Troelstrup D, et al. Cognitive performance related to HIV-1-infected monocytes. J Neuropsychiatry Clin Neurosci. 2012;24(1):71–80. https://doi.org/10.1176/appi.neuropsych.11050109.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Veenstra M, Leon-Rivera R, Li M, Gama L, Clements JE, Berman JW. Mechanisms of CNS viral seeding by HIV(+) CD14(+) CD16(+) monocytes: establishment and reseeding of viral reservoirs contributing to HIV-associated neurocognitive disorders. MBio. 2017;8(5). https://doi.org/10.1128/mBio.01280-17.

  38. Veenstra M, Williams DW, Calderon TM, Anastos K, Morgello S, Berman JW. Frontline Science: CXCR7 mediates CD14(+)CD16(+) monocyte transmigration across the blood brain barrier: a potential therapeutic target for NeuroAIDS. J Leukoc Biol. 2017;102(5):1173–85. https://doi.org/10.1189/jlb.3HI0517-167R.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ndhlovu LC, D’Antoni ML, Ananworanich J, Byron MM, Chalermchai T, Sithinamsuwan P, et al. Loss of CCR2 expressing non-classical monocytes are associated with cognitive impairment in antiretroviral therapy-naïve HIV-infected Thais. J Neuroimmunol. 2015;288:25–33. https://doi.org/10.1016/j.jneuroim.2015.08.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. D'Antoni ML, Paul RH, Mitchell BI, Kohorn L, Fischer L, Lefebvre E, et al. Improved cognitive performance and reduced monocyte activation in virally suppressed chronic HIV following dual CCR2 and CCR5 antagonism. J Acquir Immune Defic Syndr. 2018;79:108–16. https://doi.org/10.1097/QAI.0000000000001752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dalvi P, Sun B, Tang N, Pulliam L. Immune activated monocyte exosomes alter microRNAs in brain endothelial cells and initiate an inflammatory response through the TLR4/MyD88 pathway. Sci Rep. 2017;7(1):9954. https://doi.org/10.1038/s41598-017-10449-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. •• Estes JD, Kityo C, Ssali F, Swainson L, Makamdop KN, Del Prete GQ, et al. Defining total-body AIDS-virus burden with implications for curative strategies. Nat Med. 2017;23(11):1271–6. https://doi.org/10.1038/nm.4411 This study quantifies the viral reservoirs in many tissues and demonstrates the persistence of HIV RNA+ cells in the brain after ART in SIV-infected monkeys.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Haupts M, Smektala K, Finkbeiner T, Simmet T, Gehlen W. Immunoreactive leukotriene C4 levels in CSF of MS patients. Acta Neurol Scand. 1992;85(5):365–7.

    Article  CAS  PubMed  Google Scholar 

  44. Bertin J, Jalaguier P, Barat C, Roy MA, Tremblay MJ. Exposure of human astrocytes to leukotriene C4 promotes a CX3CL1/fractalkine-mediated transmigration of HIV-1-infected CD4(+) T cells across an in vitro blood-brain barrier model. Virology. 2014;454-455:128–38. https://doi.org/10.1016/j.virol.2014.02.007.

    Article  CAS  PubMed  Google Scholar 

  45. Kolb SA, Sporer B, Lahrtz F, Koedel U, Pfister HW, Fontana A. Identification of a T cell chemotactic factor in the cerebrospinal fluid of HIV-1-infected individuals as interferon-gamma inducible protein 10. J Neuroimmunol. 1999;93(1–2):172–81.

    Article  CAS  PubMed  Google Scholar 

  46. Beauparlant D, Rusert P, Magnus C, Kadelka C, Weber J, Uhr T, et al. Delineating CD4 dependency of HIV-1: adaptation to infect low level CD4 expressing target cells widens cellular tropism but severely impacts on envelope functionality. PLoS Pathog. 2017;13(3):e1006255. https://doi.org/10.1371/journal.ppat.1006255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nath A. Eradication of human immunodeficiency virus from brain reservoirs. J Neuro-Oncol. 2015;21(3):227–34. https://doi.org/10.1007/s13365-014-0291-1.

    Article  CAS  Google Scholar 

  48. Mallard J, Williams K. An SIV macaque model of SIV and HAND: the need for adjunctive therapies in HIV that target activated monocytes and macrophages. J Neuro-Oncol. 2018;24(2):213–9. https://doi.org/10.1007/s13365-018-0616-6.

    Article  CAS  Google Scholar 

  49. Avalos CR, Abreu CM, Queen SE, Li M, Price S, Shirk EN, et al. Brain macrophages in simian immunodeficiency virus-infected, antiretroviral-suppressed macaques: a functional latent reservoir. MBio. 2017;8(4). https://doi.org/10.1128/mBio.01186-17.

  50. Barat C, Proust A, Deshiere A, Leboeuf M, Drouin J, Tremblay MJ. Astrocytes sustain long-term productive HIV-1 infection without establishment of reactivable viral latency. Glia. 2018;66:1363–81. https://doi.org/10.1002/glia.23310.

    Article  PubMed  Google Scholar 

  51. • Kessing CF, Spudich S, Valcour V, Cartwright P, Chalermchai T, Fletcher JL, et al. High number of activated CD8+ T cells targeting HIV antigens are present in cerebrospinal fluid in acute HIV infection. J Acquir Immune Defic Syndr. 2017;75(1):108–17. https://doi.org/10.1097/QAI.0000000000001301 This study characterizes the CD8 + T lymphocytes in the CSF of HIV-infected participants during acute infection and demonstrates the presence of functional HIV-specific CD8 + T cells compared with untreated chronic infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. • Ganesh A, Lemongello D, Lee E, Peterson J, McLaughlin BE, Ferre AL, et al. Immune activation and HIV-specific CD8(+) T cells in cerebrospinal fluid of HIV controllers and noncontrollers. AIDS Res Hum Retrovir. 2016;32(8):791–800. https://doi.org/10.1089/AID.2015.0313 This study evidenced the surveillance of CNS by CD8 + T cells and demonstrated the presence of HIV-specific CD8 + T cells in CSF samples of controller and non-controller HIV-infected individuals at similar frequency.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Cartwright EK, Spicer L, Smith SA, Lee D, Fast R, Paganini S, et al. CD8(+) lymphocytes are required for maintaining viral suppression in SIV-infected macaques treated with short-term antiretroviral therapy. Immunity. 2016;45(3):656–68. https://doi.org/10.1016/j.immuni.2016.08.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. • Richards MH, Narasipura SD, Seaton MS, Lutgen V, Al-Harthi L. Migration of CD8+ T cells into the central nervous system gives rise to highly potent anti-HIV CD4dimCD8bright T cells in a Wnt signaling-dependent manner. J Immunol. 2016;196(1):317–27. https://doi.org/10.4049/jimmunol.1501394 This study depicts a mice model reconstituted with human PBMCs and highlights a unique subset of potent anti-HIV CD8 + T cells expressing a low level of CD4 recruited in the brain.

    Article  CAS  PubMed  Google Scholar 

  55. Graham DR, Gama L, Queen SE, Li M, Brice AK, Kelly KM, et al. Initiation of HAART during acute simian immunodeficiency virus infection rapidly controls virus replication in the CNS by enhancing immune activity and preserving protective immune responses. J Neuro-Oncol. 2011;17(1):120–30. https://doi.org/10.1007/s13365-010-0005-2.

    Article  CAS  Google Scholar 

  56. •• Takata H, Buranapraditkun S, Kessing C, Fletcher JL, Muir R, Tardif V, et al. Delayed differentiation of potent effector CD8(+) T cells reducing viremia and reservoir seeding in acute HIV infection. Sci Transl Med. 2017;9(377):eaag1809. https://doi.org/10.1126/scitranslmed.aag1809 This study characterizes HIV-specific CD8 + T cells in a unique cohort of HIV-infected individulas in acute infection and demonstrates the presence of HIV-specific CD8 + T cells in controling HIV replication in blood and limitating reservoir seeding.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. •• Clayton KL, Collins DR, Lengieza J, Ghebremichael M, Dotiwala F, Lieberman J, et al. Resistance of HIV-infected macrophages to CD8(+) T lymphocyte-mediated killing drives activation of the immune system. Nat Immunol. 2018;19(5):475–86. https://doi.org/10.1038/s41590-018-0085-3 This study demonstrates a dichotomy in the capacity of CD8 + T cells to efficiently eliminate HIV-infected CD4 + T cells and macrophages and highlights an impaired macrophage killing leading to their activation and sustained inflammation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. • Yue FY, Cohen JC, Ho M, Rahman AK, Liu J, Mujib S, et al. HIV-specific granzyme B-secreting but not gamma interferon-secreting T cells are associated with reduced viral reservoirs in early HIV infection. J Virol. 2017;91(8). https://doi.org/10.1128/JVI.02233-16 This study examines INF-γ and granzyme B responses in PBMCs of HIV-infected individuals and demonstrates a granzyme B response from CD8 + T cells associated with a reduced viral reservoir.

  59. Schrier RD, Hong S, Crescini M, Ellis R, Perez-Santiago J, Spina C, et al. Cerebrospinal fluid (CSF) CD8+ T-cells that express interferon-gamma contribute to HIV associated neurocognitive disorders (HAND). PLoS One. 2015;10(2):e0116526. https://doi.org/10.1371/journal.pone.0116526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. •• Grauer OM, Reichelt D, Gruneberg U, Lohmann H, Schneider-Hohendorf T, Schulte-Mecklenbeck A, et al. Neurocognitive decline in HIV patients is associated with ongoing T-cell activation in the cerebrospinal fluid. Ann Clin Transl Neurol. 2015;2(9):906–19. https://doi.org/10.1002/acn3.227 This study correlated increased frequency of activation markers on T lymphocytes in blood and in CSF with worse neurocognitive performance. A lower CD4/CD8 ratio was also associated with neurocognitive impairment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ratto-Kim S, Schuetz A, Sithinamsuwan P, Barber J, Hutchings N, Lerdlum S, et al. Characterization of cellular immune responses in Thai individuals with and without HIV-associated neurocognitive disorders. AIDS Res Hum Retrovir. 2018;34:685–9. https://doi.org/10.1089/AID.2017.0237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Trautmann L, Mbitikon-Kobo FM, Goulet JP, Peretz Y, Shi Y, Van Grevenynghe J, et al. Profound metabolic, functional, and cytolytic differences characterize HIV-specific CD8 T cells in primary and chronic HIV infection. Blood. 2012;120(17):3466–77. https://doi.org/10.1182/blood-2012-04-422550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Uzasci L, Nath A, Cotter R. Oxidative stress and the HIV-infected brain proteome. J NeuroImmune Pharmacol. 2013;8(5):1167–80. https://doi.org/10.1007/s11481-013-9444-x.

    Article  PubMed  Google Scholar 

  64. Johnson T, Nath A. Immune reconstitution inflammatory syndrome and the central nervous system. Curr Opin Neurol. 2011;24(3):284–90. https://doi.org/10.1097/WCO.0b013e328346be57.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the U.S. National Institute of Mental Health R01MH106466 and by a cooperative agreement (W81XWH-07-2-0067) between the Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., and the U.S. Department of Defense (DOD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lydie Trautmann.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Disclaimer

The views expressed are those of the authors and should not be construed to represent the positions of the U.S. Army or the Department of Defense.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Central Nervous System and Cognition

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Subra, C., Trautmann, L. Role of T Lymphocytes in HIV Neuropathogenesis. Curr HIV/AIDS Rep 16, 236–243 (2019). https://doi.org/10.1007/s11904-019-00445-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11904-019-00445-6

Keywords

Navigation