Skip to main content

Advertisement

Log in

Minimal Residual Disease Eradication in CML: Does It Really Matter?

  • Chronic Myeloid Leukemias (J Pinilla-Ibarz, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

BCR-ABL1 tyrosine kinase inhibitors (TKIs) have improved the prognosis of chronic phase chronic myeloid leukemia (CP-CML) to an extent that survival is largely determined by non-CML mortality. Monitoring for minimal residual disease by measuring BCR-ABL1 messenger RNA is a key component of CML management. CP-CML patients who achieve a stable deep molecular response may discontinue (TKIs) with an ~ 50% chance of entering treatment-free remission (TFR). So far discontinuation of TKIs has largely been limited to clinical trials, but is on the verge of becoming a part of wider clinical practice. Careful patient selection, dense molecular monitoring, and prompt reinstitution of treatment in the event of relapse are all vital to reproduce the same level of success. Much effort has been dedicated to identifying therapeutic strategies to eliminate CML stem cells and enable to TFR in more patients. Unfortunately, despite promising preclinical data, as yet, none of the various approaches have entered clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood. 2000;96(10):3343–56.

    CAS  PubMed  Google Scholar 

  2. Kantarjian HM, Keating MJ, Talpaz M, Walters RS, Smith TL, Cork A, et al. Chronic myelogenous leukemia in blast crisis. Analysis of 242 patients. Am J Med. 1987;83(3):445–54.

    Article  CAS  PubMed  Google Scholar 

  3. • Hochhaus A, Larson RA, Guilhot F, Radich JP, Branford S, Hughes TP, et al. Long-term outcomes of imatinib treatment for chronic myeloid leukemia. N Engl J Med. 2017;376(10):917–27. doi:10.1056/NEJMoa1609324. First randomized study of tyrosine kinase inhibitor therapy in chronic phase CML. Long term data showed excellent overall survival in imatinib treated patients and no long term toxicity emerged with 11 years of follow-up.

    Article  CAS  PubMed  Google Scholar 

  4. O’Hare T, Zabriskie MS, Eiring AM, Deininger MW. Pushing the limits of targeted therapy in chronic myeloid leukaemia. Nat Rev Cancer. 2012;12(8):513–26. doi:10.1038/nrc3317.

    Article  PubMed  Google Scholar 

  5. Hochhaus A, Kantarjian HM, Baccarani M, Lipton JH, Apperley JF, Druker BJ, et al. Dasatinib induces notable hematologic and cytogenetic responses in chronic-phase chronic myeloid leukemia after failure of imatinib therapy. Blood. 2007;109(6):2303–9. doi:10.1182/blood-2006-09-047266.

    Article  CAS  PubMed  Google Scholar 

  6. Guilhot F, Apperley J, Kim DW, Bullorsky EO, Baccarani M, Roboz GJ, et al. Dasatinib induces significant hematologic and cytogenetic responses in patients with imatinib-resistant or -intolerant chronic myeloid leukemia in accelerated phase. Blood. 2007;109(10):4143–50. doi:10.1182/blood-2006-09-046839.

    Article  CAS  PubMed  Google Scholar 

  7. Cortes J, Rousselot P, Kim DW, Ritchie E, Hamerschlak N, Coutre S, et al. Dasatinib induces complete hematologic and cytogenetic responses in patients with imatinib-resistant or -intolerant chronic myeloid leukemia in blast crisis. Blood. 2007;109(8):3207–13. doi:10.1182/blood-2006-09-046888.

    Article  CAS  PubMed  Google Scholar 

  8. Kantarjian HM, Giles F, Gattermann N, Bhalla K, Alimena G, Palandri F, et al. Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is effective in patients with Philadelphia chromosome-positive chronic myelogenous leukemia in chronic phase following imatinib resistance and intolerance. Blood. 2007;110(10):3540–6. doi:10.1182/blood-2007-03-080689.

    Article  CAS  PubMed  Google Scholar 

  9. le Coutre P, Ottmann OG, Giles F, Kim DW, Cortes J, Gattermann N, et al. Nilotinib (formerly AMN107), a highly selective BCR-ABL tyrosine kinase inhibitor, is active in patients with imatinib-resistant or -intolerant accelerated-phase chronic myelogenous leukemia. Blood. 2008;111(4):1834–9. doi:10.1182/blood-2007-04-083196.

    Article  PubMed  Google Scholar 

  10. Kantarjian H, Shah NP, Hochhaus A, Cortes J, Shah S, Ayala M, et al. Dasatinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2010;362(24):2260–70. doi:10.1056/NEJMoa1002315.

    Article  CAS  PubMed  Google Scholar 

  11. Saglio G, Kim DW, Issaragrisil S, le Coutre P, Etienne G, Lobo C, et al. Nilotinib versus imatinib for newly diagnosed chronic myeloid leukemia. N Engl J Med. 2010;362(24):2251–9. doi:10.1056/NEJMoa0912614.

    Article  CAS  PubMed  Google Scholar 

  12. Cortes JE, Kim DW, Kantarjian HM, Brummendorf TH, Dyagil I, Griskevicius L, et al. Bosutinib versus imatinib in newly diagnosed chronic-phase chronic myeloid leukemia: results from the BELA trial. J Clin Oncol: Off J Am Soc Clin Oncol. 2012;30(28):3486–92. doi:10.1200/JCO.2011.38.7522.

    Article  CAS  Google Scholar 

  13. Cortes JEG-PC, Deininger MWN, Mauro MJ, Chuah C, Kim DW, et al. Bosutinib (BOS) versus imatinib (IM) for newly diagnosed chronic myeloid leukemia (CML): initial results from the BFORE trial. J Clin Oncol. 2017;35:7002.

    Article  Google Scholar 

  14. • Cortes JE, Kim DW, Pinilla-Ibarz J, le Coutre P, Paquette R, Chuah C, et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med. 2013;369(19):1783–96. doi:10.1056/NEJMoa1306494. Trial that demonstrated the activity of ponatinib against the “gatekeeper” T315 mutations.

    Article  CAS  PubMed  Google Scholar 

  15. Gambacorti-Passerini C, Antolini L, Mahon FX, Guilhot F, Deininger M, Fava C, et al. Multicenter independent assessment of outcomes in chronic myeloid leukemia patients treated with imatinib. J Natl Cancer Inst. 2011;103(7):553–61. doi:10.1093/jnci/djr060.

    Article  CAS  PubMed  Google Scholar 

  16. Saussele S, Krauss MP, Hehlmann R, Lauseker M, Proetel U, Kalmanti L, et al. Impact of comorbidities on overall survival in patients with chronic myeloid leukemia: results of the randomized CML study IV. Blood. 2015;126(1):42–9. doi:10.1182/blood-2015-01-617993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hughes TP, Ross DM. Moving treatment-free remission into mainstream clinical practice in CML. Blood. 2016; doi:10.1182/blood-2016-01-694265.

  18. O’Brien SG, Guilhot F, Larson RA, Gathmann I, Baccarani M, Cervantes F, et al. Imatinib compared with interferon and low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukemia. N Engl J Med. 2003;348(11):994–1004. doi:10.1056/NEJMoa022457.

    Article  PubMed  Google Scholar 

  19. Ross DM, Branford S, Moore S, Hughes TP. Limited clinical value of regular bone marrow cytogenetic analysis in imatinib-treated chronic phase CML patients monitored by RQ-PCR for BCR-ABL. Leukemia. 2006;20(4):664–70. doi:10.1038/sj.leu.2404139.

    Article  CAS  PubMed  Google Scholar 

  20. Hughes TP, Kaeda J, Branford S, Rudzki Z, Hochhaus A, Hensley ML, et al. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Engl J Med. 2003;349(15):1423–32. doi:10.1056/NEJMoa030513.

    Article  CAS  PubMed  Google Scholar 

  21. • Cross NC, White HE, Colomer D, Ehrencrona H, Foroni L, Gottardi E, et al. Laboratory recommendations for scoring deep molecular responses following treatment for chronic myeloid leukemia. Leukemia. 2015;29(5):999–1003. doi:10.1038/leu.2015.29. Recommendations for ensuring quality and sensitivity of BCR-ABL1 messenger RNA measurement.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Goldberg SL, Chen L, Guerin A, Macalalad AR, Liu N, Kaminsky M, et al. Association between molecular monitoring and long-term outcomes in chronic myelogenous leukemia patients treated with first line imatinib. Curr Med Res Opin. 2013;29(9):1075–82. doi:10.1185/03007995.2013.812034.

    Article  CAS  PubMed  Google Scholar 

  23. Baccarani M, Deininger MW, Rosti G, Hochhaus A, Soverini S, Apperley JF, et al. European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood. 2013;122(6):872–84. doi:10.1182/blood-2013-05-501569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. O’Brien S, Radich JP, Abboud CN, Akhtari M, Altman JK, Berman E, et al. Chronic myelogenous leukemia, version 1.2015. J Natl Compr Cancer Netw: JNCCN. 2014;12(11):1590–610.

    Article  PubMed  Google Scholar 

  25. Hochhaus A, O’Brien SG, Guilhot F, Druker BJ, Branford S, Foroni L, et al. Six-year follow-up of patients receiving imatinib for the first-line treatment of chronic myeloid leukemia. Leukemia. 2009;23(6):1054–61. doi:10.1038/leu.2009.38.

    Article  CAS  PubMed  Google Scholar 

  26. Hughes TP, Hochhaus A, Branford S, Muller MC, Kaeda JS, Foroni L, et al. Long-term prognostic significance of early molecular response to imatinib in newly diagnosed chronic myeloid leukemia: an analysis from the International Randomized Study of Interferon and STI571 (IRIS). Blood. 2010;116(19):3758–65. doi:10.1182/blood-2010-03-273979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hughes TP, Lipton JH, Spector N, Cervantes F, Pasquini R, Clementino NC, et al. Deep molecular responses achieved in patients with CML-CP who are switched to nilotinib after long-term imatinib. Blood. 2014;124(5):729–36. doi:10.1182/blood-2013-12-544015.

    Article  CAS  PubMed  Google Scholar 

  28. Rousselot P, Huguet F, Rea D, Legros L, Cayuela JM, Maarek O, et al. Imatinib mesylate discontinuation in patients with chronic myelogenous leukemia in complete molecular remission for more than 2 years. Blood. 2007;109(1):58–60. doi:10.1182/blood-2006-03-011239.

    Article  CAS  PubMed  Google Scholar 

  29. Verma D, Kantarjian H, Jain N, Cortes J. Sustained complete molecular response after imatinib discontinuation in a patient with chronic myeloid leukemia not previously exposed to interferon alpha. Leukemia & Lymphoma. 2008;49(7):1399–402. doi:10.1080/10428190802043903.

    Article  Google Scholar 

  30. • Mahon FX, Rea D, Guilhot J, Guilhot F, Huguet F, Nicolini F, et al. Discontinuation of imatinib in patients with chronic myeloid leukaemia who have maintained complete molecular remission for at least 2 years: the prospective, multicentre Stop Imatinib (STIM) trial. The Lancet Oncology. 2010;11(11):1029–35. doi:10.1016/S1470-2045(10)70233-3. First prospective clinical trial of imatinib discontinuation in CML.

    Article  CAS  PubMed  Google Scholar 

  31. • Etienne G, Guilhot J, Rea D, Rigal-Huguet F, Nicolini F, Charbonnier A, et al. Long-term follow-up of the French Stop Imatinib (STIM1) study in patients with chronic myeloid leukemia. J Clin Oncol: Off J Am Soc Clin Oncol. 2017;35(3):298–305. doi:10.1200/JCO.2016.68.2914. First prospective clinical trial of imatinib discontinuation in CML.

    Article  Google Scholar 

  32. Ross DM, Branford S, Seymour JF, Schwarer AP, Arthur C, Yeung DT, et al. Safety and efficacy of imatinib cessation for CML patients with stable undetectable minimal residual disease: results from the TWISTER study. Blood. 2013;122(4):515–22. doi:10.1182/blood-2013-02-483750.

    Article  CAS  PubMed  Google Scholar 

  33. Mahon F, Nicolini FE, Noel MP, Escoffre M, Charbonnier A, Rea D, et al. Preliminary report of the STIM2 study: a multicenter stop imatinib trial for chronic phase chronic myeloid leukemia de novo patients on imatinib. Blood (ASH Annual Meeting Abstracts). 2013;122:654.

    Google Scholar 

  34. Rousselot P, Charbonnier A, Cony-Makhoul P, Agape P, Nicolini FE, Varet B, et al. Loss of major molecular response as a trigger for restarting tyrosine kinase inhibitor therapy in patients with chronic-phase chronic myelogenous leukemia who have stopped imatinib after durable undetectable disease. J Clin Oncol: Off J Am Soc Clin Oncol. 2014;32(5):424–30. doi:10.1200/JCO.2012.48.5797.

    Article  CAS  Google Scholar 

  35. Imagawa J, Tanaka H, Okada M, Nakamae H, Hino M, Murai K, et al. Discontinuation of dasatinib in patients with chronic myeloid leukaemia who have maintained deep molecular response for longer than 1 year (DADI trial): a multicentre phase 2 trial. Lancet Haematol. 2015;2(12):e528–35. doi:10.1016/S2352-3026(15)00196-9.

    Article  PubMed  Google Scholar 

  36. Mahon FX, Richter J, Guihot J, Hjorth-Hansen H, Almeida A, Janssen JJWM, et al. Cessation of tyrosine kinase inhibitors treatment in chronic myeloid leukemia patients with deep molecular response: results of the Euro-ski trial. Blood (ASH Annual Meeting Abstracts). 2016;128:787.

    Google Scholar 

  37. Rea D, Nicolini FE, Tulliez M, Guilhot F, Guilhot J, Guerci-Bresler A, et al. Discontinuation of dasatinib or nilotinib in chronic myeloid leukemia: interim analysis of the STOP 2G-TKI study. Blood. 2017;129(7):846–54. doi:10.1182/blood-2016-09-742205.

    Article  CAS  PubMed  Google Scholar 

  38. Takahashi N, Kyo T, Maeda Y, Sugihara T, Usuki K, Kawaguchi T, et al. Discontinuation of imatinib in Japanese patients with chronic myeloid leukemia. Haematologica. 2012;97(6):903–6. doi:10.3324/haematol.2011.056853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Burchert A, Muller MC, Kostrewa P, Erben P, Bostel T, Liebler S, et al. Sustained molecular response with interferon alfa maintenance after induction therapy with imatinib plus interferon alfa in patients with chronic myeloid leukemia. J Clin Oncol: Off J Am Soc Clin Oncol. 2010;28(8):1429–35. doi:10.1200/JCO.2009.25.5075.

    Article  CAS  Google Scholar 

  40. Yhim HY, Lee NR, Song EK, Yim CY, Jeon SY, Shin S, et al. Imatinib mesylate discontinuation in patients with chronic myeloid leukemia who have received front-line imatinib mesylate therapy and achieved complete molecular response. Leuk Res. 2012;36(6):689–93. doi:10.1016/j.leukres.2012.02.011.

    Article  CAS  PubMed  Google Scholar 

  41. Mustjoki S, Ekblom M, Arstila TP, Dybedal I, Epling-Burnette PK, Guilhot F, et al. Clonal expansion of T/NK-cells during tyrosine kinase inhibitor dasatinib therapy. Leukemia. 2009;23(8):1398–405. doi:10.1038/leu.2009.46.

    Article  CAS  PubMed  Google Scholar 

  42. Ohyashiki K, Katagiri S, Tauchi T, Ohyashiki JH, Maeda Y, Matsumura I, et al. Increased natural killer cells and decreased CD3(+)CD8(+)CD62L(+) T cells in CML patients who sustained complete molecular remission after discontinuation of imatinib. Br J Haematol. 2012;157(2):254–6. doi:10.1111/j.1365-2141.2011.08939.x.

    Article  CAS  PubMed  Google Scholar 

  43. Rea D. Low natural killer (NK) cell counts and functionality are associated with molecular relapse after imatinib discontinuation in patients (pts) with chronic phase (CP)-chronic myeloid leukemia (CML) with undetectable BCR-ABL transcripts for at least 2 years: preliminary results from immunostim, on behalf of STIM investigators. Blood. 2013;122:856-56.

    Google Scholar 

  44. Ilander MMO-SU, Lahteenmaki H, Kasanen T, Koskenvesa P, Soderlund S, et al. Disease relapse after TKI discontinuation in CML is related both to low number and impaired function of NK-cells: data from Euro-SKI. Blood (ASH Annual Meeting Abstracts). 2013;122:379.

    Google Scholar 

  45. Montani D, Bergot E, Gunther S, Savale L, Bergeron A, Bourdin A, et al. Pulmonary arterial hypertension in patients treated by dasatinib. Circulation. 2012;125(17):2128–37. doi:10.1161/CIRCULATIONAHA.111.079921.

    Article  CAS  PubMed  Google Scholar 

  46. Kim TD, Rea D, Schwarz M, Grille P, Nicolini FE, Rosti G, et al. Peripheral artery occlusive disease in chronic phase chronic myeloid leukemia patients treated with nilotinib or imatinib. Leukemia. 2013;27(6):1316–21. doi:10.1038/leu.2013.70.

    Article  CAS  PubMed  Google Scholar 

  47. Giles FJ, Mauro MJ, Hong F, Ortmann CE, McNeill C, Woodman RC, et al. Rates of peripheral arterial occlusive disease in patients with chronic myeloid leukemia in the chronic phase treated with imatinib, nilotinib, or non-tyrosine kinase therapy: a retrospective cohort analysis. Leukemia. 2013;27(6):1310–5. doi:10.1038/leu.2013.69.

    Article  CAS  PubMed  Google Scholar 

  48. Moslehi JJ, Deininger M. Tyrosine kinase inhibitor-associated cardiovascular toxicity in chronic myeloid leukemia. J Clin Oncol: Off J Am Soc Clin Oncol. 2015;33(35):4210–8. doi:10.1200/JCO.2015.62.4718.

    Article  CAS  Google Scholar 

  49. Yeung DT, Osborn MP, White DL, Branford S, Braley J, Herschtal A, et al. TIDEL-II: first-line use of imatinib in CML with early switch to nilotinib for failure to achieve time-dependent molecular targets. Blood. 2015;125(6):915–23. doi:10.1182/blood-2014-07-590315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kantarjian HM, Hochhaus A, Saglio G, De Souza C, Flinn IW, Stenke L, et al. Nilotinib versus imatinib for the treatment of patients with newly diagnosed chronic phase, Philadelphia chromosome-positive, chronic myeloid leukaemia: 24-month minimum follow-up of the phase 3 randomised ENESTnd trial. Lancet Oncol. 2011;12(9):841–51. doi:10.1016/S1470-2045(11)70201-7.

    Article  CAS  PubMed  Google Scholar 

  51. Hochhaus A, Saglio G, Hughes TP, Larson RA, Kim DW, Issaragrisil S, et al. Long-term benefits and risks of frontline nilotinib vs imatinib for chronic myeloid leukemia in chronic phase: 5-year update of the randomized ENESTnd trial. Leukemia. 2016;30(5):1044–54. doi:10.1038/leu.2016.5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cortes JE, Saglio G, Kantarjian HM, Baccarani M, Mayer J, Boque C, et al. Final 5-year study results of DASISION: the dasatinib versus imatinib study in treatment-naive chronic myeloid leukemia patients trial. J Clin Oncol: Off J Am Soc Clin Oncol. 2016; doi:10.1200/JCO.2015.64.8899.

  53. Hehlmann R, Lauseker M, Jung-Munkwitz S, Leitner A, Muller MC, Pletsch N, et al. Tolerability-adapted imatinib 800 mg/d versus 400 mg/d versus 400 mg/d plus interferon-alpha in newly diagnosed chronic myeloid leukemia. J Clin Oncol: Off J Am Soc Clin Oncol. 2011;29(12):1634–42. doi:10.1200/JCO.2010.32.0598.

    Article  CAS  Google Scholar 

  54. Preudhomme C, Guilhot J, Nicolini FE, Guerci-Bresler A, Rigal-Huguet F, Maloisel F, et al. Imatinib plus peginterferon alfa-2a in chronic myeloid leukemia. N Engl J Med. 2010;363(26):2511–21. doi:10.1056/NEJMoa1004095.

    Article  CAS  PubMed  Google Scholar 

  55. Talpaz M, Hehlmann R, Quintas-Cardama A, Mercer J, Cortes J. Re-emergence of interferon-alpha in the treatment of chronic myeloid leukemia. Leukemia. 2013;27(4):803–12. doi:10.1038/leu.2012.313.

    Article  CAS  PubMed  Google Scholar 

  56. Burchert A, Saussele S, Eigendorff E, Muller MC, Sohlbach K, Inselmann S, et al. Interferon alpha 2 maintenance therapy may enable high rates of treatment discontinuation in chronic myeloid leukemia. Leukemia. 2015;29(6):1331–5. doi:10.1038/leu.2015.45.

    Article  CAS  PubMed  Google Scholar 

  57. Corbin AS, Agarwal A, Loriaux M, Cortes J, Deininger MW, Druker BJ. Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J Clin Invest. 2011;121(1):396–409. doi:10.1172/JCI35721.

    Article  CAS  PubMed  Google Scholar 

  58. Jorgensen HG, Allan EK, Jordanides NE, Mountford JC, Holyoake TL. Nilotinib exerts equipotent antiproliferative effects to imatinib and does not induce apoptosis in CD34+ CML cells. Blood. 2007;109(9):4016–9. doi:10.1182/blood-2006-11-057521.

    Article  CAS  PubMed  Google Scholar 

  59. Copland M, Hamilton A, Elrick LJ, Baird JW, Allan EK, Jordanides N, et al. Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction. Blood. 2006;107(11):4532–9. doi:10.1182/blood-2005-07-2947.

    Article  CAS  PubMed  Google Scholar 

  60. Chen Y, Hu Y, Zhang H, Peng C, Li S. Loss of the Alox5 gene impairs leukemia stem cells and prevents chronic myeloid leukemia. Nat Genet. 2009;41(7):783–92. doi:10.1038/ng.389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang H, Li H, Xi HS, Li S. HIF1alpha is required for survival maintenance of chronic myeloid leukemia stem cells. Blood. 2012;119(11):2595–607. doi:10.1182/blood-2011-10-387381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ito K, Bernardi R, Morotti A, Matsuoka S, Saglio G, Ikeda Y, et al. PML targeting eradicates quiescent leukaemia-initiating cells. Nature. 2008;453(7198):1072–8. doi:10.1038/nature07016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang B, Strauss AC, Chu S, Li M, Ho Y, Shiang KD, et al. Effective targeting of quiescent chronic myelogenous leukemia stem cells by histone deacetylase inhibitors in combination with imatinib mesylate. Cancer Cell. 2010;17(5):427–42. doi:10.1016/j.ccr.2010.03.011.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Bellodi C, Lidonnici MR, Hamilton A, Helgason GV, Soliera AR, Ronchetti M, et al. Targeting autophagy potentiates tyrosine kinase inhibitor-induced cell death in Philadelphia chromosome-positive cells, including primary CML stem cells. J Clin Invest. 2009;119(5):1109–23. doi:10.1172/JCI35660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Zhao C, Chen A, Jamieson CH, Fereshteh M, Abrahamsson A, Blum J, et al. Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature. 2009;458(7239):776–9. doi:10.1038/nature07737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Heidel FH, Bullinger L, Feng Z, Wang Z, Neff TA, Stein L, et al. Genetic and pharmacologic inhibition of beta-catenin targets imatinib-resistant leukemia stem cells in CML. Cell Stem Cell. 2012;10(4):412–24. doi:10.1016/j.stem.2012.02.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Reddiconto G, Toto C, Palama I, De Leo S, de Luca E, De Matteis S, et al. Targeting of GSK3beta promotes imatinib-mediated apoptosis in quiescent CD34+ chronic myeloid leukemia progenitors, preserving normal stem cells. Blood. 2012;119(10):2335–45. doi:10.1182/blood-2011-06-361261.

    Article  CAS  PubMed  Google Scholar 

  68. Hurtz C, Hatzi K, Cerchietti L, Braig M, Park E, Kim YM, et al. BCL6-mediated repression of p53 is critical for leukemia stem cell survival in chronic myeloid leukemia. J Exp Med. 2011;208(11):2163–74. doi:10.1084/jem.20110304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Duy C, Hurtz C, Shojaee S, Cerchietti L, Geng H, Swaminathan S, et al. BCL6 enables Ph+ acute lymphoblastic leukaemia cells to survive BCR-ABL1 kinase inhibition. Nature. 2011;473(7347):384–8. doi:10.1038/nature09883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Neviani P, Santhanam R, Trotta R, Notari M, Blaser BW, Liu S, et al. The tumor suppressor PP2A is functionally inactivated in blast crisis CML through the inhibitory activity of the BCR/ABL-regulated SET protein. Cancer Cell. 2005;8(5):355–68. doi:10.1016/j.ccr.2005.10.015.

    Article  CAS  PubMed  Google Scholar 

  71. Neviani P, Santhanam R, Oaks JJ, Eiring AM, Notari M, Blaser BW, et al. FTY720, a new alternative for treating blast crisis chronic myelogenous leukemia and Philadelphia chromosome-positive acute lymphocytic leukemia. J Clin Invest. 2007;117(9):2408–21. doi:10.1172/JCI31095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Goff DJ, Court Recart A, Sadarangani A, Chun HJ, Barrett CL, Krajewska M, et al. A Pan-BCL2 inhibitor renders bone-marrow-resident human leukemia stem cells sensitive to tyrosine kinase inhibition. Cell Stem Cell. 2013;12(3):316–28. doi:10.1016/j.stem.2012.12.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Carter BZ, Mak PY, Mu H, Zhou H, Mak DH, Schober W, et al. Combined targeting of BCL-2 and BCR-ABL tyrosine kinase eradicates chronic myeloid leukemia stem cells. Sci Transl Med. 2016;8(355):355ra117. doi:10.1126/scitranslmed.aag1180.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Gallipoli P, Cook A, Rhodes S, Hopcroft L, Wheadon H, Whetton AD, et al. JAK2/STAT5 inhibition by nilotinib with ruxolitinib contributes to the elimination of CML CD34+ cells in vitro and in vivo. Blood. 2014;124(9):1492–501. doi:10.1182/blood-2013-12-545640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schafranek L, Nievergall E, Powell JA, Hiwase DK, Leclercq T, Hughes TP, et al. Sustained inhibition of STAT5, but not JAK2, is essential for TKI-induced cell death in chronic myeloid leukemia. Leukemia. 2015;29(1):76–85. doi:10.1038/leu.2014.156.

    Article  CAS  PubMed  Google Scholar 

  76. Bhatia R. A phase I study of the HDAC inhibitor LBH589 in combination with imatinib for patients with CML in cytogenetic remission with residual disease detectable by Q-PCR. Blood. 2009;114(22):2194.

    Google Scholar 

  77. Prost S, Relouzat F, Spentchian M, Ouzegdouh Y, Saliba J, Massonnet G, et al. Erosion of the chronic myeloid leukaemia stem cell pool by PPARgamma agonists. Nature. 2015;525(7569):380–3. doi:10.1038/nature15248.

    Article  CAS  PubMed  Google Scholar 

  78. Rousselot P, Prost S, Guilhot J, Roy L, Etienne G, Legros L, et al. Pioglitazone together with imatinib in chronic myeloid leukemia: a proof of concept study. Cancer. 2017;123(10):1791–9. doi:10.1002/cncr.30490.

    Article  CAS  PubMed  Google Scholar 

  79. Abraham SA, Hopcroft LE, Carrick E, Drotar ME, Dunn K, Williamson AJ, et al. Dual targeting of p53 and c-MYC selectively eliminates leukaemic stem cells. Nature. 2016;534(7607):341–6. doi:10.1038/nature18288.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Scott MT, Korfi K, Saffrey P, Hopcroft LE, Kinstrie R, Pellicano F, et al. Epigenetic reprogramming sensitizes CML stem cells to combined EZH2 and tyrosine kinase inhibition. Cancer Discov. 2016; doi:10.1158/2159-8290.CD-16-0263.

  81. Bewry NN, Nair RR, Emmons MF, Boulware D, Pinilla-Ibarz J, Hazlehurst LA. Stat3 contributes to resistance toward BCR-ABL inhibitors in a bone marrow microenvironment model of drug resistance. Mol Cancer Ther. 2008;7(10):3169–75. doi:10.1158/1535-7163.MCT-08-0314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Traer E, MacKenzie R, Snead J, Agarwal A, Eiring AM, O’Hare T, et al. Blockade of JAK2-mediated extrinsic survival signals restores sensitivity of CML cells to ABL inhibitors. Leukemia. 2012;26(5):1140–3. doi:10.1038/leu.2011.325.

    Article  CAS  PubMed  Google Scholar 

  83. Eiring AM, Page BDG, Kraft IL, Mason CC, Vellore NA, Resetca D, et al. Combined STAT3 and BCR-ABL1 inhibition induces synthetic lethality in therapy-resistant chronic myeloid leukemia. Leukemia. 2015;29(3):586–97. doi:10.1038/leu.2014.245.

    Article  CAS  PubMed  Google Scholar 

  84. Sweet KLHL, Sahakian E, Powers JJ, Nodzon L, Kayali F, et al. A phase I study of ruxolitinib plus nilotinib in chronic phase CML patients with molecular evidence of disease. Blood. 2017;632:1892.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srinivas K. Tantravahi.

Ethics declarations

Conflict of Interest

Srinivas K. Tantravahi, Raga S. Guthula, and Thomas O’Hare each declare no potential conflicts of interest.

Michael W. Deininger reports personal fees from Ariad Pharmaceuticals, grants from Bristol Myers Squibb, personal fees from CTI BioPharma Corp, grants from Gilead, personal fees from Incyte, grants and personal fees from Novartis, grants and personal fees from Pfizer, grants from Celgene, personal fees from Blue Print, and personal fees from Galena, outside the submitted work.

Human and Animal Rights and Informed Consent

This article contains no studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Chronic Myeloid Luekemias

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tantravahi, S.K., Guthula, R.S., O’Hare, T. et al. Minimal Residual Disease Eradication in CML: Does It Really Matter?. Curr Hematol Malig Rep 12, 495–505 (2017). https://doi.org/10.1007/s11899-017-0409-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-017-0409-7

Keywords

Navigation