Skip to main content

Advertisement

Log in

To Each Its Own: Linking the Biology and Epidemiology of NHL Subtypes

  • B-cell NHL, T-cell NHL, and Hodgkin Lymphoma (J Armitage, Section Editor)
  • Published:
Current Hematologic Malignancy Reports Aims and scope Submit manuscript

Abstract

Non-Hodgkin lymphoma (NHL) constitutes a diverse group of more than 40 subtypes, each characterized by distinct biologic and clinical features. Until recently, pinpointing genetic and epidemiologic risk factors for individual subtypes has been limited by the relative rarity of each. However, several large pooled case-control studies have provided sufficient statistical power for detecting etiologic differences and commonalities between subtypes and thus yield new insight into their unique epidemiologic backgrounds. Here, we review the subtype-specific medical, lifestyle, and biologic components identified in these studies, which suggest that a complex interplay between host genetics, autoimmune disorders, modifiable risk factors, and occupation contributes to lymphomagenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ferlay J, SI, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F GLOBOCAN 2012 v1.0, cancer incidence and mortality worldwide: IARC CancerBase No. 11 [Internet]. <http://globocan.iarc.fr> (2013).

  2. Chihara D et al. Differences in incidence and trends of haematological malignancies in Japan and the United States. Br J Haematol. 2014;164:536–45. doi:10.1111/bjh.12659.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Sant M et al. Incidence of hematologic malignancies in Europe by morphologic subtype: results of the HAEMACARE project. Blood. 2010;116:3724–34. doi:10.1182/blood-2010-05-282632.

    Article  CAS  PubMed  Google Scholar 

  4. Morton LM et al. Lymphoma incidence patterns by WHO subtype in the United States, 1992-2001. Blood. 2006;107:265–76. doi:10.1182/blood-2005-06-2508.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Kane EV et al. Postmenopausal hormone therapy and non-Hodgkin lymphoma: a pooled analysis of InterLymph case-control studies. Ann Oncol Off J Eur Soc Med Oncol ESMO. 2013;24:433–41. doi:10.1093/annonc/mds340.

    Article  CAS  Google Scholar 

  6. Hjalgrim H et al. Cigarette smoking and risk of Hodgkin lymphoma: a population-based case-control study. Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2007;16:1561–6. doi:10.1158/1055-9965.epi-07-0094.

    Article  CAS  Google Scholar 

  7. Gibson TM et al. Smoking, variation in N-acetyltransferase 1 (NAT1) and 2 (NAT2), and risk of non-Hodgkin lymphoma: a pooled analysis within the InterLymph consortium. Cancer Causes Control CCC. 2013;24:125–34. doi:10.1007/s10552-012-0098-4.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Cocco P et al. Occupational exposure to trichloroethylene and risk of non-Hodgkin lymphoma and its major subtypes: a pooled InterLymph [correction of IinterLlymph] analysis. Occup Environ Med. 2013;70:795–802. doi:10.1136/oemed-2013-101551.

    Article  CAS  PubMed  Google Scholar 

  9. Nieters A et al. PRRC2A and BCL2L11 gene variants influence risk of non-Hodgkin lymphoma: results from the InterLymph consortium. Blood. 2012;120:4645–8. doi:10.1182/blood-2012-05-427989.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Kane EV et al. Menstrual and reproductive factors, and hormonal contraception use: associations with non-Hodgkin lymphoma in a pooled analysis of InterLymph case-control studies. Ann Oncol Off J Eur Soc Med Oncol ESMO. 2012;23:2362–74. doi:10.1093/annonc/mds171.

    Article  CAS  Google Scholar 

  11. Turner JJ et al. InterLymph hierarchical classification of lymphoid neoplasms for epidemiologic research based on the WHO classification (2008): update and future directions. Blood. 2010;116:e90–8. doi:10.1182/blood-2010-06-289561.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Skibola CF et al. Tumor necrosis factor (TNF) and lymphotoxin-alpha (LTA) polymorphisms and risk of non-Hodgkin lymphoma in the InterLymph consortium. Am J Epidemiol. 2010;171:267–76. doi:10.1093/aje/kwp383.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Vajdic CM et al. Atopic disease and risk of non-Hodgkin lymphoma: an InterLymph pooled analysis. Cancer Res. 2009;69:6482–9. doi:10.1158/0008-5472.can-08-4372.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Willett EV et al. Non-Hodgkin lymphoma and obesity: a pooled analysis from the InterLymph consortium. Int J Cancer. 2008;122:2062–70. doi:10.1002/ijc.23344.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Kricker A et al. Personal sun exposure and risk of non Hodgkin lymphoma: a pooled analysis from the Interlymph consortium. Int J Cancer. 2008;122:144–54. doi:10.1002/ijc.23003.

    Article  CAS  PubMed  Google Scholar 

  16. Ekstrom Smedby K et al. Autoimmune disorders and risk of non-Hodgkin lymphoma subtypes: a pooled analysis within the InterLymph consortium. Blood. 2008;111:4029–38. doi:10.1182/blood-2007-10-119974.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Wang SS et al. Family history of hematopoietic malignancies and risk of non-Hodgkin lymphoma (NHL): a pooled analysis of 10 211 cases and 11 905 controls from the international lymphoma epidemiology consortium (InterLymph). Blood. 2007;109:3479–88. doi:10.1182/blood-2006-06-031948.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Morton LM et al. Proposed classification of lymphoid neoplasms for epidemiologic research from the pathology working group of the international lymphoma epidemiology consortium (InterLymph). Blood. 2007;110:695–708. doi:10.1182/blood-2006-11-051672.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Rothman N et al. Genetic variation in TNF and IL10 and risk of non-Hodgkin lymphoma: a report from the InterLymph consortium. Lancet Oncol. 2006;7:27–38. doi:10.1016/s1470-2045(05)70434-4.

    Article  CAS  PubMed  Google Scholar 

  20. Morton LM et al. Cigarette smoking and risk of non-Hodgkin lymphoma: a pooled analysis from the International Lymphoma Epidemiology Consortium (InterLymph). Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2005;14:925–33. doi:10.1158/1055-9965.epi-04-0693.

    Article  CAS  Google Scholar 

  21. Taccioli GE et al. Impairment of V(D)J recombination in double-strand break repair mutants. Science (New York, NY). 1993;260:207–10.

    Article  CAS  Google Scholar 

  22. Li Z, Woo CJ, Iglesias-Ussel MD, Ronai D, Scharff MD. The generation of antibody diversity through somatic hypermutation and class switch recombination. Genes Dev. 2004;18:1–11. doi:10.1101/gad.1161904.

    Article  PubMed  Google Scholar 

  23. Costello R et al. Peripheral T-cell lymphoma gene expression profiling and potential therapeutic exploitations. Br J Haematol. 2010;150:21–7. doi:10.1111/j.1365-2141.2009.07977.x.

    CAS  PubMed  Google Scholar 

  24. Kridel R, Sehn LH, Gascoyne RD. Pathogenesis of follicular lymphoma. J Clin Invest. 2012;122:3424–31. doi:10.1172/jci63186.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Perez-Galan P, Dreyling M, Wiestner A. Mantle cell lymphoma: biology, pathogenesis, and the molecular basis of treatment in the genomic era. Blood. 2011;117:26–38. doi:10.1182/blood-2010-04-189977.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Shaffer AL, Rosenwald A, Staudt LM. Lymphoid malignancies: the dark side of B-cell differentiation. Nat Rev Immunol. 2002;2:920–32. doi:10.1038/nri953.

    Article  CAS  PubMed  Google Scholar 

  27. Lenz G et al. Aberrant immunoglobulin class switch recombination and switch translocations in activated B cell-like diffuse large B cell lymphoma. J Exp Med. 2007;204:633–43. doi:10.1084/jem.20062041.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Ferreri AJ, Govi S, Pileri SA, Savage KJ. Anaplastic large cell lymphoma, ALK-positive. Crit Rev Oncol Hematol. 2012;83:293–302. doi:10.1016/j.critrevonc.2012.02.005.

    Article  PubMed  Google Scholar 

  29. Xu-Monette ZY et al. Dysfunction of the TP53 tumor suppressor gene in lymphoid malignancies. Blood. 2012;119:3668–83. doi:10.1182/blood-2011-11-366062.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Shaffer 3rd AL, Young RM, Staudt LM. Pathogenesis of human B cell lymphomas. Annu Rev Immunol. 2012;30:565–610. doi:10.1146/annurev-immunol-020711-075027.

    Article  CAS  PubMed  Google Scholar 

  31. Vajdic CM et al. Medical history, lifestyle, family history, and occupational risk factors for lymphoplasmacytic lymphoma/Waldenstrom’s macroglobulinemia: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. J Natl Cancer Inst Monogr. 2014;2014:87–97. doi:10.1093/jncimonographs/lgu002. The largest pooled analysis of epidemiological risk factors for patients with lymphoplasmacytic lymphoma/Waldenstrom’s macroglobulinemia.

  32. Slager SL et al. Medical history, lifestyle, family history, and occupational risk factors for chronic lymphocytic leukemia/small lymphocytic lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. J Natl Cancer Inst Monogr. 2014;2014:41–51. doi:10.1093/jncimonographs/lgu001. The largest pooled analysis of epidemiological risk factors for patients with chronic lymphocytic leukemia/small lymphocytic lymphoma.

  33. Mbulaiteye SM et al. Medical history, lifestyle, family history, and occupational risk factors for sporadic Burkitt lymphoma/leukemia: the Interlymph Non-Hodgkin Lymphoma Subtypes Project. J Natl Cancer Inst Monogr. 2014;2014:106–14. doi:10.1093/jncimonographs/lgu003. The largest pooled analysis of epidemiological risk factors for patients with Burkitt lymphoma.

  34. Linet MS et al. Medical history, lifestyle, family history, and occupational risk factors for follicular lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. J Natl Cancer Inst Monogr. 2014;2014:26–40. doi:10.1093/jncimonographs/lgu006. The largest pooled analysis of epidemiological risk factors for patients with follicular lymphoma.

  35. Cerhan JR et al. Medical history, lifestyle, family history, and occupational risk factors for diffuse large B-cell lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. J Natl Cancer Inst Monogr. 2014;2014:15–25. doi:10.1093/jncimonographs/lgu010. The largest pooled analysis of epidemiological risk factors for patients with diffuse large B-cell lymphoma.

  36. Smedby KE et al. Medical history, lifestyle, family history, and occupational risk factors for mantle cell lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. J Natl Cancer Inst Monogr. 2014;2014:76–86. doi:10.1093/jncimonographs/lgu007. The largest pooled analysis of epidemiological risk factors for patients with mantle cell lymphoma.

  37. Skibola CF et al. Medical history, lifestyle, family history, and occupational risk factors for adult acute lymphocytic leukemia: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. J Natl Cancer Inst Monogr. 2014;2014:125–9. doi:10.1093/jncimonographs/lgu009.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Morton LM et al. Rationale and design of the International Lymphoma Epidemiology Consortium (InterLymph) Non-Hodgkin lymphoma subtypes project. J Natl Cancer Inst Monogr. 2014;2014:1–14. doi:10.1093/jncimonographs/lgu005.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Morton LM et al. Etiologic heterogeneity among non-Hodgkin lymphoma subtypes: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. J Natl Cancer Inst Monogr. 2014;2014:130–44. doi:10.1093/jncimonographs/lgu013.

    Article  PubMed Central  PubMed  Google Scholar 

  40. Monnereau A et al. Medical history, lifestyle, and occupational risk factors for hairy cell leukemia: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. J Natl Cancer Inst Monogr. 2014;2014:115–24. doi:10.1093/jncimonographs/lgu004.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Bracci PM et al. Medical history, lifestyle, family history, and occupational risk factors for marginal zone lymphoma: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. J Natl Cancer Inst Monogr. 2014;2014:52–65. doi:10.1093/jncimonographs/lgu011. The largest pooled analysis of epidemiological risk factors for patients with marginal zone lymphoma.

  42. Aschebrook-Kilfoy B et al. Medical history, lifestyle, family history, and occupational risk factors for mycosis fungoides and Sezary syndrome: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. J Natl Cancer Inst Monogr. 2014;2014:98–105. doi:10.1093/jncimonographs/lgu008.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Flowers CR, Armitage JO. A decade of progress in lymphoma: advances and continuing challenges. Clin Lymphoma Myeloma Leuk. 2010;10:414–23. doi:10.3816/CLML.2010.n.086.

    Article  PubMed  Google Scholar 

  44. Sinha R, Nastoupil L, Flowers CR. Treatment strategies for patients with diffuse large B-cell lymphoma: past, present, and future. Blood Lymphat Cancer Targets Ther. 2012;2012:87–98. doi:10.2147/blctt.s18701.

    Google Scholar 

  45. Alizadeh AA et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403:503–11. doi:10.1038/35000501.

    Article  CAS  PubMed  Google Scholar 

  46. Rosenwald A et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med. 2002;346:1937–47. doi:10.1056/NEJMoa012914.

    Article  PubMed  Google Scholar 

  47. Fu K et al. Addition of rituximab to standard chemotherapy improves the survival of both the germinal center B-cell-like and non-germinal center B-cell-like subtypes of diffuse large B-cell lymphoma. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26:4587–94. doi:10.1200/jco.2007.15.9277.

    Article  CAS  Google Scholar 

  48. Tan DE et al. Genome-wide association study of B cell non-Hodgkin lymphoma identifies 3q27 as a susceptibility locus in the Chinese population. Nat Genet. 2013;45:804–7. doi:10.1038/ng.2666.

    Article  CAS  PubMed  Google Scholar 

  49. Cao HY, Zou P, Zhou H. Genetic association of interleukin-10 promoter polymorphisms and susceptibility to diffuse large B-cell lymphoma: a meta-analysis. Gene. 2013;519:288–94. doi:10.1016/j.gene.2013.01.066.

    Article  CAS  PubMed  Google Scholar 

  50. Hu W et al. Polymorphisms in pattern-recognition genes in the innate immunity system and risk of non-Hodgkin lymphoma. Environ Mol Mutagen. 2013;54:72–7. doi:10.1002/em.21739.

    Article  CAS  PubMed  Google Scholar 

  51. Khorshied MM, Gouda HM, Khorshid OM. Association of cytotoxic T-lymphocyte antigen 4 genetic polymorphism, hepatitis C viral infection and B-cell non-Hodgkin lymphoma: an Egyptian study. Leuk Lymphoma. 2014;55:1061–6. doi:10.3109/10428194.2013.820294.

    Article  CAS  PubMed  Google Scholar 

  52. Hosgood 3rd HD et al. IL10 and TNF variants and risk of non-Hodgkin lymphoma among three Asian populations. Int J Hematol. 2013;97:793–9. doi:10.1007/s12185-013-1345-5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Bassig BA et al. Genetic susceptibility to diffuse large B-cell lymphoma in a pooled study of three Eastern Asian populations. Eur J Haematol. 2015. doi:10.1111/ejh.12513. A useful pooled analysis of genetic risk factors for diffuse large B-cell lymphoma.

  54. Sun YY, An L, Xie YL, Xu JY, Wang J. Methylenetetrahydrofolate reductase gene polymorphisms association with the risk of diffuse large B cell lymphoma: a meta-analysis. Tumour Biol J Int Soc Oncodev Biol Med. 2013;34:3587–91. doi:10.1007/s13277-013-0938-1.

    Article  CAS  Google Scholar 

  55. Blount BC et al. Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc Natl Acad Sci. 1997;94:3290–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Bulka C et al. Residence proximity to benzene release sites is associated with increased incidence of non-Hodgkin lymphoma. Cancer. 2013;119:3309–17. doi:10.1002/cncr.28083. A geospatial analysis of the relationships between passive residential environmental exposures and risk of non-Hodgkin lymphoma.

  57. Wang SS et al. Associations of non-Hodgkin lymphoma (NHL) risk with autoimmune conditions according to putative NHL loci. Am J Epidemiol. 2015. doi:10.1093/aje/kwu290. An interesting exploration of the interactions between auto-immune diseases and genetic risk factors for non-Hodgkin lymphoma.

  58. Swerdlow SH, International Agency for Research on Cancer & World Health Organization. WHO classification of tumours of haematopoietic and lymphoid tissues. 4th edn, (International Agency for Research on Cancer) 2008.

  59. Ambinder AJ et al. Exploring risk factors for follicular lymphoma. Adv Hematol. 2012;13:2012. doi:10.1155/2012/626035.

    Google Scholar 

  60. Friedberg JW et al. Follicular lymphoma in the United States: first report of the national LymphoCare study. J Clin Oncol Off J Am Soc Clin Oncol. 2009;27:1202–8. doi:10.1200/jco.2008.18.1495.

    Article  Google Scholar 

  61. Solal-Celigny P, Cahu X, Cartron G. Follicular lymphoma prognostic factors in the modern era: what is clinically meaningful? Int J Hematol. 2010;92:246–54. doi:10.1007/s12185-010-0674-x.

    Article  PubMed  Google Scholar 

  62. Roulland S et al. Follicular lymphoma-like B cells in healthy individuals: a novel intermediate step in early lymphomagenesis. J Exp Med. 2006;203:2425–31. doi:10.1084/jem.20061292.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Smedby KE et al. GWAS of follicular lymphoma reveals allelic heterogeneity at 6p21.32 and suggests shared genetic susceptibility with diffuse large B-cell lymphoma. PLoS Genet. 2011;7:e1001378. doi:10.1371/journal.pgen.1001378.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Conde L et al. Genome-wide association study of follicular lymphoma identifies a risk locus at 6p21.32. Nat Genet. 2010;42:661–4. doi:10.1038/ng.626.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  65. Skibola CF et al. Genetic variants at 6p21.33 are associated with susceptibility to follicular lymphoma. Nat Genet. 2009;41:873–5. doi:10.1038/ng.419.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Vijai J et al. Susceptibility loci associated with specific and shared subtypes of lymphoid malignancies. PLoS Genet. 2013;9:e1003220. doi:10.1371/journal.pgen.1003220.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Skibola CF et al. A meta-analysis of genome-wide association studies of follicular lymphoma. BMC Genomics. 2012;13:516. doi:10.1186/1471-2164-13-516.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Skibola CF et al. Genome-wide association study identifies five susceptibility loci for follicular lymphoma outside the HLA region. Am J Hum Genet. 2014;95:462–71. doi:10.1016/j.ajhg.2014.09.004.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. Charbonneau B et al. CXCR5 polymorphisms in non-Hodgkin lymphoma risk and prognosis. Cancer Immunol Immunother CII. 2013;62:1475–84. doi:10.1007/s00262-013-1452-4.

    Article  CAS  PubMed  Google Scholar 

  70. Fu A et al. Targetome profiling and functional genetics implicate miR-618 in lymphomagenesis. Epigenetics Off J DNA Methylation Soc. 2014;9:730–7. doi:10.4161/epi.27996.

    Article  CAS  Google Scholar 

  71. Armitage JO, Weisenburger DD. New approach to classifying non-Hodgkin’s lymphomas: clinical features of the major histologic subtypes. Non-Hodgkin’s Lymphoma Classification Project. J Clin Oncol Off J Am Soc Clin Oncol. 1998;16:2780–95.

    CAS  Google Scholar 

  72. Wu SJ et al. The incidence of chronic lymphocytic leukemia in Taiwan, 1986-2005: a distinct increasing trend with birth-cohort effect. Blood. 2010;116:4430–5. doi:10.1182/blood-2010-05-285221.

    Article  CAS  PubMed  Google Scholar 

  73. Clarke CA et al. Lymphoid malignancies in U.S. Asians: incidence rate differences by birthplace and acculturation. Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2011;20:1064–77. doi:10.1158/1055-9965.epi-11-0038.

    Article  Google Scholar 

  74. Berndt SI et al. Genome-wide association study identifies multiple risk loci for chronic lymphocytic leukemia. Nat Genet. 2013;45:868–76. doi:10.1038/ng.2652.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Slager SL et al. Mapping of the IRF8 gene identifies a 3’UTR variant associated with risk of chronic lymphocytic leukemia but not other common non-Hodgkin lymphoma subtypes. Cancer Epidemiol Biomark Prev Publ Am Assoc Cancer Res Cosponsored Am Soc Prev Oncol. 2013;22:461–6. doi:10.1158/1055-9965.epi-12-1217.

    Article  CAS  Google Scholar 

  76. Malfertheiner P et al. Current concepts in the management of Helicobacter pylori infection: the Maastricht III consensus report. Gut. 2007;56:772–81. doi:10.1136/gut.2006.101634.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Chey WD, Wong BC. American College of Gastroenterology guideline on the management of Helicobacter pylori infection. Am J Gastroenterol. 2007;102:1808–25. doi:10.1111/j.1572-0241.2007.01393.x.

    Article  CAS  PubMed  Google Scholar 

  78. Vijai J et al. A genome-wide association study of marginal zone lymphoma shows association to the HLA region. Nat Commun. 2015;6:5751. doi:10.1038/ncomms6751.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Love C et al. The genetic landscape of mutations in Burkitt lymphoma. Nat Genet. 2012;44:1321–5. doi:10.1038/ng.2468.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Zhang J et al. The genomic landscape of mantle cell lymphoma is related to the epigenetically determined chromatin state of normal B cells. Blood. 2014;123:2988–96. doi:10.1182/blood-2013-07-517177.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Miyazaki K et al. Gene expression profiling of peripheral T-cell lymphoma including gammadelta T-cell lymphoma. Blood. 2009;113:1071–4. doi:10.1182/blood-2008-07-166363.

    Article  CAS  PubMed  Google Scholar 

  82. Vasmatzis G et al. Genome-wide analysis reveals recurrent structural abnormalities of TP63 and other p53-related genes in peripheral T-cell lymphomas. Blood. 2012;120:2280–9. doi:10.1182/blood-2012-03-419937.

    Article  CAS  PubMed  Google Scholar 

  83. Sakata-Yanagimoto M et al. Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat Genet. 2014;46:171–5. doi:10.1038/ng.2872.

    Article  CAS  PubMed  Google Scholar 

  84. de Leval L et al. The gene expression profile of nodal peripheral T-cell lymphoma demonstrates a molecular link between angioimmunoblastic T-cell lymphoma (AITL) and follicular helper T (TFH) cells. Blood. 2007;109:4952–63. doi:10.1182/blood-2006-10-055145.

    Article  PubMed  Google Scholar 

  85. Martinez-Delgado B et al. Expression profiling of T-cell lymphomas differentiates peripheral and lymphoblastic lymphomas and defines survival related genes. Clin Cancer Res Off J Am Assoc Cancer Res. 2004;10:4971–82. doi:10.1158/1078-0432.ccr-04-0269.

    Article  CAS  Google Scholar 

  86. Piccaluga PP et al. Gene expression analysis of peripheral T cell lymphoma, unspecified, reveals distinct profiles and new potential therapeutic targets. J Clin Invest. 2007;117:823–34. doi:10.1172/jci26833.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Imam MH, Shenoy PJ, Flowers CR, Phillips A, Lechowicz MJ. Incidence and survival patterns of cutaneous T-cell lymphomas in the United States. Leuk Lymphoma. 2013;54:752–9. doi:10.3109/10428194.2012.729831.

    Article  PubMed  Google Scholar 

  88. Abouyabis AN, Shenoy PJ, Lechowicz MJ, Flowers CR. Incidence and outcomes of the peripheral T-cell lymphoma subtypes in the United States. Leuk lymphoma. 2008;49:2099–107. doi:10.1080/10428190802455867.

    Article  PubMed  Google Scholar 

  89. Flowers CR, Glover R, Lonial S, Brawley OW. Racial differences in the incidence and outcomes for patients with hematological malignancies. Curr Probl Cancer. 2007;31:182–201. doi:10.1016/j.currproblcancer.2007.01.005.

    Article  PubMed  Google Scholar 

  90. Flowers CR, Nastoupil LJ. Socioeconomic disparities in lymphoma. Blood. 2014;123:3530–1. doi:10.1182/blood-2014-04-568766.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Flowers CR, Pro B. Racial differences in chronic lymphocytic leukemia. Digging deeper. Cancer. 2013;119:3593–5.

    PubMed Central  PubMed  Google Scholar 

  92. Shenoy PJ et al. Racial differences in the presentation and outcomes of diffuse large B-cell lymphoma in the United States. Cancer. 2011;117:2530–40. doi:10.1002/cncr.25765.

    Article  PubMed  Google Scholar 

  93. Shenoy PJ et al. Racial differences in the presentation and outcomes of chronic lymphocytic leukemia and variants in the United States. Clin Lymphoma Myeloma Leuk. 2011;11:498–506. doi:10.1016/j.clml.2011.07.002.

    Article  PubMed  Google Scholar 

  94. Wang SS et al. Immune mechanisms in non-Hodgkin lymphoma: joint effects of the TNF G308A and IL10 T3575A polymorphisms with non-Hodgkin lymphoma risk factors. Cancer Res. 2007;67:5042–54. doi:10.1158/0008-5472.can-06-4752.

    Article  CAS  PubMed  Google Scholar 

  95. Heesen M, Kunz D, Bachmann-Mennenga B, Merk HF, Bloemeke B. Linkage disequilibrium between tumor necrosis factor (TNF)-alpha-308 G/A promoter and TNF-beta NcoI polymorphisms: association with TNF-alpha response of granulocytes to endotoxin stimulation. Crit Care Med. 2003;31:211–4. doi:10.1097/01.ccm.0000037167.19790.52.

    Article  CAS  PubMed  Google Scholar 

  96. Wilson AG, Symons JA, McDowell TL, McDevitt HO, Duff GW. Effects of a polymorphism in the human tumor necrosis factor α promoter on transcriptional activation. Proc Natl Acad Sci. 1997;94:3195–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Romagnani S. Human Th17 cells. Arthritis Res Ther. 2008;10:206. doi:10.1186/ar2392.

    Article  PubMed Central  PubMed  Google Scholar 

  98. Oukka M. Interplay between pathogenic Th17 and regulatory T cells. Ann Rheum Dis. 2007;66(3):87–90. doi:10.1136/ard.2007.078527.

    Google Scholar 

  99. Korn T, Oukka M, Kuchroo V, Bettelli E. Th17 cells: effector T cells with inflammatory properties. Semin Immunol. 2007;19:362–71. doi:10.1016/j.smim.2007.10.007.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of interest

The author(s) declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher R. Flowers.

Additional information

This article is part of the Topical Collection on B-cell NHL, T-cell NHL, and Hodgkin Lymphoma

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koff, J.L., Chihara, D., Phan, A. et al. To Each Its Own: Linking the Biology and Epidemiology of NHL Subtypes. Curr Hematol Malig Rep 10, 244–255 (2015). https://doi.org/10.1007/s11899-015-0267-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11899-015-0267-0

Keywords