Skip to main content
Log in

Evolving Concepts of Pulmonary Hypertension Secondary to Left Heart Disease

  • Management of Heart Failure (T Meyer, Section Editor)
  • Published:
Current Heart Failure Reports Aims and scope Submit manuscript

Abstract

Pulmonary hypertension associated with left heart disease is the most common form of pulmonary hypertension. Although its pathophysiology remains incompletely understood, it is now well recognized that the presence of pulmonary hypertension is associated with a worse prognosis. Right ventricular failure has independent and additive prognostic value over pulmonary hypertension for adverse outcomes in left heart disease. Recently, several new terminologies have been introduced to better define and characterize the nature and severity of pulmonary hypertension. Several new treatment options including the use of pulmonary arterial hypertension specific therapies are being considered, but there is lack of evidence. Here, we review the recent advances in this field and summarize the diagnostic and therapeutic modalities of use in the management of pulmonary hypertension associated with left heart disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Vachiéry JL. Pulmonary hypertension due to left heart diseases. J Am Coll Cardiol. 2013;62(25 Suppl):D100-8. This paper discusses hemodynamic definitions, terminology and treatment options of pulmonary hypertension in left heart disease.

    PubMed  Google Scholar 

  2. Lam CS et al. Pulmonary hypertension in heart failure with preserved ejection fraction: a community-based study. J Am Coll Cardiol. 2009;53(13):1119–26.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Fang JC, World Health Organization, et al. Pulmonary Hypertension group 2: pulmonary hypertension due to left heart disease in the adult—a summary statement from the Pulmonary Hypertension Council of the International Society for Heart and Lung Transplantation. J Heart Lung Transplant. 2012;31(9):913–33.

    Article  PubMed  Google Scholar 

  4. Guazzi M, Borlaug BA. Pulmonary hypertension due to left heart disease. Circulation. 2012;126(8):975–90.

    Article  PubMed  Google Scholar 

  5. Cappola TP et al. Pulmonary hypertension and risk of death in cardiomyopathy: patients with myocarditis are at higher risk. Circulation. 2002;105(14):1663–8.

    Article  PubMed  Google Scholar 

  6. Ghio S et al. Independent and additive prognostic value of right ventricular systolic function and pulmonary artery pressure in patients with chronic heart failure. J Am Coll Cardiol. 2001;37(1):183–8.

    Article  CAS  PubMed  Google Scholar 

  7. Galiè N et al. Guidelines for the diagnosis and treatment of pulmonary hypertension: the Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS), endorsed by the International Society of Heart and Lung Transplantation (ISHLT). Eur Heart J. 2009;30(20):2493–537.

    Article  PubMed  Google Scholar 

  8. Simonneau G et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2013;62(25 Suppl):D34–41.

    Article  PubMed  Google Scholar 

  9. Moraes DL, Colucci WS, Givertz MM. Secondary pulmonary hypertension in chronic heart failure: the role of the endothelium in pathophysiology and management. Circulation. 2000;102(14):1718–23.

    Article  CAS  PubMed  Google Scholar 

  10. Givertz MM et al. Acute endothelin A receptor blockade causes selective pulmonary vasodilation in patients with chronic heart failure. Circulation. 2000;101(25):2922–7.

    Article  CAS  PubMed  Google Scholar 

  11. Mehra MR et al. Listing criteria for heart transplantation: International Society for Heart and Lung Transplantation guidelines for the care of cardiac transplant candidates—2006. J Heart Lung Transplant. 2006;25(9):1024–42.

    Article  PubMed  Google Scholar 

  12. Naeije R et al. The transpulmonary pressure gradient for the diagnosis of pulmonary vascular disease. Eur Respir J. 2013;41(1):217–23.

    Article  PubMed  Google Scholar 

  13. Gerges C et al. Diastolic pulmonary vascular pressure gradient: a predictor of prognosis in “out-of-proportion” pulmonary hypertension. Chest. 2013;143(3):758–66. This paper proposes a diagnostic algorithm using diastolic pulmonary gradient to better define pulmonary vascular disease superimposed on elevated left-sided pressures.

    Article  PubMed  Google Scholar 

  14. Rapp AH et al. Relation of pulmonary arterial diastolic and mean pulmonary arterial wedge pressures in patients with and without pulmonary hypertension. Am J Cardiol. 2001;88(7):823–4.

    Article  CAS  PubMed  Google Scholar 

  15. Tedford RJ et al. Prognostic value of the pre-transplant diastolic pulmonary artery pressure-to-pulmonary capillary wedge pressure gradient in cardiac transplant recipients with pulmonary hypertension. J Heart Lung Transplant. 2014;33(3):289–97.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tampakakis E et al. The diastolic pulmonary gradient does not predict survival in patients with pulmonary hypertension due to left heart disease. JACC Heart Fail. 2015;3(1):9–16.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Champion HC, Michelakis ED, Hassoun PM. Comprehensive invasive and noninvasive approach to the right ventricle-pulmonary circulation unit: state of the art and clinical and research implications. Circulation. 2009;120(11):992–1007.

    Article  PubMed  Google Scholar 

  18. Enson Y et al. The influence of heart rate on pulmonary arterial-left ventricular pressure relationships at end-diastole. Circulation. 1977;56(4 Pt 1):533–9.

    Article  CAS  PubMed  Google Scholar 

  19. West JB, Mathieu-Costello O. Vulnerability of pulmonary capillaries in heart disease. Circulation. 1995;92(3):622–31.

    Article  CAS  PubMed  Google Scholar 

  20. Georgiopoulou VV et al. Left ventricular dysfunction with pulmonary hypertension: Part 1: epidemiology, pathophysiology, and definitions. Circ Heart Fail. 2013;6(2):344–54.

    Article  PubMed  Google Scholar 

  21. Azarbar S, Dupuis J. Lung capillary injury and repair in left heart disease: a new target for therapy? Clin Sci (Lond). 2014;127(2):65–76.

    Article  CAS  Google Scholar 

  22. Dupuis J, Guazzi M. Pathophysiology and clinical relevance of pulmonary remodelling in pulmonary hypertension due to left heart diseases. Can J Cardiol. 2015;31(4):416–29.

    Article  PubMed  Google Scholar 

  23. Chen Y et al. Left ventricular failure produces profound lung remodeling and pulmonary hypertension in mice: heart failure causes severe lung disease. Hypertension. 2012;59(6):1170–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Damy T et al. Determinants and prognostic value of pulmonary arterial pressure in patients with chronic heart failure. Eur Heart J. 2010;31(18):2280–90.

    Article  CAS  PubMed  Google Scholar 

  25. Capomolla S et al. Invasive and non-invasive determinants of pulmonary hypertension in patients with chronic heart failure. J Heart Lung Transplant. 2000;19(5):426–38.

    Article  CAS  PubMed  Google Scholar 

  26. Patel JB et al. Mitral regurgitation in patients with advanced systolic heart failure. J Card Fail. 2004;10(4):285–91.

    Article  PubMed  Google Scholar 

  27. Bouchard JL et al. Usefulness of the pulmonary arterial systolic pressure to predict pulmonary arterial wedge pressure in patients with normal left ventricular systolic function. Am J Cardiol. 2008;101(11):1673–6.

    Article  PubMed  Google Scholar 

  28. Maréchaux S et al. Functional mitral regurgitation: a link to pulmonary hypertension in heart failure with preserved ejection fraction. J Card Fail. 2011;17(10):806–12.

    Article  PubMed  Google Scholar 

  29. Miller WL, Grill DE, Borlaug BA. Clinical features, hemodynamics, and outcomes of pulmonary hypertension due to chronic heart failure with reduced ejection fraction: pulmonary hypertension and heart failure. JACC Heart Fail. 2013;1(4):290–9.

    Article  PubMed  Google Scholar 

  30. Redfield MM et al. Age- and gender-related ventricular-vascular stiffening: a community-based study. Circulation. 2005;112(15):2254–62.

    Article  PubMed  Google Scholar 

  31. Leung CC et al. Prevalence and risk factors of pulmonary hypertension in patients with elevated pulmonary venous pressure and preserved ejection fraction. Am J Cardiol. 2010;106(2):284–6.

    Article  PubMed  Google Scholar 

  32. Saouti N et al. The arterial load in pulmonary hypertension. Eur Respir Rev. 2010;19(117):197–203.

    Article  CAS  PubMed  Google Scholar 

  33. Dupont M et al. Prognostic role of pulmonary arterial capacitance in advanced heart failure. Circ Heart Fail. 2012;5(6):778–85.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Pellegrini P et al. Prognostic relevance of pulmonary arterial compliance in patients with chronic heart failure. Chest. 2014;145(5):1064–70.

    Article  PubMed  Google Scholar 

  35. Al-Naamani N et al. Pulmonary arterial capacitance is an important predictor of mortality in heart failure with a preserved ejection fraction. JACC Heart Fail. 2015;3(6):467–74.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Dragu R et al. Pulmonary arterial capacitance in patients with heart failure and reactive pulmonary hypertension. Eur J Heart Fail. 2015;17(1):74–80. This paper demonstrates pulmonary arterial compliance as an independent marker of mortality in heart failure.

    Article  PubMed  Google Scholar 

  37. Lankhaar JW et al. Quantification of right ventricular afterload in patients with and without pulmonary hypertension. Am J Physiol Heart Circ Physiol. 2006;291(4):H1731–7.

    Article  CAS  PubMed  Google Scholar 

  38. Lankhaar JW et al. Pulmonary vascular resistance and compliance stay inversely related during treatment of pulmonary hypertension. Eur Heart J. 2008;29(13):1688–95.

    Article  PubMed  Google Scholar 

  39. Tedford RJ et al. Pulmonary capillary wedge pressure augments right ventricular pulsatile loading. Circulation. 2012;125(2):289–97.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Vonk-Noordegraaf A et al. Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology. J Am Coll Cardiol. 2013;62(25 Suppl):D22–33.

    Article  PubMed  Google Scholar 

  41. Gulati A et al. The prevalence and prognostic significance of right ventricular systolic dysfunction in nonischemic dilated cardiomyopathy. Circulation. 2013;128(15):1623–33.

    Article  PubMed  Google Scholar 

  42. La Vecchia L et al. Reduced right ventricular ejection fraction as a marker for idiopathic dilated cardiomyopathy compared with ischemic left ventricular dysfunction. Am Heart J. 2001;142(1):181–9.

    Article  PubMed  Google Scholar 

  43. Puwanant S et al. Right ventricular function in patients with preserved and reduced ejection fraction heart failure. Eur J Echocardiogr. 2009;10(6):733–7.

    Article  PubMed  Google Scholar 

  44. Damy T et al. Prevalence of, associations with, and prognostic value of tricuspid annular plane systolic excursion (TAPSE) among out-patients referred for the evaluation of heart failure. J Card Fail. 2012;18(3):216–25.

    Article  PubMed  Google Scholar 

  45. Shah AM et al. Cardiac structure and function in heart failure with preserved ejection fraction: baseline findings from the echocardiographic study of the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist trial. Circ Heart Fail. 2014;7(1):104–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Burke MA et al. Prognostic importance of pathophysiologic markers in patients with heart failure and preserved ejection fraction. Circ Heart Fail. 2014;7(2):288–99.

    Article  CAS  PubMed  Google Scholar 

  47. Melenovsky V et al. Right heart dysfunction in heart failure with preserved ejection fraction. Eur Heart J. 2014;35(48):3452–62. This paper characterizes the prognostic value of right ventricular dysfunction in patients with heart failure with preserved ejection fraction.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gavazzi A et al. Value of right ventricular ejection fraction in predicting short-term prognosis of patients with severe chronic heart failure. J Heart Lung Transplant. 1997;16(7):774–85.

    CAS  PubMed  Google Scholar 

  49. Meluzin J et al. Prognostic importance of various echocardiographic right ventricular functional parameters in patients with symptomatic heart failure. J Am Soc Echocardiogr. 2005;18(5):435–44.

    Article  PubMed  Google Scholar 

  50. Meyer P et al. Effects of right ventricular ejection fraction on outcomes in chronic systolic heart failure. Circulation. 2010;121(2):252–8.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Di Salvo TG et al. Preserved right ventricular ejection fraction predicts exercise capacity and survival in advanced heart failure. J Am Coll Cardiol. 1995;25(5):1143–53.

    Article  PubMed  Google Scholar 

  52. Verhaert D et al. Right ventricular response to intensive medical therapy in advanced decompensated heart failure. Circ Heart Fail. 2010;3(3):340–6.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kalogeropoulos AP et al. Echocardiographic assessment of pulmonary artery systolic pressure and outcomes in ambulatory heart failure patients. J Am Heart Assoc. 2014;3(1):e000363.

    Article  PubMed  PubMed Central  Google Scholar 

  54. van de Veerdonk MC et al. Progressive right ventricular dysfunction in patients with pulmonary arterial hypertension responding to therapy. J Am Coll Cardiol. 2011;58(24):2511–9.

    Article  PubMed  Google Scholar 

  55. Kusunose K et al. Prognostic significance of exercise-induced right ventricular dysfunction in asymptomatic degenerative mitral regurgitation. Circ Cardiovasc Imaging. 2013;6(2):167–76.

    Article  PubMed  Google Scholar 

  56. Ghio S. Pulmonary hypertension in advanced heart failure. Herz. 2005;30(4):311–7.

    Article  PubMed  Google Scholar 

  57. Thenappan T et al. Clinical characteristics of pulmonary hypertension in patients with heart failure and preserved ejection fraction. Circ Heart Fail. 2011;4(3):257–65.

    Article  PubMed  Google Scholar 

  58. Lam CS et al. Age-associated increases in pulmonary artery systolic pressure in the general population. Circulation. 2009;119(20):2663–70.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Borlaug BA. Discerning pulmonary venous from pulmonary arterial hypertension without the help of a catheter. Circ Heart Fail. 2011;4(3):235–7.

    Article  PubMed  Google Scholar 

  60. Robbins IM et al. Association of the metabolic syndrome with pulmonary venous hypertension. Chest. 2009;136(1):31–6.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hoeper MM et al. Diagnosis, assessment, and treatment of non-pulmonary arterial hypertension pulmonary hypertension. J Am Coll Cardiol. 2009;54(1 Suppl):S85–96.

    Article  PubMed  Google Scholar 

  62. Enriquez-Sarano M et al. Determinants of pulmonary hypertension in left ventricular dysfunction. J Am Coll Cardiol. 1997;29(1):153–9.

    Article  CAS  PubMed  Google Scholar 

  63. Tumminello G et al. Determinants of pulmonary artery hypertension at rest and during exercise in patients with heart failure. Eur Heart J. 2007;28(5):569–74.

    Article  PubMed  Google Scholar 

  64. Arkles JS et al. Shape of the right ventricular Doppler envelope predicts hemodynamics and right heart function in pulmonary hypertension. Am J Respir Crit Care Med. 2011;183(2):268–76.

    Article  PubMed  Google Scholar 

  65. Ha JW et al. Determinants of exercise-induced pulmonary hypertension in patients with normal left ventricular ejection fraction. Heart. 2009;95(6):490–4.

    Article  PubMed  Google Scholar 

  66. Willens HJ et al. Noninvasive differentiation of pulmonary arterial and venous hypertension using conventional and Doppler tissue imaging echocardiography. J Am Soc Echocardiogr. 2008;21(6):715–9.

    Article  PubMed  Google Scholar 

  67. McLaughlin VV et al. ACCF/AHA 2009 expert consensus document on pulmonary hypertension a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents and the American Heart Association developed in collaboration with the American College of Chest Physicians; American Thoracic Society, Inc.; and the Pulmonary Hypertension Association. J Am Coll Cardiol. 2009;53(17):1573–619.

    Article  PubMed  Google Scholar 

  68. Jacobs W et al. Noninvasive identification of left-sided heart failure in a population suspected of pulmonary arterial hypertension. Eur Respir J. 2015;46(2):422–30.

    Article  PubMed  Google Scholar 

  69. Crawley SF et al. LA volume by CMR distinguishes idiopathic from pulmonary hypertension due to HFpEF. JACC Cardiovasc Imaging. 2013;6(10):1120–1.

    Article  PubMed  Google Scholar 

  70. Ryan JJ et al. Current practice for determining pulmonary capillary wedge pressure predisposes to serious errors in the classification of patients with pulmonary hypertension. Am Heart J. 2012;163(4):589–94.

    Article  PubMed  Google Scholar 

  71. Hoeper MM et al. Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol. 2013;62(25 Suppl):D42–50.

    Article  PubMed  Google Scholar 

  72. Robbins IM et al. High prevalence of occult pulmonary venous hypertension revealed by fluid challenge in pulmonary hypertension. Circ Heart Fail. 2014;7(1):116–22.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Fox BD et al. High prevalence of occult left heart disease in scleroderma-pulmonary hypertension. Eur Respir J. 2013;42(4):1083–91.

    Article  PubMed  Google Scholar 

  74. Fujimoto N et al. Hemodynamic responses to rapid saline loading: the impact of age, sex, and heart failure. Circulation. 2013;127(1):55–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Borlaug BA et al. Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction. Circ Heart Fail. 2010;3(5):588–95.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Andersen MJ et al. Differential hemodynamic effects of exercise and volume expansion in people with and without heart failure. Circ Heart Fail. 2015;8(1):41–8.

    Article  PubMed  Google Scholar 

  77. Nishimura RA et al. 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129(23):e521–643.

    Article  PubMed  Google Scholar 

  78. Yancy CW et al. 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013;128(16):e240–327.

    Article  PubMed  Google Scholar 

  79. Spieker LE et al. Acute hemodynamic and neurohumoral effects of selective ET(A) receptor blockade in patients with congestive heart failure. ET 003 Investigators. J Am Coll Cardiol. 2000;35(7):1745–52.

    Article  CAS  PubMed  Google Scholar 

  80. Porter TR et al. Endothelium-dependent pulmonary artery responses in chronic heart failure: influence of pulmonary hypertension. J Am Coll Cardiol. 1993;22(5):1418–24.

    Article  CAS  PubMed  Google Scholar 

  81. Nagasaka T et al. Positive inotropic effect of endothelin-1 in the neonatal mouse right ventricle. Eur J Pharmacol. 2003;472(3):197–204.

    Article  CAS  PubMed  Google Scholar 

  82. Borlaug BA et al. Effects of sildenafil on ventricular and vascular function in heart failure with preserved ejection fraction. Circ Heart Fail. 2015;8(3):533–41.

    Article  CAS  PubMed  Google Scholar 

  83. Preston IR et al. Pulmonary edema caused by inhaled nitric oxide therapy in two patients with pulmonary hypertension associated with the CREST syndrome. Chest. 2002;121(2):656–9.

    Article  PubMed  Google Scholar 

  84. Humbert M et al. Pulmonary edema complicating continuous intravenous prostacyclin in pulmonary capillary hemangiomatosis. Am J Respir Crit Care Med. 1998;157(5 Pt 1):1681–5.

    Article  CAS  PubMed  Google Scholar 

  85. Califf RM et al. A randomized controlled trial of epoprostenol therapy for severe congestive heart failure: The Flolan International Randomized Survival Trial (FIRST). Am Heart J. 1997;134(1):44–54.

    Article  CAS  PubMed  Google Scholar 

  86. Packer M et al. Clinical effects of endothelin receptor antagonism with bosentan in patients with severe chronic heart failure: results of a pilot study. J Card Fail. 2005;11(1):12–20.

    Article  CAS  PubMed  Google Scholar 

  87. Kalra PR, Moon JC, Coats AJ. Do results of the ENABLE (Endothelin Antagonist Bosentan for Lowering Cardiac Events in Heart Failure) study spell the end for non-selective endothelin antagonism in heart failure? Int J Cardiol. 2002;85(2-3):195–7.

    Article  PubMed  Google Scholar 

  88. Lüscher TF et al. Hemodynamic and neurohumoral effects of selective endothelin A (ET(A)) receptor blockade in chronic heart failure: the Heart Failure ET(A) Receptor Blockade Trial (HEAT). Circulation. 2002;106(21):2666–72.

    Article  PubMed  CAS  Google Scholar 

  89. Anand I et al. Long-term effects of darusentan on left-ventricular remodelling and clinical outcomes in the EndothelinA Receptor Antagonist Trial in Heart Failure (EARTH): randomised, double-blind, placebo-controlled trial. Lancet. 2004;364(9431):347–54.

    Article  CAS  PubMed  Google Scholar 

  90. Katz SD et al. Acute type 5 phosphodiesterase inhibition with sildenafil enhances flow-mediated vasodilation in patients with chronic heart failure. J Am Coll Cardiol. 2000;36(3):845–51.

    Article  CAS  PubMed  Google Scholar 

  91. Lepore JJ et al. Effect of sildenafil on the acute pulmonary vasodilator response to inhaled nitric oxide in adults with primary pulmonary hypertension. Am J Cardiol. 2002;90(6):677–80.

    Article  CAS  PubMed  Google Scholar 

  92. Forfia PR et al. Acute phosphodiesterase 5 inhibition mimics hemodynamic effects of B-type natriuretic peptide and potentiates B-type natriuretic peptide effects in failing but not normal canine heart. J Am Coll Cardiol. 2007;49(10):1079–88.

    Article  CAS  PubMed  Google Scholar 

  93. Angel Gómez-Sánchez M et al. Pilot assessment of the response of several pulmonary hemodynamic variables to sublingual sildenafil in candidates for heart transplantation. Eur J Heart Fail. 2004;6(5):615–7.

    Article  PubMed  CAS  Google Scholar 

  94. Jabbour A et al. Chronic sildenafil lowers transpulmonary gradient and improves cardiac output allowing successful heart transplantation. Eur J Heart Fail. 2007;9(6-7):674–7.

    Article  CAS  PubMed  Google Scholar 

  95. Lewis GD et al. Sildenafil improves exercise hemodynamics and oxygen uptake in patients with systolic heart failure. Circulation. 2007;115(1):59–66.

    Article  CAS  PubMed  Google Scholar 

  96. Lewis GD et al. Sildenafil improves exercise capacity and quality of life in patients with systolic heart failure and secondary pulmonary hypertension. Circulation. 2007;116(14):1555–62.

    Article  CAS  PubMed  Google Scholar 

  97. Guazzi M et al. The effects of phosphodiesterase-5 inhibition with sildenafil on pulmonary hemodynamics and diffusion capacity, exercise ventilatory efficiency, and oxygen uptake kinetics in chronic heart failure. J Am Coll Cardiol. 2004;44(12):2339–48.

    Article  CAS  PubMed  Google Scholar 

  98. Stasch JP, Pacher P, Evgenov OV. Soluble guanylate cyclase as an emerging therapeutic target in cardiopulmonary disease. Circulation. 2011;123(20):2263–73.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Bonderman D et al. Riociguat for patients with pulmonary hypertension caused by systolic left ventricular dysfunction: a phase IIb double-blind, randomized, placebo-controlled, dose-ranging hemodynamic study. Circulation. 2013;128(5):502–11.

    Article  CAS  PubMed  Google Scholar 

  100. Guazzi M et al. Pulmonary hypertension in heart failure with preserved ejection fraction: a target of phosphodiesterase-5 inhibition in a 1-year study. Circulation. 2011;124(2):164–74.

    Article  CAS  PubMed  Google Scholar 

  101. Hoendermis ES et al. Effects of sildenafil on invasive haemodynamics and exercise capacity in heart failure patients with preserved ejection fraction and pulmonary hypertension: a randomized controlled trial. Eur Heart J. 2015;36(38):2565–73.

  102. Zile MR et al. Randomized, double-blind, placebo-controlled study of sitaxsentan to improve impaired exercise tolerance in patients with heart failure and a preserved ejection fraction. JACC Heart Fail. 2014;2(2):123–30.

    Article  PubMed  Google Scholar 

  103. Bonderman D et al. Acute hemodynamic effects of riociguat in patients with pulmonary hypertension associated with diastolic heart failure (DILATE-1): a randomized, double-blind, placebo-controlled, single-dose study. Chest. 2014;146(5):1274–85.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Pieske B et al. Rationale and design of the SOluble guanylate Cyclase stimulatoR in heArT failurE Studies (SOCRATES). Eur J Heart Fail. 2014;16(9):1026–38.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thenappan Thenappan.

Ethics declarations

Conflict of Interest

Thenappan Thenappan has received honoraria from Medscape and the American Heart Association’s Scientist Development grant. Bhavadharini Ramu declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Management of Heart Failure

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramu, B., Thenappan, T. Evolving Concepts of Pulmonary Hypertension Secondary to Left Heart Disease. Curr Heart Fail Rep 13, 92–102 (2016). https://doi.org/10.1007/s11897-016-0284-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11897-016-0284-x

Keywords

Navigation