Skip to main content

Advertisement

Log in

Advances in Alcoholic Liver Disease

  • Published:
Current Gastroenterology Reports Aims and scope Submit manuscript

Abstract

Alcoholic liver disease (ALD) remains a leading cause of death from liver disease in the United States. In studies from the Veterans Administration, patients with cirrhosis and superimposed alcoholic hepatitis had greater than 60% mortality over a 4-year period, with most of those deaths occurring in the first month. Thus, the prognosis for this disease is more ominous than for many common types of cancer (eg, breast, prostate, and colon). Moreover, ALD imposes a significant economic burden from lost wages, health care costs, and lost productivity. Unfortunately, there is still no Food and Drug Administration–approved or widely accepted drug therapy for any stage of ALD. Thus, a pressing need exists for a more detailed understanding of mechanisms of liver injury. This article reviews recent advances in mechanisms and therapy related to five major areas of direct relevance to ALD: oxidative stress; gut-liver axis and cytokine signaling; malnutrition; fibrin/clotting; and stellate cell activation/fibrosis. We also review why therapies related to these mechanisms have performed well in experimental animals and in vitro systems, but have not necessarily translated into effective therapy for humans with ALD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. McCord JM, Fridovich I: Superoxide dismutase: an enzymatic function of erythrocuprein (hemocuprein). J Biol Chem 1969, 244:6049–6055.

    CAS  PubMed  Google Scholar 

  2. Sies H: Oxidative stress: introductory remarks. In Oxidative Stress. Edited by Sies H. London:Academic Press; 1985:1–8.

  3. Di Luzio NR: A mechanism of the acute ethanol-induced fatty liver and the modification of liver injury by antioxidants. Lab Invest 1966; 15:50–63.

    Google Scholar 

  4. Patek AJ Jr: Alcohol, malnutrition, and alcoholic cirrhosis. Am J Clin Nutr 1979; 32(6):1304–1312.

    CAS  PubMed  Google Scholar 

  5. Bujanda L: The effects of alcohol consumption upon the gastrointestinal tract. Am J Gastroenterol 2000; 95(12):3374–3382.

    Article  CAS  PubMed  Google Scholar 

  6. Lieber CS: Alcohol: its metabolism and interaction with nutrients. Annu Rev Nutr 2000; 20:395–430.

    Article  CAS  PubMed  Google Scholar 

  7. Arteel GE: Oxidants and antioxidants in alcohol-induced liver disease. Gastroenterology 2003; 124(3):778–790.

    Article  CAS  PubMed  Google Scholar 

  8. Kono H, Arteel GE, Rusyn I, et al.: Ebselen prevents early alcohol-induced liver injury in rats. Free Radic Biol Med 2001; 30(4):403–411.

    Article  CAS  PubMed  Google Scholar 

  9. Kono H, Rusyn I, Uesugi T, et al.: Diphenyleneiodonium sulfate, an NADPH oxidase inhibitor, prevents early alcohol-induced liver injury in the rat. Am J Physiol Gastrointest Liver Physiol 2001; 280(5):G1005–G1012.

    CAS  PubMed  Google Scholar 

  10. Kono H, Rusyn I, Connor H, et al.: Allopurinol prevents early alcohol-induced liver injury in rats. J Pharmacol Exp Therapeut 2000; 293(1):296–303.

    CAS  Google Scholar 

  11. Sies H.: Biochemistry of oxidative stress. Angew Chem Int Ed Engl 1986; 25: 1058–1071.

    Article  Google Scholar 

  12. Jones DP: The role of oxygen concentration in oxidative stress: hypoxic and hyperoxic models. In Oxidative Stress. Edited by Sies H. London:Academic Press; 1985:151–195.

  13. Tribble DL, Jones DP: Oxygen dependence of oxidative stress: Rate of NADPH supply for maintaining the GSH pool during hypoxia. Biochem Pharmacol 1990; 39(4):729–736.

    Article  CAS  PubMed  Google Scholar 

  14. Shaw S, Jayatilleke E, Lieber CS: Lipid peroxidation as a mechanism of alcoholic liver injury: role of iron mobilization and microsomal induction. Alcohol 1988; 5:135–140.

    Article  CAS  PubMed  Google Scholar 

  15. Bardag-Gorce F, Yuan QX, Li J, et al.: The effect of ethanol-induced cytochrome p4502E1 on the inhibition of proteasome activity by alcohol. Biochem Biophys Res Commun 2000; 279(1):23–29.

    Article  CAS  PubMed  Google Scholar 

  16. Donohue TM Jr: The ubiquitin-proteasome system and its role in ethanol-induced disorders. Addict Biol 2002; 7(1):15–28.

    Article  CAS  PubMed  Google Scholar 

  17. Droge W: Free radicals in the physiological control of cell function. Physiol Rev 2002; 82(1):47–95.

    CAS  PubMed  Google Scholar 

  18. Forman HJ, Torres M: Redox signaling in macrophages. Mol Aspects Med 2001; 22(4–5):189–216.

    Article  CAS  PubMed  Google Scholar 

  19. Kamata H, Hirata H: Redox regulation of cellular signalling. Cell Signal 1999; 11(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  20. Allen RG, Tresini M: Oxidative stress and gene regulation. Free Radic Biol Med 2000; 28(3):463–499.

    Article  CAS  PubMed  Google Scholar 

  21. Ermak G, Davies KJ: Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol 2002; 38(10):713–721.

    Article  CAS  PubMed  Google Scholar 

  22. Suzuki YJ, Forman HJ, Sevanian A: Oxidants as stimulators of signal transduction. Free Radic Biol Med 1997; 22(1–2):269–285.

    Article  CAS  PubMed  Google Scholar 

  23. D’Angio CT, Finkelstein JN: Oxygen regulation of gene expression: a study in opposites. Mol Genet Metab 2000; 71(1–2):371–380.

    Article  PubMed  Google Scholar 

  24. Hoek JB, Pastorino JG: Ethanol, oxidative stress, and cytokine-induced liver cell injury. Alcohol 2002; 27(1):63–68.

    Article  CAS  PubMed  Google Scholar 

  25. Szabo G, Bala S: Alcoholic liver disease and the gut-liver axis. World J Gastroenterol 2010; 16(11):1321–1329.

    Article  CAS  PubMed  Google Scholar 

  26. Mandrekar P, Szabo G: Signalling pathways in alcohol-induced liver inflammation. J Hepatol 2009; 50(6):1258–1266.

    Article  CAS  PubMed  Google Scholar 

  27. • Mezey E, Potter JJ, Rennie-Tankersley L, et al.: A randomized placebo controlled trial of vitamin E for alcoholic hepatitis. J Hepatol 2004; 40(1):40–46. In this study, the authors showed that a relatively high dose of vitamin E (1000 U) had no protective effect in patients with alcoholic hepatitis. The effectiveness of vitamin E alone was brought into question from the results of this study.

    Article  CAS  PubMed  Google Scholar 

  28. •• Stewart S, Prince M, Bassendine M, et al.: A randomized trial of antioxidant therapy alone or with corticosteroids in acute alcoholic hepatitis. J Hepatol 2007; 47(2):277–283. The authors of this study used a “cocktail” of antioxidants in patients with alcoholic hepatitis and did not observe any protective effect.

    Article  CAS  PubMed  Google Scholar 

  29. Purohit V, Bode JC, Bode C, et al.: Alcohol, intestinal bacterial growth, intestinal permeability to endotoxin, and medical consequences: summary of a symposium. Alcohol 2008; 42(5):349–361.

    Article  CAS  PubMed  Google Scholar 

  30. Gustot T, Lemmers A, Moreno C, et al.: Differential liver sensitization to toll-like receptor pathways in mice with alcoholic fatty liver. Hepatology 2006; 43(5):989–1000.

    Article  CAS  PubMed  Google Scholar 

  31. Luckey TD, Reyniers JA, Gyorgy P, et al.: Germfree animals and liver necrosis. Ann N Y Acad Sci 1954; 57(6):932–935.

    Article  CAS  PubMed  Google Scholar 

  32. Rutenburg AM, Sonnenblick E, Koven I, et al.: The role of intestinal bacteria in the development of dietary cirrhosis in rats. J Exp Med 1957; 106(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  33. Broitman SA, Gottlieb LS, Zamcheck N: Influence of Neomycin and Ingested Endotoxin in the Pathogenesis of Choline Deficiency Cirrhosis in the Adult Rat. J Exp Med 1964; 119:633–642.

    Article  CAS  PubMed  Google Scholar 

  34. Nolan JP: The contribution of gut-derived endotoxins to liver injury. Yale J Biol Med 1979; 52(1):127–133.

    CAS  PubMed  Google Scholar 

  35. Gabuzda GJ: Hepatic coma: clinical considerations, pathogenesis, and management. Adv Intern Med 1962; 11:11–73.

    CAS  PubMed  Google Scholar 

  36. Zieve L: Pathogenesis of hepatic coma. Arch Intern Med 1966; 118(3):211–223.

    Article  CAS  PubMed  Google Scholar 

  37. McClain CJ, Zieve L: Portal Systemic Encephalopathy: Recognition and Variations. In Problems in Liver Diseases. Edited by Davidson CS. New York: Stratton Intercontinental Medical Book Corp.; 1979:162–172.

  38. Adachi Y, Moore LE, Bradford BU, et al.: Antibiotics prevent liver injury in rats following long-term exposure to ethanol. Gastroenterology 1995; 108(1):218–224.

    Article  CAS  PubMed  Google Scholar 

  39. Keshavarzian A, Choudhary S, Holmes EW, et al.: Preventing gut leakiness by oats supplementation ameliorates alcohol-induced liver damage in rats. J Pharmacol Exp Ther 2001; 299(2):442–448.

    CAS  PubMed  Google Scholar 

  40. Nanji AA, Khettry U, Sadrzadeh SM: Lactobacillus feeding reduces endotoxemia and severity of experimental alcoholic liver (disease). Proc Soc Exp Biol Med 1994; 205(3):243–247.

    CAS  PubMed  Google Scholar 

  41. McClain CJ, Song Z, Barve SS, et al.: Recent advances in alcoholic liver disease. IV. Dysregulated cytokine metabolism in alcoholic liver disease. Am J Physiol Gastrointest Liver Physiol 2004; 287(3):G497–502.

    Article  CAS  PubMed  Google Scholar 

  42. Iimuro Y, Gallucci RM, Luster MI, et al.: Antibodies to tumor necrosis factor alfa attenuate hepatic necrosis and inflammation caused by chronic exposure to ethanol in the rat. Hepatology 1997; 26(6):1530–1537.

    Article  CAS  PubMed  Google Scholar 

  43. Yin M, Wheeler MD, Kono H, et al.: Essential role of tumor necrosis factor alpha in alcohol-induced liver injury in mice. Gastroenterology 1999; 117(4):942–952.

    Article  CAS  PubMed  Google Scholar 

  44. Honchel R, Ray MB, Marsano L, et al.: Tumor necrosis factor in alcohol enhanced endotoxin liver injury. Alcohol Clin Exp Res 1992; 16(4):665–669.

    Article  CAS  PubMed  Google Scholar 

  45. • Szabo G, Bala S: Alcoholic liver disease and the gut-liver axis. World J Gastroenterol 2010; 16(11):1321–1329. The authors review the interactions of gut flora, gut-derived toxins, and liver injury, including the role of tolls in liver injury.

    Article  CAS  PubMed  Google Scholar 

  46. McClain CJ, Cohen DA: Increased tumor necrosis factor production by monocytes in alcoholic hepatitis. Hepatology 1989; 9(3):349–351.

    Article  CAS  PubMed  Google Scholar 

  47. Khoruts A, Stahnke L, McClain CJ, et al.: Circulating tumor necrosis factor, interleukin-1 and interleukin-6 concentrations in chronic alcoholic patients. Hepatology 1991; 13(2):267–276.

    Article  CAS  PubMed  Google Scholar 

  48. Naveau S, Chollet-Martin S, Dharancy S., et al.: A double-blind randomized controlled trial of infliximab associated with prednisolone in acute alcoholic hepatitis. Hepatology 2004; 39(5):1390–1397.

    Article  CAS  PubMed  Google Scholar 

  49. Boetticher NC, Peine CJ, Kwo P, et al.: A randomized, double-blinded, placebo-controlled multicenter trial of etanercept in the treatment of alcoholic hepatitis. Gastroenterology 2008; 135(6):1953–1960.

    Article  CAS  PubMed  Google Scholar 

  50. Akriviadis E, Botla R, Briggs W, et al.: Pentoxifylline improves short-term survival in severe acute alcoholic hepatitis: a double-blind, placebo-controlled trial. Gastroenterology 2000, 119:1637–1648.

    Article  CAS  PubMed  Google Scholar 

  51. •• De BK, Gangopadhyay S, Dutta D, Baksi SD, Pani A, Ghosh P. Pentoxifylline versus prednisolone for severe alcoholic hepatitis: a randomized controlled trial. World J Gastroenterol. 2009 Apr 7;15(13):1613–9. This article describes a randomized study that showed improved survival and renoprotection in alcoholic hepatitis with pentoxifylline compared to prednisolone.

    Article  CAS  PubMed  Google Scholar 

  52. Mendenhall C, Roselle GA, Gartside P, et al.: Relationship of protein calorie malnutrition to alcoholic liver disease: a reexamination of data from two Veterans Administration Cooperative Studies. Alcohol Clin Exp Res 1995; 19(3):635–641.

    Article  CAS  PubMed  Google Scholar 

  53. Mendenhall CL, Anderson S, Weesner RE, et al.: Protein-calorie malnutrition associated with alcoholic hepatitis. Veterans Administration Cooperative Study Group on Alcoholic Hepatitis. Am J Med 1984; 76(2):211–222.

    Article  CAS  PubMed  Google Scholar 

  54. Mendenhall CL, Moritz TE, Roselle GA, et al.: Protein energy malnutrition in severe alcoholic hepatitis: diagnosis and response to treatment. The VA Cooperative Study Group #275. JPEN J Parenter Enteral Nutr 1995; 19(4):258–265.

    Article  CAS  PubMed  Google Scholar 

  55. Mendenhall CL, Tosch T, Weesner RE, et al.: VA cooperative study on alcoholic hepatitis. II: Prognostic significance of protein-calorie malnutrition. Am J Clin Nutr 1986; 43(2):213–218.

    CAS  PubMed  Google Scholar 

  56. Mendenhall CL, Moritz TE, Roselle GA, et al.: A study of oral nutritional support with oxandrolone in malnourished patients with alcoholic hepatitis: results of a Department of Veterans Affairs cooperative study. Hepatology 1993; 17(4):564–576.

    Article  CAS  PubMed  Google Scholar 

  57. Cabre E, Rodriguez-Iglesias P, Caballeria J, et al.: Short- and long-term outcome of severe alcohol-induced hepatitis treated with steroids or enteral nutrition: a multicenter randomized trial. Hepatology 2000; 32(1):36–42.

    Article  CAS  PubMed  Google Scholar 

  58. •• Plank LD, Gane EJ, Peng S, et al.: Nocturnal nutritional supplementation improves total body protein status of patients with liver cirrhosis: a randomized 12-month trial. Hepatology 2008; 48(2):557–566. This article documents the importance of nighttime snacks in maintaining muscle mass in cirrhotics. Patients with cirrhosis can transition to a “starvation” state overnight.

    Article  PubMed  Google Scholar 

  59. Kang YJ, Zhou Z.: Zinc prevention and treatment of alcoholic liver disease. Mol Aspects Med 2005; 26(4–5):391–404.

    Article  CAS  PubMed  Google Scholar 

  60. McClain CJ, Antonow DR, Cohen DA, et al.: Zinc metabolism in alcoholic liver disease. Alcohol Clin Exp Res 1986; 10(6):582–589.

    Article  CAS  PubMed  Google Scholar 

  61. Zhou Z, Kang X, Jiang Y, et al.: Preservation of hepatocyte nuclear factor-4alpha is associated with zinc protection against TNF-alpha hepatotoxicity in mice. Exp Biol Med (Maywood) 2007; 232(5):622–628.

    CAS  Google Scholar 

  62. Shea-Budgell M, Dojka M, Nimmo M, et al.: Marginal zinc deficiency increased the susceptibility to acute lipopolysaccharide-induced liver injury in rats. Exp Biol Med (Maywood) 2006; 231(5):553–558.

    CAS  Google Scholar 

  63. Lambert JC, Zhou Z, Kang YJ: Suppression of Fas-mediated signaling pathway is involved in zinc inhibition of ethanol-induced liver apoptosis. Exp Biol Med (Maywood) 2003; 228(4):406–412.

    CAS  Google Scholar 

  64. Zhong W, McClain CJ, Cave M, et al.: The role of zinc deficiency in alcohol-induced intestinal barrier dysfunction. Am J Physiol Gastrointest Liver Physiol 2010; 298(5):G625–633.

    Article  CAS  PubMed  Google Scholar 

  65. Joshi PC, Mehta A, Jabber WS, et al.: Zinc deficiency mediates alcohol-induced alveolar epithelial and macrophage dysfunction in rats. Am J Respir Cell Mol Biol 2009; 41(2):207–216.

    Article  CAS  PubMed  Google Scholar 

  66. Takahashi M, Saito H, Higashimoto M, et al.: Possible inhibitory effect of oral zinc supplementation on hepatic fibrosis through downregulation of TIMP-1: A pilot study. Hepatol Res 2007; 37(6):405–409.

    Article  CAS  PubMed  Google Scholar 

  67. • Northup PG, Sundaram V, Fallon MB, et al.: Hypercoagulation and thrombophilia in liver disease. J Thromb Haemost 2008; 6(1):2–9. This review is a state-of-the-art proceeding from the first Coagulopathy in Liver Disease conference held in Charlottesville, VA, USA. All authors presented at the conference on a separate topic concerning hypercoagulation in liver disease.

    CAS  PubMed  Google Scholar 

  68. Kolev K, Machovich R: Molecular and cellular modulation of fibrinolysis. Thromb Haemost 2003; 89(4):610–621.

    CAS  PubMed  Google Scholar 

  69. Arteel GE: New role of plasminogen activator inhibitor-1 in alcohol-induced liver injury. J Gastroenterol Hepatol 2008; 23 Suppl 1:S54–59.

    Article  CAS  PubMed  Google Scholar 

  70. Beier JI, Guo L, von Montfort C, et al.: New role of resistin in lipopolysaccharide-induced liver damage in mice. J Pharmacol Exp Ther 2008; 325(3):801–808.

    Article  CAS  PubMed  Google Scholar 

  71. Beier JI, Luyendyk JP, Guo L, et al.: Fibrin accumulation plays a critical role in the sensitization to lipopolysaccharide-induced liver injury caused by ethanol in mice. Hepatology 2009; 49(5):1545–1553.

    Article  CAS  PubMed  Google Scholar 

  72. • Bergheim I, Guo L, Davis MA, et al.: Metformin prevents alcohol-induced liver injury in the mouse: Critical role of plasminogen activator inhibitor-1. Gastroenterology 2006; 130(7):2099–2112. This article is the first to show that steatosis due to acute or chronic enteral alcohol exposure was blunted by blocking PAI-1 induction, independent of AMPK activation.

    Article  CAS  PubMed  Google Scholar 

  73. Bergheim I, Guo L, Davis MA, et al.: Critical role of plasminogen activator inhibitor-1 in cholestatic liver injury and fibrosis. J Pharmacol Exp Ther 2006; 316(2):592–600.

    Article  CAS  PubMed  Google Scholar 

  74. Ganey PE, Luyendyk JP, Maddox JF, et al.: Adverse hepatic drug reactions: inflammatory episodes as consequence and contributor. Chem Biol Interact 2004; 150(1):35–51.

    Article  CAS  PubMed  Google Scholar 

  75. Pearson JM, Schultze AE, Schwartz KA, et al.: The thrombin inhibitor, hirudin, attenuates lipopolysaccharide-induced liver injury in the rat. J Pharmacol Exp Ther 1996; 278(1):378–383.

    CAS  PubMed  Google Scholar 

  76. Hodivala-Dilke KM, Reynolds AR, Reynolds LE: Integrins in angiogenesis: multitalented molecules in a balancing act. Cell Tissue Res 2003; 314(1):131–144.

    Article  CAS  PubMed  Google Scholar 

  77. Zhou HF, Chan HW, Wickline SA, et al.: Alphavbeta3-targeted nanotherapy suppresses inflammatory arthritis in mice. FASEB J 2009; 23(9):2978–2985.

    Article  CAS  PubMed  Google Scholar 

  78. Dimova EY, Kietzmann T: Metabolic, hormonal and environmental regulation of plasminogen activator inhibitor-1 (PAI-1) expression: lessons from the liver. Thromb Haemost 2008; 100(6):992–1006.

    CAS  PubMed  Google Scholar 

  79. Tran-Thang C, Fasel-Felley J, Pralong G, et al.: Plasminogen activators and plasminogen activator inhibitors in liver deficiencies caused by chronic alcoholism or infectious hepatitis. Thromb Haemost 1989; 62(2):651–653.

    CAS  PubMed  Google Scholar 

  80. Seth D, Hogg PJ, Gorrell MD, et al.: Direct effects of alcohol on hepatic fibrinolytic balance: implications for alcoholic liver disease. J Hepatol 2008; 48(4):614–627.

    Article  CAS  PubMed  Google Scholar 

  81. Lisman T, Caldwell SH, Burroughs AK, et al.: Hemostasis and thrombosis in patients with liver disease: the ups and downs. J Hepatol 2010; 53(2):362–371.

    Article  PubMed  Google Scholar 

  82. Schuppan D, Ruehl M, Somasundaram R, et al.: Matrix as a modulator of hepatic fibrogenesis. Semin Liver Dis 2001; 21(3):351–372.

    Article  CAS  PubMed  Google Scholar 

  83. Cassiman D, Libbrecht L, Desmet V, et al.: Hepatic stellate cell/myofibroblast subpopulations in fibrotic human and rat livers. J Hepatol 2002; 36(2):200–209.

    Article  PubMed  Google Scholar 

  84. Zeisberg M, Yang C, Martino M, et al.: Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J Biol Chem 2007; 282(32):23337–23347.

    Article  CAS  PubMed  Google Scholar 

  85. Robertson H, Kirby JA, Yip WW, et al.: Biliary epithelial-mesenchymal transition in posttransplantation recurrence of primary biliary cirrhosis. Hepatology 2007; 45(4):977–981.

    Article  CAS  PubMed  Google Scholar 

  86. Omenetti A, Porrello A, Jung Y, et al.: Hedgehog signaling regulates epithelial-mesenchymal transition during biliary fibrosis in rodents and humans. J Clin Invest 2008; 118(10):3331–3342.

    CAS  PubMed  Google Scholar 

  87. Gieling RG, Burt AD, Mann DA: Fibrosis and cirrhosis reversibility - molecular mechanisms. Clin Liver Dis 2008; 12(4):915–937, xi.

    Article  PubMed  Google Scholar 

  88. •• Poynard T, McHutchison J, Manns M, et al.: Impact of pegylated interferon alfa-2b and ribavirin on liver fibrosis in patients with chronic hepatitis C. Gastroenterology 2002; 122(5):1303–1313. In this seminal work, the authors showed that “end-stage” liver disease may revert in some patients, if the underlying cause is effectively treated. This work sparked great interest in identifying new therapies to accelerate reversion of fibrosis/cirrhosis in experimental models and in patients.

    Article  CAS  PubMed  Google Scholar 

  89. Iredale JP, Benyon RC, Pickering J, et al.: Mechanisms of spontaneous resolution of rat liver fibrosis. Hepatic stellate cell apoptosis and reduced hepatic expression of metalloproteinase inhibitors. J Clin Invest 1998; 102(3):538–549.

    Article  CAS  PubMed  Google Scholar 

  90. Liu X, Hu H, Yin JQ: Therapeutic strategies against TGF-beta signaling pathway in hepatic fibrosis. Liver Int 2006; 26(1):8–22.

    Article  PubMed  Google Scholar 

  91. Iimuro Y, Brenner DA: Matrix metalloproteinase gene delivery for liver fibrosis. Pharm Res 2008; 25(2):249–258.

    Article  CAS  PubMed  Google Scholar 

  92. Benyon RC, Arthur MJ: Extracellular matrix degradation and the role of hepatic stellate cells. Semin Liver Dis 2001; 21(3):373–384.

    Article  CAS  PubMed  Google Scholar 

  93. Tsukamoto H, Horne W, Kamimura S, et al.: Experimental liver cirrhosis induced by alcohol and iron. J Clin Invest 1995; 96(1):620–630.

    Article  CAS  PubMed  Google Scholar 

  94. Iredale JP: Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ. J Clin Invest 2007; 117(3):539–548.

    Article  CAS  PubMed  Google Scholar 

  95. Lotersztajn S, Julien B, Teixeira-Clerc F, et al.: Hepatic fibrosis: molecular mechanisms and drug targets. Annu Rev Pharmacol Toxicol 2005; 45:605–628.

    Article  CAS  PubMed  Google Scholar 

  96. Lebrec D, Thabut D, Oberti F, et al.: Pentoxifylline does not decrease short-term mortality but does reduce complications in patients with advanced cirrhosis. Gastroenterology 2010; 138(5):1755–1762.

    Article  CAS  PubMed  Google Scholar 

  97. Louvet A, Diaz E, Dharancy S, et al.: Early switch to pentoxifylline in patients with severe alcoholic hepatitis is inefficient in non-responders to corticosteroids. J Hepatol 2008; 48(3):465–470.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by National Institutes of Health grants R01AA003624 (Arteel), R01AA015970 (McClain), R37AA010762 (McClain), R01DK071765 (McClain), P01AA017103 (McClain), R01AA018016 (McClain), RC2AA019385 (McClain), R01AA018869 (McClain), and the Veterans Administration (McClain).

Disclosure

Conflicts of interest: J. Beier—none; G. Arteel—none; C. McClain—fees and honoraria from Vertex, Ocera, Gilead, Baxter, and Nestle, grants or contracts with Roche, Merck, Axcan, and Gilead.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig J. McClain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beier, J.I., Arteel, G.E. & McClain, C.J. Advances in Alcoholic Liver Disease. Curr Gastroenterol Rep 13, 56–64 (2011). https://doi.org/10.1007/s11894-010-0157-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11894-010-0157-5

Keywords

Navigation