Skip to main content

Advertisement

Log in

Molecular Interactions Governing Autoantigen Presentation in Type 1 Diabetes

  • Pathogenesis of Type 1 Diabetes (A Pugliese, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Type 1 diabetes is a chronic autoimmune disease resulting from T cell-mediated destruction of insulin-producing beta cells within pancreatic islets. Disease incidence has increased significantly in the last two decades, especially in young children. Type 1 diabetes is now predictable in humans with the measurement of serum islet autoantibodies directed against insulin and beta cell proteins. Knowledge regarding the presentation of insulin and islet antigens to T cells has increased dramatically over the last several years. Here, we review the trimolecular complex in diabetes, which consists of a major histocompatibility molecule,self-peptide, and T cell receptor, with a focus on insulin peptide presentation to T cells. With this increased understanding of how antigens are presented to T cells comes the hope for improved therapies for type 1 diabetes prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet. 2014;383:69–82. Useful review on all aspects of type 1 diabetes over the last 10 years including eitology, pathogeneses, prediction, prevention and treatment.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Concannon P, Rich SS, Nepom GT. Genetics of type 1A diabetes. N Engl J Med. 2009;360:1646–54.

    Article  CAS  PubMed  Google Scholar 

  3. Erlich H, Valdes AM, Noble J, Carlson JA, Varney M, Concannon P, et al. HLA DR-DQ haplotypes and genotypes and type 1 diabetes risk: analysis of the type 1 diabetes genetics consortium families. Diabetes. 2008;57:1084–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Barrett JC, Clayton DG, Concannon P, Akolkar B, Cooper JD, Erlich HA, et al. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet. 2009;41:703–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Ziegler AG, Rewers M, Simell O, Simell T, Lempainen J, Steck A, et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA. 2013;309:2473–9. Orignial research indicating that 2 or more serum islet autoantibodies leads to clinical T1D development in children from the United States and Europe.

    Article  CAS  PubMed  Google Scholar 

  6. Nanto-Salonen K, Kupila A, Simell S, Siljander H, Salonsaari T, Hekkala A, et al. Nasal insulin to prevent type 1 diabetes in children with HLA genotypes and autoantibodies conferring increased risk of disease: a double-blind, randomised controlled trial. Lancet. 2008;372:1746–55.

    Article  PubMed  Google Scholar 

  7. Michels AW, Nakayama M. The anti-insulin trimolecular complex in type 1 diabetes. Curr Opin Endocrinol Diabetes Obes. 2010;17:329–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Michels AW. Targeting the trimolecular complex. Clin Immunol. 2013;149:339–44.

    Article  CAS  PubMed  Google Scholar 

  9. Todd JA, Bell JI, McDevitt HO. HLA-DQB gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature. 1987;329:599–604.

    Article  CAS  PubMed  Google Scholar 

  10. Lee KH, Wucherpfennig KW, Wiley DC. Structure of a human insulin peptide/HLA-DQ8 complex and susceptibility to type 1 diabetes. Nat Immunol. 2001;2:501–7.

    Article  CAS  PubMed  Google Scholar 

  11. Henderson KN, Tye-Din JA, Reid HH, Chen Z, Borg NA, Beissbarth T, et al. A structural and immunological basis for the role of human leukocyte antigen DQ8 in celiac disease. Immunity. 2007;27:23–34.

    Article  CAS  PubMed  Google Scholar 

  12. Jones EY, Fugger L, Strominger JL, Siebold C. MHC class II proteins and disease: a structural perspective. Nat Rev Immunol. 2006;6:271–82.

    Article  CAS  PubMed  Google Scholar 

  13. Steck AK, Johnson K, Barriga KJ, Miao D, Yu L, Hutton JC, et al. Age of islet autoantibody appearance and mean levels of insulin, but not GAD or IA-2 autoantibodies, predict age of diagnosis of type 1 diabetes: diabetes autoimmunity study in the young. Diabetes Care. 2011;34:1397–9.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Steck AK, Vehik K, Bonifacio E, Lernmark A, Ziegler AG, Hagopian WA, et al. Predictors of progression from the appearance of islet autoantibodies to early childhood diabetes: The Environmental Determinants of Diabetes in the Young (TEDDY). Diabetes Care. 2015;38:808–13.

    Article  PubMed  Google Scholar 

  15. Pugliese A, Zeller M, Fernandez A, Zalcberg LJ, Bartlett RJ, Ricordi C, et al. The insulin gene is transcribed in the human thymus and transcription levels correlate with allelic variation at the INS VNTR-IDDM2 susceptibility locus for type I diabetes. Nat Genet. 1997;15:293–7.

    Article  CAS  PubMed  Google Scholar 

  16. Liu E, Yu L, Moriyama H, Eisenbarth GS. Animal models of insulin-dependent diabetes. Methods Mol Med. 2004;102:195–212.

    CAS  PubMed  Google Scholar 

  17. Latek RR, Suri A, Petzold SJ, Nelson CA, Kanagawa O, Unanue ER, et al. Structural basis of peptide binding and presentation by the type I diabetes-associated MHC class II molecule of NOD mice. Immunity. 2000;12:699–710.

    Article  CAS  PubMed  Google Scholar 

  18. Corper AL, Stratmann T, Apostolopoulos V, Scott CA, Garcia KC, Kang AS, et al. A structural framework for deciphering the link between I-Ag7 and autoimmune diabetes. Science. 2000;288:505–11.

    Article  CAS  PubMed  Google Scholar 

  19. Suri A, Walters JJ, Gross ML, Unanue ER. Natural peptides selected by diabetogenic DQ8 and murine I-A(g7) molecules show common sequence specificity. J Clin Invest. 2005;115:2268–76.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Nakayama M, Abiru N, Moriyama H, Babaya N, Liu E, Miao D, et al. Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature. 2005;435:220–3.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Nakayama M, Beilke JN, Jasinski JM, Kobayashi M, Miao D, Li M, et al. Priming and effector dependence on insulin B:9–23 peptide in NOD islet autoimmunity. J Clin Invest. 2007;117:1835–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Stadinski BD, Zhang L, Crawford F, Marrack P, Eisenbarth GS, Kappler JW. Diabetogenic T cells recognize insulin bound to IAg7 in an unexpected, weakly binding register. Proc Natl Acad Sci U S A. 2010;107:10978–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Crawford F, Stadinski B, Jin N, Michels A, Nakayama M, Pratt P, et al. Specificity and detection of insulin-reactive CD4+ T cells in type 1 diabetes in the nonobese diabetic (NOD) mouse. Proc Natl Acad Sci U S A. 2011;108:16729–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Nakayama M, McDaniel K, Fitzgerald-Miller L, Kiekhaefer C, Snell-Bergeon JK, Davidson HW, et al. Regulatory vs. inflammatory cytokine T-cell responses to mutated insulin peptides in healthy and type 1 diabetic subjects. Proc Natl Acad Sci U S A. 2015;112:4429–34. Original research showing CD4 T cell responses to a novel insulin B chain mimotope associated with HLA-DQ genotype from new-onset T1D patients and healthy controls.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Arif S, Tree TI, Astill TP, Tremble JM, Bishop AJ, Dayan CM, et al. Autoreactive T cell responses show proinflammatory polarization in diabetes but a regulatory phenotype in health. J Clin Invest. 2004;113:451–63.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. van Lummel M, Duinkerken G, van Veelen PA, de Ru A, Cordfunke R, Zaldumbide A, et al. Posttranslational modification of HLA-DQ binding islet autoantigens in type 1 diabetes. Diabetes. 2014;63:237–47.

    Article  PubMed  Google Scholar 

  27. Pathiraja V, Kuehlich JP, Campbell PD, Krishnamurthy B, Loudovaris T, Coates PT, Brodnicki TC, O'Connell PJ, Kedzierska K, Rodda C, et al. Proinsulin specific, HLA-DQ8 and HLA-DQ8 transdimer restricted, CD4+ T cells infiltrate the islets in type 1 diabetes. 2014. Original research identifying T cell clones from islet infiltrating cells of a pancreas organ donor with type 1 diabetes; about ¼ of the clones responded to proinsulin peptides.

  28. Kent SC, Chen Y, Bregoli L, Clemmings SM, Kenyon NS, Ricordi C, et al. Expanded T cells from pancreatic lymph nodes of type 1 diabetic subjects recognize an insulin epitope. Nature. 2005;435:224–8.

    Article  CAS  PubMed  Google Scholar 

  29. Alleva DG, Crowe PD, Jin L, Kwok WW, Ling N, Gottschalk M, et al. A disease-associated cellular immune response in type 1 diabetics to an immunodominant epitope of insulin. J Clin Invest. 2001;107:173–80.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Eerligh P, van Lummel M, Zaldumbide A, Moustakas AK, Duinkerken G, Bondinas G, et al. Functional consequences of HLA-DQ8 homozygosity versus heterozygosity for islet autoimmunity in type 1 diabetes. Genes Immun. 2011;12:415–27.

    Article  CAS  PubMed  Google Scholar 

  31. Yang J, Chow IT, Sosinowski T, Torres-Chinn N, Greenbaum CJ, James EA, et al. Autoreactive T cells specific for insulin B:11–23 recognize a low-affinity peptide register in human subjects with autoimmune diabetes. Proc Natl Acad Sci U S A. 2014;111:14840–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Pinkse GG, Tysma OH, Bergen CA, Kester MG, Ossendorp F, van Veelen PA, et al. Autoreactive CD8 T cells associated with {beta} cell destruction in type 1 diabetes. Proc Natl Acad Sci U S A. 2005;102:18425–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Mannering SI, Harrison LC, Williamson NA, Morris JS, Thearle DJ, Jensen KP, et al. The insulin A-chain epitope recognized by human T cells is posttranslationally modified. J Exp Med. 2005;202:1191–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Shan L, Molberg O, Parrot I, Hausch F, Filiz F, Gray GM, et al. Structural basis for gluten intolerance in celiac sprue. Science. 2002;297:2275–9.

    Article  CAS  PubMed  Google Scholar 

  35. Tollefsen S, Arentz-Hansen H, Fleckenstein B, Molberg O, Raki M, Kwok WW, et al. HLA-DQ2 and -DQ8 signatures of gluten T cell epitopes in celiac disease. J Clin Invest. 2006;116:2226–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Liu E, Lee HS, Aronsson CA, Hagopian WA, Koletzko S, Rewers MJ, et al. Risk of pediatric celiac disease according to HLA haplotype and country. N Engl J Med. 2014;371:42–9.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Barker JM. Type 1 diabetes associated autoimmunity: natural history, genetic associations and screening. J Clin Endocrinol Metab. 2006;91:1210–7.

    Article  CAS  PubMed  Google Scholar 

  38. McGinty JW, Chow IT, Greenbaum C, Odegard J, Kwok WW, James EA. Recognition of posttranslationally modified GAD65 epitopes in subjects with type 1 diabetes. Diabetes. 2014;63:3033–40.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Stadinski BD, Delong T, Reisdorph N, Reisdorph R, Powell RL, Armstrong M, et al. Chromogranin A is an autoantigen in type 1 diabetes. Nat Immunol. 2010;11:225–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Delong T, Baker RL, He J, Barbour G, Bradley B, Haskins K. Diabetogenic T-cell clones recognize an altered peptide of chromogranin A. Diabetes. 2012;61:3239–46.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Gottlieb PA, Delong T, Baker RL, Fitzgerald-Miller L, Wagner R, Cook G, et al. Chromogranin A is a T cell antigen in human type 1 diabetes. J Autoimmun. 2014;50:38–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Schellekens GA, de Jong BA, van den Hoogen FH, van de Putte LB, van Venrooij WJ. Citrulline is an essential constituent of antigenic determinants recognized by rheumatoid arthritis-specific autoantibodies. J Clin Invest. 1998;101:273–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Goldbach-Mansky R, Lee J, McCoy A, Hoxworth J, Yarboro C, Smolen JS, et al. Rheumatoid arthritis associated autoantibodies in patients with synovitis of recent onset. Arthritis Res. 2000;2:236–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Scally SW, Petersen J, Law SC, Dudek NL, Nel HJ, Loh KL, et al. A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis. J Exp Med. 2013;210:2569–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Garcia KC, Adams JJ, Feng D, Ely LK. The molecular basis of TCR germline bias for MHC is surprisingly simple. Nat Immunol. 2009;10:143–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Simone E, Daniel D, Schloot N, Gottlieb P, Babu S, Kawasaki E, et al. T cell receptor restriction of diabetogenic autoimmune NOD T cells. Proc Natl Acad Sci U S A. 1997;94:2518–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Nakayama M, Castoe T, Sosinowski T, He X, Johnson K, Haskins K, et al. Germline TRAV5D-4 T-cell receptor sequence targets a primary insulin peptide of NOD mice. diabetes. 2012;61:857–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Kobayashi M, Jasinski J, Liu E, Li M, Miao D, Zhang L, et al. Conserved T cell receptor alpha-chain induces insulin autoantibodies. Proc Natl Acad Sci U S A. 2008;105:10090–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Zhang L, Jasinski JM, Kobayashi M, Davenport B, Johnson K, Davidson H, et al. Analysis of T cell receptor beta chains that combine with dominant conserved TRAV5D-4*04 anti-insulin B:9–23 alpha chains. J Autoimmun. 2009;33:42–9.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Campbell-Thompson M, Wasserfall C, Kaddis J, Albanese-O'Neill A, Staeva T, Nierras C, et al. Network for Pancreatic Organ Donors with Diabetes (nPOD): developing a tissue biobank for type 1 diabetes. Diabetes Metab Res Rev. 2012;28:608–17.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Stumpf M, Landry L, Lau K, Siebert J, Eisenbarth GS, Atkinson M, Larkin J. III, Nakayama M. Analysis of T cell receptor (TCR) sequences in pancreatic tissue from patients with type 1 diabetes (T1D). Keystone Symposia Immunotherapy of Type 1 Diabetes (Abstract)

  52. Michels AW, von Herrath M. 2011 update: antigen-specific therapy in type 1 diabetes. Curr Opin Endocrinol Diabetes Obes. 2011;18:235–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Skyler JS. Primary and secondary prevention of Type 1 diabetes. Diabet Med. 2013;30:161–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Simmons KM, Michels AW. Type 1 diabetes: a predictable disease. World J Diabetes. 2015;6:380–90.

    Article  PubMed Central  PubMed  Google Scholar 

  55. Effects of insulin in relatives of patients with type 1 diabetes mellitus. N Engl J Med. 2002;346:1685–1691.

  56. Skyler JS, Krischer JP, Wolfsdorf J, Cowie C, Palmer JP, Greenbaum C, et al. Effects of oral insulin in relatives of patients with type 1 diabetes: the diabetes prevention trial—type 1. Diabetes Care. 2005;28:1068–76.

    Article  CAS  PubMed  Google Scholar 

  57. Skyler JS, Greenbaum CJ, Lachin JM, Leschek E, Rafkin-Mervis L, Savage P, et al. Type 1 Diabetes TrialNet—an international collaborative clinical trials network. Ann N Y Acad Sci. 2008;1150:14–24.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Bonifacio E, Ziegler AG, Klingensmith G, Schober E, Bingley PJ, Rottenkolber M, et al. Effects of high-dose oral insulin on immune responses in children at high risk for type 1 diabetes: the Pre-POINT randomized clinical trial. JAMA. 2015;313:1541–9.

    Article  CAS  PubMed  Google Scholar 

  59. Daniel C, Weigmann B, Bronson R, von Boehmer H. Prevention of type 1 diabetes in mice by tolerogenic vaccination with a strong agonist insulin mimetope. J Exp Med. 2011;208:1501–10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by grants from the National Institute of Diabetes and Digestive Kidney Diseases (R01DK099317, K08 DK095995), Juvenile Diabetes Research Foundation, and the Children’s Diabetes Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron W. Michels.

Ethics declarations

Conflict of Interest

Maki Nakayama has a pending patent on Compounds that modulate autoimmunity and methods of using the same.

Kimberly M. Simmons and Aaron W. Michels declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Pathogenesis of Type 1 Diabetes

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakayama, M., Simmons, K.M. & Michels, A.W. Molecular Interactions Governing Autoantigen Presentation in Type 1 Diabetes. Curr Diab Rep 15, 113 (2015). https://doi.org/10.1007/s11892-015-0689-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11892-015-0689-z

Keywords

Navigation