Skip to main content
Log in

Stem Cell Educator Therapy and Induction of Immune Balance

  • Treatment of Type 1 Diabetes (D Dabelea, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease that causes the deficit of pancreatic islet β cells. A true cure has proven elusive despite intensive research pressure by using conventional approaches over the past 25 years. The situation highlights the challenges we face in conquering this disease. Alternative approaches are needed. Increasing evidence demonstrates that stem cells possess the function of immune modulation. We established the Stem Cell Educator therapy by using cord blood-derived multipotent stem cells (CB-SCs). A closed-loop system that circulates a patient’s blood through a blood cell separator, briefly co-cultures the patient’s lymphocytes with adherent CB-SCs in vitro, and returns the educated lymphocytes (but not the CB-SCs) to the patient’s circulation. Our clinical trial reveals that a single treatment with the Stem Cell Educator provides lasting reversal of autoimmunity that allows regeneration of islet β cells and improvement of metabolic control in subjects with long-standing T1D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

Aire:

autoimmune regulator

CB-SCs:

cord blood-derived multipotent stem cells

DCs:

dendritic cells

HLA:

human leukocyte antigen

HSCs:

hematopoietic stem cells

MSCs:

mesenchymal stem cells

NK:

natural killer cells

NO:

nitric oxide

PB-IPC:

peripheral blood-derived insulin-producing cells

PD-L1:

programmed death ligand 1

TGF-β1:

transforming growth factor-β1

T1D:

type 1 diabetes

Tregs:

regulatory T cells

TLR 3:

Toll-like receptor 3

TLR 4:

Toll-like receptor 4

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. •• Zhao Y, Mazzone T. Human cord blood stem cells and the journey to a cure for type 1 diabetes. Autoimmun Rev. 2010;10:103–7. This article summarizes human cord blood stem cells and related molecular mechanisms underlying the T1D treatment.

    Article  PubMed  CAS  Google Scholar 

  2. Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature. 2010;464:1293–300.

    Article  PubMed  CAS  Google Scholar 

  3. Lehuen A, Diana J, Zaccone P, Cooke A. Immune cell crosstalk in type 1 diabetes. Nat Rev Immunol. 2010;10:501–13.

    Article  PubMed  CAS  Google Scholar 

  4. Bach JF. Anti-CD3 antibodies for type 1 diabetes: beyond expectations. Lancet. 2011;378:459–60.

    Article  PubMed  Google Scholar 

  5. Mathieu C, Gillard P. Arresting type 1 diabetes after diagnosis: GAD is not enough. Lancet. 2011;378:291–2.

    Article  PubMed  Google Scholar 

  6. Wherrett DK, Bundy B, Becker DJ, et al. Antigen-based therapy with glutamic acid decarboxylase (GAD) vaccine in patients with recent-onset type 1 diabetes: a randomized double-blind trial. Lancet. 2011;378:319–27.

    Article  PubMed  CAS  Google Scholar 

  7. •• Zhao Y, Jiang Z, Zhao T, et al. Reversal of type 1 diabetes via islet beta cell regeneration following immune modulation by cord blood-derived multipotent stem cells. BMC Med. 2012;10:3. This article was the first to report the clinical trial by using Stem Cell Educator therapy in T1D.

    Article  PubMed  CAS  Google Scholar 

  8. • Zhao Y, Lin B, Darflinger R, et al. Human cord blood stem cell-modulated regulatory T lymphocytes reverse the autoimmune-caused type 1 diabetes in nonobese diabetic (NOD) mice. PLoS ONE. 2009;4:e4226. This article shows the pre-clinical study in diabetic NOD mice.

    Article  PubMed  Google Scholar 

  9. Zhao Y, Lin B, Dingeldein M, et al. New type of human blood stem cell: a double-edged sword for the treatment of type 1 diabetes. Transl Res. 2010;155:211–6.

    Article  PubMed  CAS  Google Scholar 

  10. Zhao Y, Jiang Z, Guo C. New hope for type 2 diabetics: Targeting insulin resistance through the immune modulation of stem cells. Autoimmun Rev. 2011;11:137–42.

    Article  PubMed  CAS  Google Scholar 

  11. Zhao Y, Wang H, Mazzone T. Identification of stem cells from human umbilical cord blood with embryonic and hematopoietic characteristics. Exp Cell Res. 2006;312:2454–64.

    Article  PubMed  CAS  Google Scholar 

  12. Zhao Y, Huang Z, Qi M, et al. Immune regulation of T lymphocyte by a newly characterized human umbilical cord blood stem cell. Immunol Lett. 2007;108:78–87.

    Article  PubMed  CAS  Google Scholar 

  13. Zhao Y, Mazzone T. Human umbilical cord blood-derived f-macrophages retains pluripotentiality after thrombopoietin expansion. Exp Cell Res. 2005;310:311–8.

    Article  PubMed  CAS  Google Scholar 

  14. King KY, Goodell MA. Inflammatory modulation of HSCs: viewing the HSC as a foundation for the immune response. Nat Rev Immunol. 2011;11:685–92.

    Article  PubMed  CAS  Google Scholar 

  15. Voltarelli JC, Couri CE, Stracieri AB, et al. Autologous nonmyeloablative hematopoietic stem cell transplantation in newly diagnosed type 1 diabetes mellitus. JAMA. 2007;297:1568–76.

    Article  PubMed  CAS  Google Scholar 

  16. Voltarelli JC, Couri CE, Rodrigues MC, et al. Stem cell therapies for type 1 diabetes mellitus. Indian J Exp Biol. 2011;49:395–400.

    PubMed  CAS  Google Scholar 

  17. Yaochite JN, Farias KC, Couri CE, et al. Immunological profile of type 1 diabetes mellitus patients after mesenchymal stromal cells (MSCs) therapy. 8th International Congress on Autoimmunity. Granada, Spain, May 9–13. 2012.

  18. Ankrum J, Karp JM. Mesenchymal stem cell therapy: two steps forward, one step back. Trends Mol Med. 2010;16:203–9.

    Article  PubMed  Google Scholar 

  19. Jung S, Panchalingam KM, Rosenberg L, Behie LA. Ex vivo expansion of human mesenchymal stem cells in defined serum-free media. Stem Cells Int. 2012;2012:1–21.

    PubMed  Google Scholar 

  20. Goldring CE, Duffy PA, Benvenisty N, et al. Assessing the safety of stem cell therapeutics. Cell Stem Cell. 2011;8:618–28.

    Article  PubMed  CAS  Google Scholar 

  21. Keating A. Mesenchymal stromal cells: new directions. Cell Stem Cell. 2012;10:709–16.

    Article  PubMed  CAS  Google Scholar 

  22. Abdi R, Fiorina P, Adra CN, et al. Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes. 2008;57:1759–67.

    Article  PubMed  CAS  Google Scholar 

  23. Luo X, Yang H, Kim IS, et al. Systemic transforming growth factor-beta1 gene therapy induces Foxp3+ regulatory cells, restores self-tolerance, and facilitates regeneration of beta cell function in overtly diabetic nonobese diabetic mice. Transplantation. 2005;79:1091–6.

    Article  PubMed  CAS  Google Scholar 

  24. Li MO, Flavell RA. TGF-beta: a master of all T cell trades. Cell. 2008;134:392–404.

    Article  PubMed  CAS  Google Scholar 

  25. English K, French A, Wood KJ. Mesenchymal stromal cells: facilitators of successful transplantation? Cell Stem Cell. 2010;7:431–42.

    Article  PubMed  CAS  Google Scholar 

  26. Singer NG, Caplan AI. Mesenchymal stem cells: mechanisms of inflammation. Annu Rev Pathol. 2011;6:457–78.

    Article  PubMed  CAS  Google Scholar 

  27. Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal stromal cells. Blood. 2007;110:3499–506.

    Article  PubMed  CAS  Google Scholar 

  28. Ren G, Zhang L, Zhao X, et al. Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell. 2008;2:141–50.

    Article  PubMed  CAS  Google Scholar 

  29. Ren G, Su J, Zhang L, et al. Species variation in the mechanisms of mesenchymal stem cell-mediated immunosuppression. Stem Cells. 2009;27:1954–62.

    Article  PubMed  CAS  Google Scholar 

  30. Liotta F, Angeli R, Cosmi L, et al. Toll-like receptors 3 and 4 are expressed by human bone marrow-derived mesenchymal stem cells and can inhibit their T-cell modulatory activity by impairing Notch signaling. Stem Cells. 2008;26:279–89.

    Article  PubMed  CAS  Google Scholar 

  31. Tomchuck SL, Zwezdaryk KJ, Coffelt SB, et al. Toll-like receptors on human mesenchymal stem cells drive their migration and immunomodulating responses. Stem Cells. 2008;26:99–107.

    Article  PubMed  CAS  Google Scholar 

  32. Waterman RS, Tomchuck SL, Henkle SL, Betancourt AM. A new mesenchymal stem cell (MSC) paradigm: polarization into a pro-inflammatory MSC1 or an immunosuppressive MSC2 phenotype. Plos One. 2010;5:e10088.

    Article  PubMed  Google Scholar 

  33. Chan JL, Tang KC, Patel AP, et al. Antigen-presenting property of mesenchymal stem cells occurs during a narrow window at low levels of interferon-gamma. Blood. 2006;107:4817–24.

    Article  PubMed  CAS  Google Scholar 

  34. Stagg J, Pommey S, Eliopoulos N, Galipeau J. Interferon-gamma-stimulated marrow stromal cells: a new type of nonhematopoietic antigen-presenting cell. Blood. 2006;107:2570–7.

    Article  PubMed  CAS  Google Scholar 

  35. Aguayo-Mazzucato C, Bonner-Weir S. Stem cell therapy for type 1 diabetes mellitus. Nat Rev Endocrinol. 2010;6:139–48.

    Article  PubMed  Google Scholar 

  36. Chung CH, Hao E, Piran R, et al. Pancreatic beta-cell neogenesis by direct conversion from mature alpha-cells. Stem Cells. 2010;28:1630–8.

    Article  PubMed  CAS  Google Scholar 

  37. Zhao Y, Huang Z, Lazzarini P, et al. A unique human blood-derived cell population displays high potential for producing insulin. Biochem Biophys Res Commun. 2007;360:205–11.

    Article  PubMed  CAS  Google Scholar 

  38. Wang L, Lovejoy NF, Faustman DL. Persistence of prolonged C-peptide production in type 1 diabetes as measured with an ultrasensitive C-peptide assay. Diabetes Care. 2012;35:465–70.

    Article  PubMed  CAS  Google Scholar 

  39. Kucia M, Zuba-Surma E, Wysoczynski M, et al. Physiological and pathological consequences of identification of very small embryonic like (VSEL) stem cells in adult bone marrow. J Physiol Pharmacol. 2006;57 Suppl 5:5–18.

    Google Scholar 

  40. D’Ippolito G, Diabira S, Howard GA, et al. Marrow-isolated adult multilineage inducible (MIAMI) cells, a unique population of postnatal young and old human cells with extensive expansion and differentiation potential. J Cell Sci. 2004;117:2971–81.

    Article  PubMed  Google Scholar 

  41. Chao KC, Chao KF, Fu YS, Liu SH. Islet-like clusters derived from mesenchymal stem cells in Wharton’s Jelly of the human umbilical cord for transplantation to control type 1 diabetes. PLoS ONE. 2008;3:e1451.

    Article  PubMed  Google Scholar 

  42. Zhao Y, Guo C, Hwang D, et al. Selective destruction of mouse islet beta cells by human T lymphocytes in a newly-established humanized type 1 diabetic model. Biochem Biophys Res Commun. 2010;399:629–36.

    Article  PubMed  CAS  Google Scholar 

  43. von Herrath M, Nepom GT. Animal models of human type 1 diabetes. Nat Immunol. 2009;10:129–32.

    Article  Google Scholar 

Download references

Acknowledgments

Supported by grants from the Juvenile Diabetes Research Foundation International, the American Diabetes Association, and China Jinan 5150 Program for Oversea Scholar.

Disclosure

Conflicts of interest: Y. Zhao: is employed by, is the Chairman of the Board for, and has stock/stock options for Tianhe Stem Cell Biotechnologies Inc.; is the inventor for Stem Cell Educator therapy and related technologies at the University of Illinois at Chicago;

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y. Stem Cell Educator Therapy and Induction of Immune Balance. Curr Diab Rep 12, 517–523 (2012). https://doi.org/10.1007/s11892-012-0308-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-012-0308-1

Keywords

Navigation