Skip to main content

Advertisement

Log in

Understanding Pancreas Development for β-Cell Repair and Replacement Therapies

  • Pathogenesis of Type 1 Diabetes (AG Ziegler, Section Editor)
  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

An Erratum to this article was published on 31 July 2012

Abstract

The lack or dysfunction of insulin-producing β-cells is the cause of all forms of diabetes. In vitro generation of β-cells from pluripotent stem cells for cell-replacement therapy or triggering endogenous mechanisms of β-cell repair have great potential in the field of regenerative medicine. Both approaches rely on a thorough understanding of β-cell development and homeostasis. Here, we briefly summarize the current knowledge of β-cell differentiation during pancreas development in the mouse. Furthermore, we describe how this knowledge is translated to instruct differentiation of both mouse and human pluripotent stem cells towards the β-cell lineage. Finally, we shortly summarize the current efforts to identify stem or progenitor cells in the adult pancreatic organ and to harness the endogenous regenerative potential. Understanding development and regeneration of β-cells already led to identification of molecular targets for therapy and informed on pathomechanisms of diabetes. In the future might lead to β-cell repair and replacement therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003;52:102–10.

    PubMed  CAS  Google Scholar 

  2. Rahier J, Guiot Y, Goebbels RM, Sempoux C, Henquin JC. Pancreatic β-cell mass in European subjects with type 2 diabetes. Diabetes Obes Metab. 2008;10 Suppl 4:32–42.

    PubMed  Google Scholar 

  3. Bonnefond A, Froguel P, Vaxillaire M. The emerging genetics of type 2 diabetes. Trends Mol Med. 2010;16:407–16.

    PubMed  CAS  Google Scholar 

  4. Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL. Islet transplantation in 7 patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med. 2000;343:230–8.

    PubMed  CAS  Google Scholar 

  5. Truong W, Shapiro AM. Progress in islet transplantation in patients with type 1 diabetes mellitus. Treat Endocrinol. 2006;5:147–58.

    PubMed  CAS  Google Scholar 

  6. Murtaugh LC, Melton DA. Genes, signals, and lineages in pancreas development. Annu Rev Cell Dev Biol. 2003;19:71–89.

    PubMed  CAS  Google Scholar 

  7. Pan FC, Wright C. Pancreas organogenesis: from bud to plexus to gland. Dev Dyn. 2011;240:530–65.

    PubMed  CAS  Google Scholar 

  8. Murtaugh LC. Pancreas and β-cell development: from the actual to the possible. Development. 2007;134:427–38.

    PubMed  CAS  Google Scholar 

  9. Gittes GK. Developmental biology of the pancreas: a comprehensive review. Dev Biol. 2009;326:4–35.

    PubMed  CAS  Google Scholar 

  10. Mayhew CN, Wells JM. Converting human pluripotent stem cells into β-cells: recent advances and future challenges. Curr Opin Organ Transplant. 2010;15:54–60.

    PubMed  Google Scholar 

  11. Puri S, Hebrok M. Cellular plasticity within the pancreas–lessons learned from development. Dev Cell. 2010;18:342–56.

    PubMed  CAS  Google Scholar 

  12. Rossant J, Tam PP. Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development. 2009;136:701–13.

    PubMed  CAS  Google Scholar 

  13. Beddington RS, Robertson EJ. An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo. Development. 1989;105:733–7.

    PubMed  CAS  Google Scholar 

  14. Bradley A. Embryonic stem cells: proliferation and differentiation. Curr Opin Cell Biol. 1990;2:1013–7.

    PubMed  CAS  Google Scholar 

  15. Evans M. Discovering pluripotency: 30 years of mouse embryonic stem cells. Nat Rev Mol Cell Biol. 2011;12:680–6.

    PubMed  CAS  Google Scholar 

  16. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    PubMed  CAS  Google Scholar 

  17. Nichols J, Smith A. Naive and primed pluripotent states. Cell Stem Cell. 2009;4:487–92.

    PubMed  CAS  Google Scholar 

  18. Murry CE, Keller G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell. 2008;132:661–80.

    PubMed  CAS  Google Scholar 

  19. Beddington RS, Robertson EJ. Anterior patterning in mouse. Trends Genet. 1998;14:277–84.

    PubMed  CAS  Google Scholar 

  20. Robertson EJ. Making heads and tails of the early mouse embryo. Harvey Lect. 2005;101:59–73.

    PubMed  CAS  Google Scholar 

  21. Tam PP, Beddington RS. Establishment and organization of germ layers in the gastrulating mouse embryo. Ciba Found Symp. 1992;165:27–41, Discussion 42–29.

    Google Scholar 

  22. Brons IG, Smithers LE, Trotter MW, Rugg-Gunn P, Sun B, Chuva de Sousa Lopes SM, et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature. 2007;448:191–5.

    PubMed  CAS  Google Scholar 

  23. Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature. 2007;448:196–9.

    PubMed  CAS  Google Scholar 

  24. Chenoweth JG, McKay RD, Tesar PJ. Epiblast stem cells contribute new insight into pluripotency and gastrulation. Dev Growth Differ. 2010;52:293–301.

    PubMed  CAS  Google Scholar 

  25. Zorn AM, Wells JM. Vertebrate endoderm development and organ formation. Annu Rev Cell Dev Biol. 2009;25:221–51.

    PubMed  CAS  Google Scholar 

  26. Wells JM, Melton DA. Vertebrate endoderm development. Annu Rev Cell Dev Biol. 1999;15:393–410.

    PubMed  CAS  Google Scholar 

  27. Lewis SL, Tam PP. Definitive endoderm of the mouse embryo: formation, cell fatesmorphogenetic function. Dev Dyn. 2006;235:2315–29.

    PubMed  Google Scholar 

  28. Kwon GS, Viotti M, Hadjantonakis AK. The endoderm of the mouse embryo arises by dynamic widespread intercalation of embryonic and extra-embryonic lineages. Dev Cell. 2008;15:509–20.

    PubMed  CAS  Google Scholar 

  29. Burtscher I, Lickert H. Foxa2 regulates polarity and epithelialization in the endoderm germ layer of the mouse embryo. Development. 2009;136:1029–38.

    PubMed  CAS  Google Scholar 

  30. Tremblay KD, Zaret KS. Distinct populations of endoderm cells converge to generate the embryonic liver bud and ventral foregut tissues. Dev Biol. 2005;280:87–99.

    PubMed  CAS  Google Scholar 

  31. Tam PP, Kanai-Azuma M, Kanai Y. Early endoderm development in vertebrates: lineage differentiation and morphogenetic function. Curr Opin Genet Dev. 2003;13:393–400.

    PubMed  CAS  Google Scholar 

  32. Wells JM, Melton DA. Early mouse endoderm is patterned by soluble factors from adjacent germ layers. Development. 2000;127:1563–72.

    PubMed  CAS  Google Scholar 

  33. Franklin V, Khoo PL, Bildsoe H, Wong N, Lewis S, Tam PP. Regionalisation of the endoderm progenitors and morphogenesis of the gut portals of the mouse embryo. Mech Dev. 2008;125:587–600.

    PubMed  CAS  Google Scholar 

  34. Grapin-Botton A. Endoderm specification. In: StemBook. The Stem Cell Research Community, StemBook. 2008. doi:10.3824/stembook.1.30.1. http://www.stembook.org.

  35. Molotkov A, Molotkova N. Duester G. Retinoic acid generated by Raldh2 in mesoderm is required for mouse dorsal endodermal pancreas development. Dev Dyn. 2005;232:950–7.

    Google Scholar 

  36. Hebrok M, Kim SK, Melton DA. Notochord repression of endodermal sonic hedgehog permits pancreas development. Genes Dev. 1998;12:1705–13.

    PubMed  CAS  Google Scholar 

  37. Ahlgren U, Jonsson J, Edlund H. The morphogenesis of the pancreatic mesenchyme is uncoupled from that of the pancreatic epithelium in IPF1/PDX1-deficient mice. Development. 1996;122:1409–16.

    PubMed  CAS  Google Scholar 

  38. Offield MF, Jetton TL, Labosky PA, Ray M, Stein RW, Magnuson MA, et al. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development. 1996;122:983–95.

    PubMed  CAS  Google Scholar 

  39. Jonsson J, Carlsson L, Edlund T, Edlund H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature. 1994;371:606–9.

    PubMed  CAS  Google Scholar 

  40. Oliver-Krasinski JM, Stoffers DA. On the origin of the β cell. Genes Dev. 2008;22:1998–2021.

    PubMed  CAS  Google Scholar 

  41. Thomas MK, Lee JH, Rastalsky N, Habener JF. Hedgehog signaling regulation of homeodomain protein islet duodenum homeobox-1 expression in pancreatic β-cells. Endocrinology. 2001;142:1033–40.

    PubMed  CAS  Google Scholar 

  42. Lau J, Hebrok M. Hedgehog signaling in pancreas epithelium regulates embryonic organ formation and adult β-cell function. Diabetes. 2010;59:1211–21.

    PubMed  CAS  Google Scholar 

  43. Lammert E, Cleaver O, Melton D. Induction of pancreatic differentiation by signals from blood vessels. Science. 2001;294:564–7.

    PubMed  CAS  Google Scholar 

  44. Deutsch G, Jung J, Zheng M, Lora J, Zaret KS. A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development. 2001;128:871–81.

    PubMed  CAS  Google Scholar 

  45. Kumar M, Melton D. Pancreas specification: a budding question. Curr Opin Genet Dev. 2003;13:401–7.

    PubMed  CAS  Google Scholar 

  46. Rossi JM, Dunn NR, Hogan BL, Zaret KS. Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm. Genes Dev. 2001;15:1998–2009.

    PubMed  CAS  Google Scholar 

  47. Yoshitomi H, Zaret KS. Endothelial cell interactions initiate dorsal pancreas development by selectively inducing the transcription factor Ptf1a. Development. 2004;131:807–17.

    PubMed  CAS  Google Scholar 

  48. Golosow N, Grobstein C. Epitheliomesenchymal interaction in pancreatic morphogenesis. Dev Biol. 1962;4:242–55.

    PubMed  CAS  Google Scholar 

  49. Miralles F, Czernichow P, Ozaki K, Itoh N, Scharfmann R. Signaling through fibroblast growth factor receptor 2b plays a key role in the development of the exocrine pancreas. Proc Natl Acad Sci U S A. 1999;96:6267–72.

    PubMed  CAS  Google Scholar 

  50. Bhushan A, Itoh N, Kato S, Thiery JP, Czernichow P, Bellusci S, et al. Fgf10 is essential for maintaining the proliferative capacity of epithelial progenitor cells during early pancreatic organogenesis. Development. 2001;128:5109–17.

    PubMed  CAS  Google Scholar 

  51. Hart A, Papadopoulou S, Edlund H. Fgf10 maintains notch activation, stimulates proliferationblocks differentiation of pancreatic epithelial cells. Dev Dyn. 2003;228:185–93.

    PubMed  CAS  Google Scholar 

  52. Ahlgren U, Pfaff SL, Jessell TM, Edlund T, Edlund H. Independent requirement for ISL1 in formation of pancreatic mesenchyme and islet cells. Nature. 1997;385:257–60.

    PubMed  CAS  Google Scholar 

  53. Herrera PL. Adult insulin- and glucagon-producing cells differentiate from 2 independent cell lineages. Development. 2000;127:2317–22.

    PubMed  CAS  Google Scholar 

  54. Herrera PL, Huarte J, Sanvito F, Meda P, Orci L, Vassalli JD. Embryogenesis of the murine endocrine pancreas; early expression of pancreatic polypeptide gene. Development. 1991;113:1257–65.

    PubMed  CAS  Google Scholar 

  55. Krapp A, Knofler M, Ledermann B, Burki K, Berney C, Zoerkler N, et al. The bHLH protein PTF1-p48 is essential for the formation of the exocrine and the correct spatial organization of the endocrine pancreas. Genes Dev. 1998;12:3752–63.

    PubMed  CAS  Google Scholar 

  56. Kawaguchi Y, Cooper B, Gannon M, Ray M, MacDonald RJ, Wright CV. The role of the transcriptional regulator Ptf1a in converting intestinal to pancreatic progenitors. Nat Genet. 2002;32:128–34.

    PubMed  CAS  Google Scholar 

  57. Dong PD, Provost E, Leach SD, Stainier DY. Graded levels of Ptf1a differentially regulate endocrine and exocrine fates in the developing pancreas. Genes Dev. 2008;22:1445–50.

    PubMed  CAS  Google Scholar 

  58. Lioubinski O, Muller M, Wegner M, Sander M. Expression of Sox transcription factors in the developing mouse pancreas. Dev Dyn. 2003;227:402–8.

    PubMed  CAS  Google Scholar 

  59. Seymour PA, Freude KK, Tran MN, Mayes EE, Jensen J, Kist R, et al. SOX9 is required for maintenance of the pancreatic progenitor cell pool. Proc Natl Acad Sci U S A. 2007;104:1865–70.

    PubMed  CAS  Google Scholar 

  60. Lynn FC, Smith SB, Wilson ME, Yang KY, Nekrep N, German MS. Sox9 coordinates a transcriptional network in pancreatic progenitor cells. Proc Natl Acad Sci U S A. 2007;104:10500–5.

    PubMed  CAS  Google Scholar 

  61. Gradwohl G, Dierich A, LeMeur M. Guillemot Fneurogenin3 is required for the development of the 4 endocrine cell lineages of the pancreas. Proc Natl Acad Sci U S A. 2000;97:1607–11.

    PubMed  CAS  Google Scholar 

  62. Nishimura W, Kondo T, Salameh T, El Khattabi I, Dodge R, Bonner-Weir S, et al. A switch from MafB to MafA expression accompanies differentiation to pancreatic β-cells. Dev Biol. 2006;293:526–39.

    PubMed  CAS  Google Scholar 

  63. Artner I, Hang Y, Mazur M, Yamamoto T, Guo M, Lindner J, et al. MafA and MafB regulate genes critical to β-cells in a unique temporal manner. Diabetes. 2010;59:2530–9.

    PubMed  CAS  Google Scholar 

  64. Sander M, Sussel L, Conners J, Scheel D, Kalamaras J, Dela Cruz F, et al. Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of β-cell formation in the pancreas. Development. 2000;127:5533–40.

    PubMed  CAS  Google Scholar 

  65. Henseleit KD, Nelson SB, Kuhlbrodt K, Hennings JC, Ericson J, Sander M. NKX6 transcription factor activity is required for α- and β-cell development in the pancreas. Development. 2005;132:3139–49.

    PubMed  CAS  Google Scholar 

  66. Horn S, Kobberup S, Jorgensen MC, Kalisz M, Klein T, Kageyama R, et al. Mind bomb 1 is required for pancreatic β-cell formation. Proc Natl Acad Sci U S A. 2012;109:7356–61.

    PubMed  CAS  Google Scholar 

  67. Zhou Q, Law AC, Rajagopal J, Anderson WJ, Gray PA, Melton DA. A multipotent progenitor domain guides pancreatic organogenesis. Dev Cell. 2007;13:103–14.

    PubMed  CAS  Google Scholar 

  68. Bonal C, Thorel F, Ait-Lounis A, Reith W, Trumpp A, Herrera PL. Pancreatic inactivation of c-Myc decreases acinar mass and transdifferentiates acinar cells into adipocytes in mice. Gastroenterology 2009;136:309–19, e309.

    Google Scholar 

  69. Pin CL, Rukstalis JM, Johnson C, Konieczny SF. The bHLH transcription factor Mist1 is required to maintain exocrine pancreas cell organization and acinar cell identity. J Cell Biol. 2001;155:519–30.

    PubMed  CAS  Google Scholar 

  70. Solar M, Cardalda C, Houbracken I, Martin M, Maestro MA, De Medts N, et al. Pancreatic exocrine duct cells give rise to insulin-producing β cells during embryogenesis but not after birth. Dev Cell. 2009;17:849–60.

    PubMed  CAS  Google Scholar 

  71. Kopp JL, Dubois CL, Schaffer AE, Hao E, Shih HP. Sox9+ ductal cells are multipotent progenitors throughout development but do not produce new endocrine cells in the normal or injured adult pancreas. Development. 2011;138:653–65.

    PubMed  CAS  Google Scholar 

  72. Kopp JL, Dubois CL, Hao E, Thorel F, Herrera PL, Sander M. Progenitor cell domains in the developing and adult pancreas. Cell Cycle. 2011;10:1921–7.

    PubMed  CAS  Google Scholar 

  73. Gouzi M, Kim YH, Katsumoto K, Johansson K, Grapin-Botton A. Neurogenin3 initiates stepwise delamination of differentiating endocrine cells during pancreas development. Dev Dyn. 2011;240:589–604.

    PubMed  CAS  Google Scholar 

  74. Gittes GK, Galante PE, Hanahan D, Rutter WJ, Debase HT. Lineage-specific morphogenesis in the developing pancreas: role of mesenchymal factors. Development. 1996;122:439–47.

    PubMed  CAS  Google Scholar 

  75. Miralles F, Czernichow P, Scharfmann R. Follistatin regulates the relative proportions of endocrine vs exocrine tissue during pancreatic development. Development. 1998;125:1017–24.

    PubMed  CAS  Google Scholar 

  76. Miralles F, Battelino T, Czernichow P, Scharfmann R. TGF-β plays a key role in morphogenesis of the pancreatic islets of Langerhans by controlling the activity of the matrix metalloproteinase MMP-2. J Cell Biol. 1998;143:827–36.

    PubMed  CAS  Google Scholar 

  77. Miller K, Kim A, Kilimnik G, Jo J, Moka U, Periwal V, et al. Islet formation during the neonatal development in mice. PLoS One. 2009;4:e7739.

    PubMed  Google Scholar 

  78. D'Amour KA, Agulnick AD, Eliazer S, Kelly OG, Kroon E, Baetge EE. Efficient differentiation of human embryonic stem cells to definitive endoderm. Nat Biotechnol. 2005;23:1534–41.

    PubMed  Google Scholar 

  79. Green MD, Chen A, Nostro MC, d’Souza SL, Schaniel C, Lemischka IR, et al. Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells. Nat Biotechnol. 2011;29:267–72.

    PubMed  CAS  Google Scholar 

  80. Yasunaga M, Tada S, Torikai-Nishikawa S, Nakano Y, Okada M, Jakt LM, et al. Induction and monitoring of definitive and visceral endoderm differentiation of mouse ES cells. Nat Biotechnol. 2005;23:1542–50.

    PubMed  CAS  Google Scholar 

  81. Borowiak M, Maehr R, Chen S, Chen AE, Tang W, Fox JL, et al. Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell Stem Cell. 2009;4:348–58.

    PubMed  CAS  Google Scholar 

  82. D'Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, et al. Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol. 2006;24:1392–401.

    PubMed  Google Scholar 

  83. Nostro MC, Sarangi F, Ogawa S, Holtzinger A, Corneo B, Li X, et al. Stage-specific signaling through TGFβ family members and WNT regulates patterning and pancreatic specification of human pluripotent stem cells. Development. 2011;138:861–71.

    PubMed  CAS  Google Scholar 

  84. Mfopou JK, Chen B, Mateizel I, Sermon K, Bouwens L. Noggin, retinoidsfibroblast growth factor regulate hepatic or pancreatic fate of human embryonic stem cells. Gastroenterology. 2010;138:2233–2245.e14.

    Google Scholar 

  85. Basford CL, Prentice KJ, Hardy AB, Sarangi F, Micallef SJ, Li X, et al. The functional and molecular characterisation of human embryonic stem cell-derived insulin-positive cells compared with adult pancreatic β cells. Diabetologia. 2012;55:358–71.

    PubMed  CAS  Google Scholar 

  86. Micallef SJ, Li X, Schiesser JV, Hirst CE, Yu QC, Lim SM, et al. INS(GFP/w) human embryonic stem cells facilitate isolation of in vitro derived insulin-producing cells. Diabetologia. 2012;55:694–706.

    PubMed  CAS  Google Scholar 

  87. Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, et al. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol. 2008;26:443–52.

    PubMed  CAS  Google Scholar 

  88. • Kelly OG, Chan MY, Martinson LA, Kadoya K, Ostertag TM, Ross KG, et al. Cell-surface markers for the isolation of pancreatic cell types derived from human embryonic stem cells. Nat Biotechnol. 2011;29:750–6. These authors could isolate pancreatic progenitors from ES differentiation culture using a cell surface marker. These cells were able to generate insulin-producing cells when transplanted into mice most probably in a process which mimicks the secondary transition.

  89. Dor Y, Brown J, Martinez OI, Melton DA. Adult pancreatic β-cells are formed by self-duplication rather than stem-cell differentiation. Nature. 2004;429:41–6.

    PubMed  CAS  Google Scholar 

  90. Teta M, Rankin MM, Long SY, Stein GM, Kushner JA. Growth and regeneration of adult β cells does not involve specialized progenitors. Dev Cell. 2007;12:817–26.

    PubMed  CAS  Google Scholar 

  91. Kassem SA, Ariel I, Thornton PS, Scheimberg I, Glaser B. β-cell proliferation and apoptosis in the developing normal human pancreas and in hyperinsulinism of infancy. Diabetes. 2000;49:1325–33.

    PubMed  CAS  Google Scholar 

  92. Meier JJ, Butler AE, Saisho Y, Monchamp T, Galasso R, Bhushan A, et al. β-cell replication is the primary mechanism subserving the postnatal expansion of β-cell mass in humans. Diabetes. 2008;57:1584–94.

    PubMed  CAS  Google Scholar 

  93. Jiang FX, Morahan G. Pancreatic stem cells: from possible to probable. Stem Cell Rev. 2011;1–11. doi:10.1007/s12015-011-9333-8.

  94. Rieck S, Kaestner KH. Expansion of β-cell mass in response to pregnancy. TEM. 2010;21:151–8.

    PubMed  CAS  Google Scholar 

  95. Kloppel G, Lohr M, Habich K, Oberholzer M, Heitz PU. Islet pathology and the pathogenesis of type 1 and type 2 diabetes mellitus revisited. Surv Synth Pathol Res. 1985;4:110–25.

    PubMed  CAS  Google Scholar 

  96. Chen H, Gu X, Su IH., Bottino R, Contreras JL, Tarakhovsky A, et al. Polycomb protein Ezh2 regulates pancreatic β-cell Ink4a/Arf expression and regeneration in diabetes mellitus. Genes Dev. 2009;23;975–85.

    Google Scholar 

  97. Krishnamurthy J, Ramsey MR, Ligon KL, Torrice C, Koh A, Bonner-Weir S, et al. p16INK4a induces an age-dependent decline in islet regenerative potential. Nature. 2006;443:453–7.

    PubMed  CAS  Google Scholar 

  98. Bonner-Weir S, Li WC, Ouziel-Yahalom L, Guo L, Weir GC, Sharma A. β-cell growth and regeneration: replication is only part of the story. Diabetes. 2010;59:2340–8.

    PubMed  CAS  Google Scholar 

  99. Brennand K, Melton D. Slow and steady is the key to β-cell replication. J Cell Mol Med. 2009;13:472–87.

    PubMed  CAS  Google Scholar 

  100. Assmann A, Hinault C, Kulkarni RN. Growth factor control of pancreatic islet regeneration and function. Pediatr Diabetes. 2009;10:14–32.

    PubMed  CAS  Google Scholar 

  101. Garber AJ. Incretin-based therapies in the management of type 2 diabetes: rationale and reality in a managed care setting. Am J Managed Care. 2010;16:S187–94.

    Google Scholar 

  102. Garber AJ. Novel incretin-based agents and practical regimens to meet needs and treatment goals of patients with type 2 diabetes mellitus. J Am Osteopath Assoc. 2011;111:S20–30.

    PubMed  Google Scholar 

  103. Schneider G, Siveke JT, Eckel F, Schmid RM. Pancreatic cancer: basic and clinical aspects. Gastroenterology. 2005;128:1606–25.

    PubMed  CAS  Google Scholar 

  104. Weir GC, Bonner-Weir S. Five stages of evolving β-cell dysfunction during progression to diabetes. Diabetes. 2004;53 Suppl 3:S16–21.

    PubMed  CAS  Google Scholar 

  105. Bernardo AS, Hay CW, Docherty K. Pancreatic transcription factors and their role in the birth, life and survival of the pancreatic β cell. Mol Cell Endocrinol. 2008;294:1–9.

    PubMed  CAS  Google Scholar 

  106. Zhang X, Degenstein L, Cao Y, Stein J, Osei K, Wang J. Β-cells with relative low HIMP1 overexpression levels in a transgenic mouse line enhance basal insulin production and hypoxia/hypoglycemia tolerance. PLoS One. 2012;7:e34126.

    PubMed  CAS  Google Scholar 

  107. Kim JW, Yoon KH. Glucolipotoxicity in pancreatic β-cells. Diabetes Metab. 2011;35:444–50.

    Google Scholar 

  108. Negi S, Jetha A, Aikin R, Hasilo C, Sladek R, Paraskevas S. Analysis of β-cell gene expression reveals inflammatory signaling and evidence of dedifferentiation following human islet isolation and culture. PLoS One. 2012;7:e30415.

    PubMed  CAS  Google Scholar 

  109. Nir T, Melton DA, Dor Y. Recovery from diabetes in mice by β cell regeneration. J Clin Invest. 2007;117:2553–61.

    PubMed  CAS  Google Scholar 

  110. • Smukler SR, Arntfield ME, Razavi R, Bikopoulos G, Karpowicz P, Seaberg R, et al. The adult mouse and human pancreas contain rare multipotent stem cells that express insulin. Cell Stem Cell. 2011;8:281–93. This study reignite the debate over the existence of progenitor cells in adult pancreatic islets. The authors describe a rare type of insulin+ cells with multipotent properties able to generate all endocrine lineages but also neurons.

  111. Inada A, Nienaber C, Katsuta H, Fujitani Y, Levine J, Morita R, et al. Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth. Proc Natl Acad Sci U S A. 2008;105:19915–19.

    PubMed  CAS  Google Scholar 

  112. Xu X, D'Hoker J, Stange G, Bonne S, De Leu N, Xiao X, et al. Β cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell. 2008;132:197–207.

    PubMed  CAS  Google Scholar 

  113. • Thorel F, Nepote V, Avril I, Kohno K, Desgraz R, Chera S, et al. Conversion of adult pancreatic alpha-cells to β-cells after extreme β-cell loss. Nature. 2010;464:1149–54. This study shows that upon β-cell damage β-cells can generate β-like cells thus demonstrating the adaptive capacity of the pancreas in response to injury.

  114. Zhou Q, Brown J, Kanarek A, Rajagopal J, Melton DA. In vivo reprogramming of adult pancreatic exocrine cells to β-cells. Nature. 2008;455:627–32.

    PubMed  CAS  Google Scholar 

  115. Ferber S, Halkin A, Cohen H, Ber I, Einav Y, Goldberg I, et al. Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat Med. 2000;6:568–72.

    PubMed  CAS  Google Scholar 

  116. Kaneto H, Nakatani Y, Miyatsuka T, Matsuoka TA, Matsuhisa M, Hori M, et al. PDX-1/VP16 fusion protein, together with NeuroD or Ngn3, markedly induces insulin gene transcription and ameliorates glucose tolerance. Diabetes. 2005;54:1009–22.

    PubMed  CAS  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Lickert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raducanu, A., Lickert, H. Understanding Pancreas Development for β-Cell Repair and Replacement Therapies. Curr Diab Rep 12, 481–489 (2012). https://doi.org/10.1007/s11892-012-0301-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-012-0301-8

Keywords

Navigation