Skip to main content

Advertisement

Log in

The Potential Role of PET in the Management of Peripheral Artery Disease

  • Nuclear Cardiology (V Dilsizian, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Current non-invasive tests for evaluating patients with peripheral artery disease (PAD) have significant limitations for early detection and management of patients with PAD and are generally focused on the evaluation of large vessel disease. PAD often involves disease of microcirculation and altered metabolism. Therefore, there is a critical need for reliable quantitative non-invasive tools that can assess limb microvascular perfusion and function in the setting of PAD.

Recent Findings

Recent developments in positron emission tomography (PET) imaging have enabled the quantification of blood flow to the lower extremities, the assessment of the viability of skeletal muscles, and the evaluation of vascular inflammation and microcalcification and angiogenesis in the lower extremities. These unique capabilities differentiate PET imaging from current routine screening and imaging methods.

Summary

The purpose of this review is to highlight the promising role of PET in the early detection and management of PAD providing a summary of the current preclinical and clinical research related to PET imaging in patients with PAD and related advancement of PET scanner technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as:

    • Of importance

    1. Fowkes FGR, Rudan D, Rudan I, et al. Comparison of global estimates of prevalence and risk factors for peripheral artery disease in 2000 and 2010: a systematic review and analysis. Lancet Lond Engl. 2013;382(9901):1329–40. https://doi.org/10.1016/S0140-6736(13)61249-0.

      Article  Google Scholar 

    2. Writing Group Members, Mozaffarian D, Benjamin EJ, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133(4):e38–360. https://doi.org/10.1161/CIR.0000000000000350.

    3. Criqui MH, Aboyans V. Epidemiology of peripheral artery disease. Circ Res. 2015;116(9):1509–26. https://doi.org/10.1161/CIRCRESAHA.116.303849.

      Article  CAS  PubMed  Google Scholar 

    4. Hirsch AT, Criqui MH, Treat-Jacobson D, et al. Peripheral arterial disease detection, awareness, and treatment in primary care. JAMA. 2001;286(11):1317–24. https://doi.org/10.1001/jama.286.11.1317.

      Article  CAS  PubMed  Google Scholar 

    5. Farber A, Eberhardt RT. The current state of critical limb ischemia: a systematic review. JAMA Surg. 2016;151(11):1070–7. https://doi.org/10.1001/jamasurg.2016.2018.

      Article  PubMed  Google Scholar 

    6. Teraa M, Conte MS, Moll FL, et al. Critical limb ischemia: current trends and future directions. J Am Heart Assoc. 2016;5(2):e002938. https://doi.org/10.1161/JAHA.115.002938.

    7. • Misra S, Shishehbor MH, Takahashi EA, et al. Perfusion assessment in critical limb ischemia: principles for understanding and the development of evidence and evaluation of devices: a scientific statement from the American Heart Association. Circulation. 2019;140(12):e657–72. https://doi.org/10.1161/CIR.0000000000000708. This scientific statement discusses various noninvasive assessments of limb perfusion in critical limb ischemia (CLI), addressing limitations and opportunities for improvement.

    8. Armstrong DG, Wrobel J, Robbins JM. Guest editorial: are diabetes-related wounds and amputations worse than cancer? Int Wound J. 2007;4(4):286–7. https://doi.org/10.1111/j.1742-481X.2007.00392.x.

      Article  PubMed  Google Scholar 

    9. Beckman JA, Duncan MS, Damrauer SM, et al. Microvascular disease, peripheral artery disease, and amputation. Circulation. 2019;140(6):449–58. https://doi.org/10.1161/CIRCULATIONAHA.119.040672.

      Article  PubMed  PubMed Central  Google Scholar 

    10. Bowling FL, Rashid ST, Boulton AJM. Preventing and treating foot complications associated with diabetes mellitus. Nat Rev Endocrinol. 2015;11(10):606–16. https://doi.org/10.1038/nrendo.2015.130.

      Article  PubMed  Google Scholar 

    11. Howard DPJ, Banerjee A, Fairhead JF, et al. Population-based study of incidence, risk factors, outcome, and prognosis of ischemic peripheral arterial events: implications for prevention. Circulation. 2015;132(19):1805–15. https://doi.org/10.1161/CIRCULATIONAHA.115.016424.

      Article  PubMed  PubMed Central  Google Scholar 

    12. Stein R, Hriljac I, Halperin JL, et al. Limitation of the resting ankle-brachial index in symptomatic patients with peripheral arterial disease. Vasc Med Lond Engl. 2006;11(1):29–33. https://doi.org/10.1191/1358863x06vm663oa.

      Article  Google Scholar 

    13. Englund EK, Langham MC, Li C, et al. Combined measurement of perfusion, venous oxygen saturation, and skeletal muscle T2* during reactive hyperemia in the leg. J Cardiovasc Magn Reson. 2013;15(1):70. https://doi.org/10.1186/1532-429X-15-70.

      Article  PubMed  PubMed Central  Google Scholar 

    14. Utz W, Jordan J, Niendorf T, et al. Blood oxygen level–dependent MRI of tissue oxygenation. Arterioscler Thromb Vasc Biol. 2005;25(7):1408–13. https://doi.org/10.1161/01.ATV.0000170131.13683.d7.

      Article  CAS  PubMed  Google Scholar 

    15. Stacy MR, Qiu M, Papademetris X, et al. Application of BOLD magnetic resonance imaging for evaluating regional volumetric foot tissue oxygenation: a feasibility study in healthy volunteers. Eur J Vasc Endovasc Surg Off J Eur Soc Vasc Surg. 2016;51(5):743–9. https://doi.org/10.1016/j.ejvs.2016.02.008.

      Article  CAS  Google Scholar 

    16. Chou T-H, Alvelo JL, Janse S, et al. Prognostic value of radiotracer-based perfusion imaging in critical limb ischemia patients undergoing lower extremity revascularization. JACC Cardiovasc Imaging. 2021;14(8):1614–24. https://doi.org/10.1016/j.jcmg.2020.09.033.

      Article  PubMed  Google Scholar 

    17. Chou T-H, Janse S, Sinusas AJ, et al. SPECT/CT imaging of lower extremity perfusion reserve: a non-invasive correlate to exercise tolerance and cardiovascular fitness in patients undergoing clinically indicated myocardial perfusion imaging. J Nucl Cardiol. 2020;27(6):1923–33. https://doi.org/10.1007/s12350-019-02019-w.

      Article  PubMed  PubMed Central  Google Scholar 

    18. Burchert W, Schellong S, van den Hoff J, et al. Oxygen-15-water PET assessment of muscular blood flow in peripheral vascular disease. J Nucl Med Off Publ Soc Nucl Med. 1997;38(1):93–8.

      CAS  Google Scholar 

    19. Schmidt MA, Chakrabarti A, Shamim-Uzzaman Q (Afifa), et al. Calf flow reserve with H215O PET as a quantifiable index of lower extremity flow. J Nucl Med 2003;44(6):915–9.

    20. Scremin OU, Figoni SF, Norman K, et al. Preamputation evaluation of lower-limb skeletal muscle perfusion with H(2) (15)O positron emission tomography. Am J Phys Med Rehabil. 2010;89(6):473–86. https://doi.org/10.1097/PHM.0b013e3181d89b08.

      Article  PubMed  Google Scholar 

    21. Peñuelas I, Aranguren XL, Abizanda G, et al. (13)N-ammonia PET as a measurement of hindlimb perfusion in a mouse model of peripheral artery occlusive disease. J Nucl Med Off Publ Soc Nucl Med. 2007;48(7):1216–23. https://doi.org/10.2967/jnumed.106.039180.

      Article  CAS  Google Scholar 

    22. Scholtens AM, Tio RA, Willemsen A, et al. Myocardial perfusion reserve compared with peripheral perfusion reserve: a [13N]ammonia PET study. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol. 2011;18(2):238–46. https://doi.org/10.1007/s12350-011-9339-2.

      Article  CAS  Google Scholar 

    23. Liu Z, Thorn S, Wu J, et al. Assessment of lower extremities flow using dynamic Rb-82 PET: acquisition protocols and quantification methods. J Nucl Med. 2021;62(supplement 1):53–53.

      Google Scholar 

    24. Moody JB, Hiller KM, Lee BC, et al. The utility of 82Rb PET for myocardial viability assessment: Comparison with perfusion-metabolism 82Rb-18F-FDG PET. J Nucl Cardiol. 2019;26(2):374–86. https://doi.org/10.1007/s12350-019-01615-0.

      Article  PubMed  Google Scholar 

    25. Arumugam P, Tout D, Tonge C. Myocardial perfusion scintigraphy using rubidium-82 positron emission tomography. Br Med Bull. 2013;107(1):87–100. https://doi.org/10.1093/bmb/ldt026.

      Article  CAS  PubMed  Google Scholar 

    26. Patel KK, Singh A, Bateman TM. The potential of F-18 flurpiridaz PET/CT myocardial perfusion imaging for precision imaging. Curr Cardiol Rep. 2022;24(8):987–94. https://doi.org/10.1007/s11886-022-01713-5.

      Article  PubMed  Google Scholar 

    27. Kelley DE. Skeletal muscle fat oxidation: timing and flexibility are everything. J Clin Invest. 2005;115(7):1699–702. https://doi.org/10.1172/JCI25758.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    28. Brass EP, Hiatt WR. Acquired skeletal muscle metabolic myopathy in atherosclerotic peripheral arterial disease. Vasc Med Lond Engl. 2000;5(1):55–9. https://doi.org/10.1177/1358836X0000500109.

      Article  CAS  Google Scholar 

    29. Koh H-CE, van Vliet S, Meyer GA, et al. Heterogeneity in insulin-stimulated glucose uptake among different muscle groups in healthy lean people and people with obesity. Diabetologia. 2021;64(5):1158–68. https://doi.org/10.1007/s00125-021-05383-w.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    30. Pande RL, Park M-A, Perlstein TS, et al. Impaired skeletal muscle glucose uptake by [18F]fluorodeoxyglucose–positron emission tomography in patients with peripheral artery disease and intermittent claudication. Arterioscler Thromb Vasc Biol. 2011;31(1):190–6. https://doi.org/10.1161/ATVBAHA.110.217687.

      Article  CAS  PubMed  Google Scholar 

    31. Tashiro M, Fujimoto T, Itoh M, et al. 18F-FDG PET imaging of muscle activity in runners. J Nucl Med Off Publ Soc Nucl Med. 1999;40(1):70–6.

      CAS  Google Scholar 

    32. Pappas GP, Olcott EW, Drace JE. Imaging of skeletal muscle function using 18FDG PET: force production, activation, and metabolism. J Appl Physiol. 2001;90(1):329–37. https://doi.org/10.1152/jappl.2001.90.1.329.

      Article  CAS  PubMed  Google Scholar 

    33. Rudroff T, Kindred JH, Benson J-M, et al. Greater glucose uptake heterogeneity in knee muscles of old compared to young men during isometric contractions detected by [18F]-FDG PET/CT. Front Physiol. 2014;5. https://doi.org/10.3389/fphys.2014.00198.

    34. Trombella S, García D, Colin DJ, et al. [11C]acetate and PET/CT assessment of muscle activation in rat studies. Int J Comput Assist Radiol Surg. 2016;11(5):733–43. https://doi.org/10.1007/s11548-015-1260-8.

      Article  PubMed  Google Scholar 

    35. van Hall G, Sacchetti M, Rådegran G. Whole body and leg acetate kinetics at rest, during exercise and recovery in humans. J Physiol. 2002;542(Pt 1):263–72. https://doi.org/10.1113/jphysiol.2001.014340.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    36. Buchegger F, Ratib O, Willi J-P, et al. [11C]acetate PET/CT visualizes skeletal muscle exercise participation, impaired function, and recovery after hip arthroplasty; first results. Mol Imaging Biol. 2011;13(4):793–9. https://doi.org/10.1007/s11307-010-0415-9.

      Article  PubMed  Google Scholar 

    37. de Boer SA, Hovinga-de Boer MC, Heerspink HJL, et al. Arterial stiffness is positively associated with 18F-fluorodeoxyglucose positron emission tomography-assessed subclinical vascular inflammation in people with early type 2 diabetes. Diabetes Care. 2016;39(8):1440–7. https://doi.org/10.2337/dc16-0327.

      Article  CAS  PubMed  Google Scholar 

    38. Fernández-Friera L, Fuster V, López-Melgar B, et al. Vascular inflammation in subclinical atherosclerosis detected by hybrid PET/MRI. J Am Coll Cardiol. 2019;73(12):1371–82. https://doi.org/10.1016/j.jacc.2018.12.075.

      Article  PubMed  Google Scholar 

    39. Ishii H, Nishio M, Takahashi H, et al. Comparison of atorvastatin 5 and 20 mg/d for reducing F-18 fluorodeoxyglucose uptake in atherosclerotic plaques on positron emission tomography/computed tomography: a randomized, investigator-blinded, open-label, 6-month study in Japanese adults scheduled for percutaneous coronary intervention. Clin Ther. 2010;32(14):2337–47. https://doi.org/10.1016/j.clinthera.2010.12.001.

      Article  CAS  PubMed  Google Scholar 

    40. Keidar Z, Engel A, Hoffman A, et al. Prosthetic vascular graft infection: the role of 18F-FDG PET/CT. J Nucl Med. 2007;48(8):1230–6. https://doi.org/10.2967/jnumed.107.040253.

      Article  PubMed  Google Scholar 

    41. Iking J, Staniszewska M, Kessler L, et al. Imaging inflammation with positron emission tomography. Biomedicines. 2021;9(2):212. https://doi.org/10.3390/biomedicines9020212.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    42. Gourni E, Demmer O, Schottelius M, et al. PET of CXCR4 expression by a (68)Ga-labeled highly specific targeted contrast agent. J Nucl Med Off Publ Soc Nucl Med. 2011;52(11):1803–10. https://doi.org/10.2967/jnumed.111.098798.

      Article  CAS  Google Scholar 

    43. Thackeray JT, Derlin T, Haghikia A, et al. Molecular imaging of the chemokine receptor CXCR4 after acute myocardial infarction. JACC Cardiovasc Imaging. 2015;8(12):1417–26. https://doi.org/10.1016/j.jcmg.2015.09.008.

      Article  PubMed  Google Scholar 

    44. Lamare F, Hinz R, Gaemperli O, et al. Detection and quantification of large-vessel inflammation with 11C-(R)-PK11195 PET/CT. J Nucl Med Off Publ Soc Nucl Med. 2011;52(1):33–9. https://doi.org/10.2967/jnumed.110.079038.

      Article  Google Scholar 

    45. Pugliese F, Gaemperli O, Kinderlerer AR, et al. Imaging of vascular inflammation with [11C]-PK11195 and positron emission tomography/computed tomography angiography. J Am Coll Cardiol. 2010;56(8):653–61. https://doi.org/10.1016/j.jacc.2010.02.063.

      Article  PubMed  Google Scholar 

    46. • Reijrink M, de Boer SA, Te Velde-Keyzer CA, et al. [18F]FDG and [18F]NaF as PET markers of systemic atherosclerosis progression: a longitudinal descriptive imaging study in patients with type 2 diabetes mellitus. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol. 2022;29(4):1702–9. https://doi.org/10.1007/s12350-021-02781-w. There is a strong correlation baseline 18F-FDG uptake and 5-year follow-up 18F-NaF uptake suggesting that FDG could play a crucial role in the early detection of PAD.

    47. Takx RAP, van Asperen R, Bartstra JW, et al. Determinants of 18F-NaF uptake in femoral arteries in patients with type 2 diabetes mellitus. J Nucl Cardiol Off Publ Am Soc Nucl Cardiol. 2021;28(6):2700–5. https://doi.org/10.1007/s12350-020-02099-z.

      Article  Google Scholar 

    48. Chou T-H, Rimmerman ET, Patel S, et al. Vessel-by-vessel analysis of lower extremity 18F-NaF PET/CT imaging quantifies diabetes- and chronic kidney disease-induced active microcalcification in patients with peripheral arterial disease. EJNMMI Res. 2023;13(1):3. https://doi.org/10.1186/s13550-023-00951-0.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    49. • Chowdhury MM, Tarkin JM, Albaghdadi MS, et al. Vascular positron emission tomography and restenosis in symptomatic peripheral arterial disease. JACC Cardiovasc Imaging. 2020;13(4):1008–17. https://doi.org/10.1016/j.jcmg.2019.03.031The uptake of both 18F-FDG and 18F-NaF at baseline and post-intervention may assist in predicting restenosis in PAD patients undergoing percutaneous transluminal angioplasty.

    50. Oliveira BL, Blasi F, Rietz TA, et al. Multimodal molecular imaging reveals high target uptake and specificity of 111In- and 68Ga-labeled fibrin-binding probes for thrombus detection in rats. J Nucl Med Off Publ Soc Nucl Med. 2015;56(10):1587–92. https://doi.org/10.2967/jnumed.115.160754.

      Article  CAS  Google Scholar 

    51. Oliveira BL, Caravan P. Peptide-based fibrin-targeting probes for thrombus imaging. Dalton Trans Camb Engl. 2017;46(42):14488–508. https://doi.org/10.1039/c7dt02634j.

      Article  CAS  Google Scholar 

    52. Lohrke J, Siebeneicher H, Berger M, et al. 18F-GP1, a novel PET tracer designed for high-sensitivity, low-background detection of thrombi. J Nucl Med Off Publ Soc Nucl Med. 2017;58(7):1094–9. https://doi.org/10.2967/jnumed.116.188896.

      Article  CAS  Google Scholar 

    53. Goggi JL, Haslop A, Boominathan R, et al. Imaging the proangiogenic effects of cardiovascular drugs in a diabetic model of limb ischemia. Contrast Media Mol Imaging. 2019;2019:2538909. https://doi.org/10.1155/2019/2538909.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    54. Orbay H, Hong H, Koch JM, et al. Pravastatin stimulates angiogenesis in a murine hindlimb ischemia model: a positron emission tomography imaging study with 64Cu-NOTA-TRC105. Am J Transl Res. 2013;6(1):54–63.

      PubMed  PubMed Central  Google Scholar 

    55. Wei L, Ye Y, Wadas TJ, et al. (64)Cu-labeled CB-TE2A and diamsar-conjugated RGD peptide analogs for targeting angiogenesis: comparison of their biological activity. Nucl Med Biol. 2009;36(3):277–85. https://doi.org/10.1016/j.nucmedbio.2008.12.008.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    56. Liu Y, Pressly ED, Abendschein DR, et al. Targeting angiogenesis using a C-type atrial natriuretic factor-conjugated nanoprobe and PET. J Nucl Med Off Publ Soc Nucl Med. 2011;52(12):1956–63. https://doi.org/10.2967/jnumed.111.089581.

      Article  CAS  Google Scholar 

    57. Hedhli J, Slania SLL, Płoska A, et al. Evaluation of a dimeric-cRGD peptide for targeted PET-CT imaging of peripheral angiogenesis in diabetic mice. Sci Rep. 2018;8(1):5401. https://doi.org/10.1038/s41598-018-23372-9.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    58. Cheng R, Ma J. Angiogenesis in diabetes and obesity. Rev Endocr Metab Disord. 2015;16(1):67–75. https://doi.org/10.1007/s11154-015-9310-7.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    59. Fallavollita JA, Heavey BM, Luisi AJ, et al. Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J Am Coll Cardiol. 2014;63(2):141–9. https://doi.org/10.1016/j.jacc.2013.07.096.

      Article  PubMed  Google Scholar 

    60. Tack CJ, van Gurp PJ, Holmes C, et al. Local sympathetic denervation in painful diabetic neuropathy. Diabetes. 2002;51(12):3545–53. https://doi.org/10.2337/diabetes.51.12.3545.

      Article  CAS  PubMed  Google Scholar 

    61. Franzius C, Hermann K, Weckesser M, et al. Whole-body PET/CT with 11C-meta-hydroxyephedrine in tumors of the sympathetic nervous system: feasibility study and comparison with 123I-MIBG SPECT/CT. J Nucl Med. 2006;47(10):1635–42.

      PubMed  Google Scholar 

    62. Sinusas AJ, Lazewatsky J, Brunetti J, et al. Biodistribution and radiation dosimetry of LMI1195: first-in-human study of a novel 18F-labeled tracer for imaging myocardial innervation. J Nucl Med Off Publ Soc Nucl Med. 2014;55(9):1445–51. https://doi.org/10.2967/jnumed.114.140137.

      Article  CAS  Google Scholar 

    63. Zhang J, Maniawski P, Knopp MV. Performance evaluation of the next generation solid-state digital photon counting PET/CT system. EJNMMI Res. 2018;8(1):97. https://doi.org/10.1186/s13550-018-0448-7.

      Article  CAS  PubMed  PubMed Central  Google Scholar 

    64. • Badawi RD, Shi H, Hu P, et al. First human imaging studies with the EXPLORER total-body PET scanner. J Nucl Med. 2019;60(3):299–303. https://doi.org/10.2967/jnumed.119.226498. The EXPLORER, the first PET scanner that can scan the entire body, has the ability to conduc tcomprehensive pharmacokinetic studies, which could potentially aid in the assessment of peripheral artery disease.

    65. Beyer T, Townsend DW, Czernin J, et al. The future of hybrid imaging—part 2: PET/CT. Insights Imaging. 2011;2(3):225–34. https://doi.org/10.1007/s13244-011-0069-4.

      Article  PubMed  PubMed Central  Google Scholar 

    66. Rahmim A, Lodge MA, Karakatsanis NA, et al. Dynamic whole-body PET imaging: principles, potentials and applications. Eur J Nucl Med Mol Imaging. 2019;46(2):501–18. https://doi.org/10.1007/s00259-018-4153-6.

      Article  PubMed  Google Scholar 

    Download references

    Funding

    Alaa Alashi and Billy C. Vermillion report an NIH training grant (NIH-NRSA T32:HL 098069). Albert J. Sinusas reports NIH funding related to this article (R01 HL163640).

    Author information

    Authors and Affiliations

    Authors

    Corresponding author

    Correspondence to Albert J. Sinusas.

    Ethics declarations

    Conflict of Interest

    Albert J. Sinusas reports Institutional grants from Jubilant and Siemens; individual consulting fees unrelated to PET imaging compounds from MicroVide, LLC; patents related to SPECT imaging agent RP805 for MicroVide, LLC; member Cardiovascular Council of SNMMI (no funds received); receipt of equipment, materials, drugs, or other services from Lantheus (MTA LMI1195) and Jubilant (Rb-82 generator). The other authors declare that they have no conflict of interest.

    Human and Animal Rights and Informed Consent

    All reported studies and experiments involving human or animal subjects conducted by the authors mentioned in this article have been previously published and adhered to all relevant ethical standards, including the Helsinki Declaration and its amendments, institutional and national research committee norms, as well as international, national, and institutional guidelines.

    Additional information

    Publisher's Note

    Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

    This article is part of the Topical Collection on Nuclear Cardiology

    Rights and permissions

    Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

    Reprints and permissions

    About this article

    Check for updates. Verify currency and authenticity via CrossMark

    Cite this article

    Alashi, A., Vermillion, B.C. & Sinusas, A.J. The Potential Role of PET in the Management of Peripheral Artery Disease. Curr Cardiol Rep 25, 831–839 (2023). https://doi.org/10.1007/s11886-023-01904-8

    Download citation

    • Accepted:

    • Published:

    • Issue Date:

    • DOI: https://doi.org/10.1007/s11886-023-01904-8

    Keywords

    Navigation