Skip to main content
Log in

Congestion and Use of Diuretics in Heart Failure and Cardiomyopathies: a Practical Guide

  • Myocardial Disease (A Abbate and M Merlo, Section Editors)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

A Correction to this article was published on 04 May 2023

This article has been updated

Abstract

Purpose of Review

Heart failure is a highly prevalent condition caused by many different aetiologies and characterised by cardiac dysfunction and congestion. Once developed, congestion leads to signs (peripheral oedema) and symptoms (breathlessness on exertion), adverse cardiac remodelling, and an increased risk of hospitalisation and premature death. This review summarises strategies that could enable early identification and a more objective management of congestion in patients with heart failure.

Recent Findings

For patients with suspected or diagnosed heart failure, combining an echocardiogram with assessment of great veins, lungs, and kidneys by ultrasound might facilitate recognition and quantification of congestion, the management of which is still difficult and highly subjective.

Summary

Congestion is a one of the key drivers of morbidity and mortality in patients with heart failure and is often under-recognised. The use of ultrasound allows for a timely, simultaneous identification of cardiac dysfunction and multiorgan congestion; ongoing and future studies will clarify how to tailor diuretic treatments in those with or at risk of heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

References

Papers of particular interest, published recently, have been highlighted as: •   Of importance

  1. • Cleland JGF, Pfeffer MA, Clark AL, et al. The struggle towards a universal definition of heart failure—how to proceed? Eur Heart J. 2021;42(24):2331–43. https://doi.org/10.1093/eurheartj/ehab082. Authors propose a modern universal definition of heart failure, consisting of cardiac dysfunction and congestion.

    Article  PubMed  Google Scholar 

  2. Cleland JGF, Pellicori P, Clark AL. Prevention or procrastination for heart failure?: why we need a universal definition of heart failure∗. J Am Coll Cardiol. 2019;73(19):2398–400. https://doi.org/10.1016/j.jacc.2019.03.471.

    Article  PubMed  Google Scholar 

  3. Pellicori P, Kaur K, Clark AL. Fluid management in patients with chronic heart failure. Card Fail Rev. 2015;1(2):90. https://doi.org/10.15420/cfr.2015.1.2.90.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Skinner SL, McCubbin JW, Page IH. Renal baroreceptor control of acute renin release in normotensive. Circ Res. 1964;15:522–31. https://doi.org/10.1161/01.RES.15.6.522.

    Article  CAS  PubMed  Google Scholar 

  5. Francis GS, Benedict C, Johnstone DE, et al. Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure: a substudy of the studies of left ventricular dysfunction (SOLVD). Circulation. 1990;82(5):1724–9. https://doi.org/10.1161/01.CIR.82.5.1724.

    Article  CAS  PubMed  Google Scholar 

  6. Chioncel O, Mebazaa A, Harjola VP, et al. Clinical phenotypes and outcome of patients hospitalized for acute heart failure: the ESC heart failure long-term registry. Eur J Heart Fail. 2017;19(10):1242–54. https://doi.org/10.1002/ejhf.890.

    Article  PubMed  Google Scholar 

  7. Chioncel O, Mebazaa A, Maggioni AP, et al. Acute heart failure congestion and perfusion status – impact of the clinical classification on in-hospital and long-term outcomes; insights from the ESC-EORP-HFA Heart Failure Long-Term Registry. Eur J Heart Fail. 2019;21(11):1338–52. https://doi.org/10.1002/ejhf.1492.

    Article  PubMed  Google Scholar 

  8. Shoaib A, Waleed M, Khan S, et al. Breathlessness at rest is not the dominant presentation of patients admitted with heart failure. Eur J Heart Fail. 2014;16(12):1283–91. https://doi.org/10.1002/ejhf.153.

    Article  PubMed  Google Scholar 

  9. NATIONAL HEART FAILURE AUDIT (NHFA). Summary report national cardiac audit programme The National Institute for Cardiovascular Outcomes Research (NICOR). 2022. Accessed 7 Feb 2023. https://www.hqip.org.uk.

  10. Lala A, McNulty SE, Mentz RJ, et al. Relief and recurrence of congestion during and after hospitalization for acute heart failure insights from diuretic optimization strategy evaluation in acute decompensated heart failure (DOSE-AHF) and cardiorenal rescue study in acute decompensated heart. Circ Heart Fail. 2015;8(4):741–8. https://doi.org/10.1161/CIRCHEARTFAILURE.114.001957.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Javaloyes P, Miró Ò, Gil V, et al. Clinical phenotypes of acute heart failure based on signs and symptoms of perfusion and congestion at emergency department presentation and their relationship with patient management and outcomes. Eur J Heart Fail. 2019;21(11):1353–65. https://doi.org/10.1002/ejhf.1502.

    Article  PubMed  Google Scholar 

  12. Selvaraj S, Claggett B, Pozzi A, et al. Prognostic implications of congestion on physical examination among contemporary patients with heart failure and reduced ejection fraction: PARADIGM-HF. Circulation. 2019;140(17):1369–79. https://doi.org/10.1161/CIRCULATIONAHA.119.039920.

    Article  CAS  PubMed  Google Scholar 

  13. Selvaraj S, Claggett B, Shah SJ, et al. Utility of the cardiovascular physical examination and impact of spironolactone in heart failure with preserved ejection fraction. Circ Heart Fail. 2019;12(7):e006125. https://doi.org/10.1161/CIRCHEARTFAILURE.119.006125.

  14. Vijayakrishnan R, Steinhubl SR, Ng K, et al. Prevalence of heart failure signs and symptoms in a large primary care population identified through the use of text and data mining of the electronic health record. J Card Fail. 2014;20(7):459–64. https://doi.org/10.1016/J.CARDFAIL.2014.03.008.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Corbalan R, Bassand JP, Illingworth L, et al. Analysis of outcomes in ischemic vs nonischemic cardiomyopathy in patients with atrial fibrillation: a report from the GARFIELD-AF registry. JAMA Cardiol. 2019;4(6):526–48. https://doi.org/10.1001/JAMACARDIO.2018.4729.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pellicori P, Cleland JGF, Zhang J, et al. Cardiac dysfunction, congestion and loop diuretics: their relationship to prognosis in heart failure. Cardiovasc Drugs Ther. 2016;30(6):599–609. https://doi.org/10.1007/S10557-016-6697-7.

  17. Mullens W, Damman K, Harjola VP, et al. The use of diuretics in heart failure with congestion — a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2019;21(2):137–55. https://doi.org/10.1002/EJHF.1369.

    Article  PubMed  Google Scholar 

  18. Mant J, Doust J, Roalfe A, et al. Systematic review and individual patient data meta-analysis of diagnosis of heart failure, with modelling of implications of different diagnostic strategies in primary care. Health Technol Assess (Rockv). 2009;13(32). https://doi.org/10.3310/hta13320.

  19. McDonagh TA, Metra M, Adamo M, et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contributio. Eur Heart J. 2021. https://doi.org/10.1093/eurheartj/ehab368.

  20. Wang TJ, Larson MG, Levy D, et al. Impact of age and sex on plasma natriuretic peptide levels in healthy adults. Am J Cardiol. 2002;90(3):254–8. https://doi.org/10.1016/S0002-9149(02)02464-5.

    Article  CAS  PubMed  Google Scholar 

  21. Richards M, di Somma S, Mueller C, et al. Atrial fibrillation impairs the diagnostic performance of cardiac natriuretic peptides in dyspneic patients: results from the BACH study (Biomarkers in ACute Heart Failure). JACC Heart Fail. 2013;1(3):192–9. https://doi.org/10.1016/j.jchf.2013.02.004.

    Article  PubMed  Google Scholar 

  22. Ulimoen SR, Enger S, Tveit A. Impact of atrial fibrillation on NT-proBNP levels in a 75-year-old population. Scand J Clin Lab Invest. 2009;69(5):579–84. https://doi.org/10.1080/00365510902853305.

    Article  CAS  PubMed  Google Scholar 

  23. Tsutamoto T, Wada A, Sakai H, et al. Relationship between renal function and plasma brain natriuretic peptide in patients with heart failure. J Am Coll Cardiol. 2006;47(3):582–6. https://doi.org/10.1016/j.jacc.2005.10.038.

    Article  CAS  PubMed  Google Scholar 

  24. Lam CSP, Cheng S, Choong K, et al. Influence of sex and hormone status on circulating natriuretic peptides. J Am Coll Cardiol. 2011;58(6):618–26. https://doi.org/10.1016/j.jacc.2011.03.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wang TJ, Larson MG, Levy D, et al. Impact of obesity on plasma natriuretic peptide levels. Circulation. 2004;109(5):594–600. https://doi.org/10.1161/01.CIR.0000112582.16683.EA.

    Article  CAS  PubMed  Google Scholar 

  26. McLellan J, Bankhead CR, Oke JL, Hobbs FDR, Taylor CJ, Perera R. Natriuretic peptide-guided treatment for heart failure: a systematic review and meta-analysis. BMJ Evid Based Med. 2020;25(1):33–7. https://doi.org/10.1136/BMJEBM-2019-111208.

    Article  PubMed  Google Scholar 

  27. Voors AA, Kremer D, Geven C, et al. Adrenomedullin in heart failure: pathophysiology and therapeutic application. Eur J Heart Fail. 2019;21(2):163–71. https://doi.org/10.1002/ejhf.1366.

    Article  CAS  PubMed  Google Scholar 

  28. Núñez J, de la Espriella R, Miñana G, et al. Antigen carbohydrate 125 as a biomarker in heart failure: a narrative review. Eur J Heart Fail. 2021;23(9):1445–57. https://doi.org/10.1002/EJHF.2295.

    Article  PubMed  Google Scholar 

  29. • Pellicori P, Platz E, Dauw J, et al. Ultrasound imaging of congestion in heart failure: examinations beyond the heart. Eur J Heart Fail. 2021;23(5):703–12. https://doi.org/10.1002/EJHF.2032. Ultrasound can quantify congestion in the lungs, kidneys and great veins.

    Article  PubMed  Google Scholar 

  30. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. 2015. https://doi.org/10.1093/ehjci/jev014.

  31. Jobs A, Brünjes K, Katalinic A, et al. Inferior vena cava diameter in acute decompensated heart failure as predictor of all-cause mortality. Heart Vessels. 2017;32(7):856–64. https://doi.org/10.1007/s00380-017-0944-0.

    Article  PubMed  Google Scholar 

  32. Pellicori P, Carubelli V, Zhang J, et al. IVC diameter in patients with chronic heart failure: relationships and prognostic significance. JACC Cardiovasc Imaging. 2013;6(1):16–28. https://doi.org/10.1016/j.jcmg.2012.08.012.

    Article  PubMed  Google Scholar 

  33. Carbone F, Bovio M, Rosa GM, et al. Inferior vena cava parameters predict re-admission in ischaemic heart failure. Eur J Clin Invest. 2014;44(4):341–9. https://doi.org/10.1111/eci.12238.

    Article  CAS  PubMed  Google Scholar 

  34. Goonewardena SN, Gemignani A, Ronan A, et al. Comparison of hand-carried ultrasound assessment of the inferior vena cava and n-terminal pro-brain natriuretic peptide for predicting readmission after hospitalization for acute decompensated heart failure. JACC Cardiovasc Imaging. 2008;1(5):595–601. https://doi.org/10.1016/j.jcmg.2008.06.005.

    Article  PubMed  Google Scholar 

  35. Pellicori P, Kallvikbacka-Bennett A, Zhang J, et al. Revisiting a classical clinical sign: jugular venous ultrasound. Int J Cardiol. 2014;170(3):364–70. https://doi.org/10.1016/J.IJCARD.2013.11.015.

    Article  PubMed  Google Scholar 

  36. Pellicori P, Kallvikbacka-Bennett A, Dierckx R, et al. Prognostic significance of ultrasound-assessed jugular vein distensibility in heart failure. Heart. 2015;101(14):1149–58. https://doi.org/10.1136/heartjnl-2015-307558.

    Article  CAS  PubMed  Google Scholar 

  37. Martindale JL, Wakai A, Collins SP, et al. Diagnosing acute heart failure in the emergency department: a systematic review and meta-analysis. Acad Emerg Med. 2016;23(3):223–42. https://doi.org/10.1111/acem.12878.

    Article  PubMed  Google Scholar 

  38. Pellicori P, Shah P, Cuthbert J, et al. Prevalence, pattern and clinical relevance of ultrasound indices of congestion in outpatients with heart failure. Eur J Heart Fail. 2019;21(7):904–16. https://doi.org/10.1002/ejhf.1383.

    Article  CAS  PubMed  Google Scholar 

  39. Rastogi T, Bozec E, Pellicori P, et al. Prognostic value and therapeutic utility of lung ultrasound in acute and chronic heart failure: a meta-analysis. JACC Cardiovasc Imaging. 2022. https://doi.org/10.1016/J.JCMG.2021.11.024.

  40. Pang PS, Russell FM, Ehrman R, et al. Lung ultrasound-guided emergency department management of acute heart failure (BLUSHED-AHF): a randomized controlled pilot trial. JACC Heart Fail. 2021;9(9):638–48. https://doi.org/10.1016/J.JCHF.2021.05.008.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Pugliese NR, Pellicori P, Filidei F, et al. The incremental value of multi-organ assessment of congestion using ultrasound in outpatients with heart failure. Eur Heart J Cardiovasc Imaging. 2023. https://doi.org/10.1093/EHJCI/JEAC254.

  42. Bensimhon D, Alali SA, Curran L, et al. The use of the reds noninvasive lung fluid monitoring system to assess readiness for discharge in patients hospitalized with acute heart failure: a pilot study. Heart Lung. 2021;50(1):59–64. https://doi.org/10.1016/J.HRTLNG.2020.07.003.

    Article  PubMed  Google Scholar 

  43. Pellicori P, Clark AL, Kallvikbacka-Bennett A, et al. Non-invasive measurement of right atrial pressure by near-infrared spectroscopy: preliminary experience. A report from the SICA-HF study. Eur J Heart Fail. 2017;19(7):883–892. https://doi.org/10.1002/ejhf.825.

  44. Shoaib A, Mabote T, Zuhair M, Kassianides X, Cleland JGF. Acute heart failure (suspected or confirmed): initial diagnosis and subsequent evaluation with traditional and novel technologies. World J Cardiovasc Dis. 2013;03(03):290–300. https://doi.org/10.4236/wjcd.2013.33046.

    Article  Google Scholar 

  45. Lindenfeld J, Zile MR, Desai AS, et al. Haemodynamic-guided management of heart failure (GUIDE-HF): a randomised controlled trial. The Lancet. 2021;398(10304):991–1001. https://doi.org/10.1016/S0140-6736(21)01754-2.

    Article  CAS  Google Scholar 

  46. Iaconelli A, Pellicori P, Caiazzo E, et al. Implanted haemodynamic telemonitoring devices to guide management of heart failure: a review and meta-analysis of randomised trials. Clin Res Cardiol. 2022. https://doi.org/10.1007/s00392-022-02104-0.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Felker GM, Lee KL, Bull DA, et al. Diuretic strategies in patients with acute decompensated heart failure. N Engl J Med. 2011;364(9):797–805. https://doi.org/10.1056/NEJMoa1005419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Girerd N, Mewton N, Tartière JM, et al. Practical outpatient management of worsening chronic heart failure. Eur J Heart Fail. 2022;24(5):750. https://doi.org/10.1002/EJHF.2503.

    Article  PubMed  Google Scholar 

  49. Gilotra NA, Princewill O, Marino B, et al. Efficacy of intravenous furosemide versus a novel, pH-neutral furosemide formulation administered subcutaneously in outpatients with worsening heart failure. JACC Heart Fail. 2018;6(1):65–70. https://doi.org/10.1016/j.jchf.2017.10.001.

    Article  PubMed  Google Scholar 

  50. Mentz RJ, Anstrom KJ, Eisenstein EL, et al. Effect of torsemide vs furosemide after discharge on all-cause mortality in patients hospitalized with heart failure: the TRANSFORM-HF randomized clinical trial. JAMA. 2023;329(3):214–23. https://doi.org/10.1001/JAMA.2022.23924.

    Article  CAS  PubMed  Google Scholar 

  51. Rohde LE, Rover MM, Neto JAF, et al. Short-term diuretic withdrawal in stable outpatients with mild heart failure and no fluid retention receiving optimal therapy: a double-blind, multicentre, randomized trial. Eur Heart J. 2019;40(44):3605–12. https://doi.org/10.1093/EURHEARTJ/EHZ554.

    Article  PubMed  Google Scholar 

  52. Channer KS, McLean KA, Lawson-Mathew P, Richardson M. Combination diuretic treatment in severe heart failure: a randomised controlled trial. Br Heart J. 1994;71(2):146–50. https://doi.org/10.1136/hrt.71.2.146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Piardi DS, Butzke M, Mazzuca ACM, et al. Effect of adding hydrochlorothiazide to usual treatment of patients with acute decompensated heart failure: a randomized clinical trial. Sci Rep. 2021;11(1). https://doi.org/10.1038/S41598-021-96002-6.

  54. Trullàs JC, Morales-Rull JL, Casado J, et al. Combining loop with thiazide diuretics for decompensated heart failure: the CLOROTIC trial. Eur Heart J. 2023;44(5). https://doi.org/10.1093/EURHEARTJ/EHAC689.

  55. Imiela T, Budaj A. Acetazolamide as add-on diuretic therapy in exacerbations of chronic heart failure: a pilot study. Clin Drug Investig. 2017;37(12):1175–81. https://doi.org/10.1007/s40261-017-0577-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mullens W, Dauw J, Martens P, et al. Acetazolamide in acute decompensated heart failure with volume overload. N Engl J Med. 2022. https://doi.org/10.1056/NEJMoa2203094.

  57. Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N Engl J Med. 1999;341(10):709–17. https://doi.org/10.1056/NEJM199909023411001.

    Article  CAS  PubMed  Google Scholar 

  58. Zannad F, McMurray JJV, Krum H, et al. Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med. 2011;364(1):11–21. https://doi.org/10.1056/NEJMoa1009492.

    Article  CAS  PubMed  Google Scholar 

  59. Solomon SD, Claggett B, Lewis EF, et al. Influence of ejection fraction on outcomes and efficacy of spironolactone in patients with heart failure with preserved ejection fraction. Eur Heart J. 2015;37(5):455–62. https://doi.org/10.1093/eurheartj/ehv464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pitt B, Pedro Ferreira J, Zannad F. Mineralocorticoid receptor antagonists in patients with heart failure: current experience and future perspectives. Eur Heart J Cardiovasc Pharmacother. 2017;3(1):48–57. https://doi.org/10.1093/ehjcvp/pvw016.

    Article  PubMed  Google Scholar 

  61. Wirtz HS, Sheer R, Honarpour N, et al. Real-world analysis of guideline-based therapy after hospitalization for heart failure. J Am Heart Assoc. 2020;9(16). https://doi.org/10.1161/JAHA.119.015042.

  62. Uijl A, Vaartjes I, Denaxas S, et al. Temporal trends in heart failure medication prescription in a population-based cohort study. BMJ Open. 2021;11(3):e043290. https://doi.org/10.1136/BMJOPEN-2020-043290.

  63. Ravassa S, López B, Ferreira JP, et al. Biomarker-based assessment of collagen cross-linking identifies patients at risk of heart failure more likely to benefit from spironolactone effects on left atrial remodelling. Insights from the HOMAGE clinical trial. Eur J Heart Fail. 2021. https://doi.org/10.1002/ejhf.2394.

  64. Iraqi W, Rossignol P, Angioi M, et al. Extracellular cardiac matrix biomarkers in patients with acute myocardial infarction complicated by left ventricular dysfunction and heart failure: insights from the eplerenone post-acute myocardial infarction heart failure efficacy and survival study (EPHESUS) study. Circulation. 2009;119(18):2471–9. https://doi.org/10.1161/CIRCULATIONAHA.108.809194.

    Article  CAS  PubMed  Google Scholar 

  65. Butler J, Anstrom KJ, Felker GM, et al. Efficacy and safety of spironolactone in acute heart failure: the ATHENA-HF randomized clinical trial. JAMA Cardiol. 2017;2(9):950–8. https://doi.org/10.1001/JAMACARDIO.2017.2198.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Furberg CD, Wright JT, Davis BR, et al. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). JAMA. 2002;288(23):2981–97. https://doi.org/10.1001/JAMA.288.23.2981.

    Article  CAS  Google Scholar 

  67. Beckett NS, Peters R, Fletcher AE, et al. Treatment of hypertension in patients 80 years of age or older. 2009;358(18):1887–1898.

  68. Cleland JGF, Ferreira JP, Mariottoni B, et al. The effect of spironolactone on cardiovascular function and markers of fibrosis in people at increased risk of developing heart failure: the heart “OMics” in AGEing (HOMAGE) randomized clinical trial. Eur Heart J. 2021;42(6):684–96. https://doi.org/10.1093/EURHEARTJ/EHAA758.

    Article  CAS  PubMed  Google Scholar 

  69. Filippatos G, Anker SD, Agarwal R, et al. Finerenone reduces risk of incident heart failure in patients with chronic kidney disease and type 2 diabetes: analyses from the FIGARO-DKD trial. Undefined. 2021;145(6):437–447. https://doi.org/10.1161/CIRCULATIONAHA.121.057983.

  70. Joshi SS, Singh T, Newby DE, Singh J. Sodium-glucose co-transporter 2 inhibitor therapy: mechanisms of action in heart failure. Heart. 2021;107(13):1032 LP - 1038. https://doi.org/10.1136/heartjnl-2020-318060.

  71. Omar M, Jensen J, Frederiksen PH, et al. Effect of empagliflozin on hemodynamics in patients with heart failure and reduced ejection fraction. J Am Coll Cardiol. 2020;76(23):2740–51. https://doi.org/10.1016/J.JACC.2020.10.005.

    Article  CAS  PubMed  Google Scholar 

  72. Jensen J, Omar M, Kistorp C, et al. Effects of empagliflozin on estimated extracellular volume, estimated plasma volume, and measured glomerular filtration rate in patients with heart failure (Empire HF Renal): a prespecified substudy of a double-blind, randomised, placebo-controlled trial. Lancet Diabetes Endocrinol. 2021;9(2):106–16. https://doi.org/10.1016/S2213-8587(20)30382-X.

    Article  CAS  PubMed  Google Scholar 

  73. Hallow KM, Helmlinger G, Greasley PJ, McMurray JJV, Boulton DW. Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis. Diabetes Obes Metab. 2018;20(3):479–87. https://doi.org/10.1111/DOM.13126.

    Article  CAS  PubMed  Google Scholar 

  74. Griffin M, Rao VS, Ivey-Miranda J, et al. Empagliflozin in heart failure: diuretic and cardio-renal effects. Circulation. 2020;142(11):1028. https://doi.org/10.1161/CIRCULATIONAHA.120.045691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Mordi NA, Mordi IR, Singh JS, Mccrimmon RJ, Struthers AD, Lang CC. Renal and cardiovascular effects of SGLT2 inhibition in combination with loop diuretics in patients with type 2 diabetes and chronic heart failure: the RECEDE-CHF trial. Circulation. 2020;142(18):1713–24. https://doi.org/10.1161/CIRCULATIONAHA.120.048739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Scholtes RA, Muskiet MHA, van Baar MJB, et al. Natriuretic effect of two weeks of dapagliflozin treatment in patients with type 2 diabetes and preserved kidney function during standardized sodium intake: results of the DAPASALT trial. Diabetes Care. 2021;44(2):440–7. https://doi.org/10.2337/DC20-2604.

    Article  CAS  PubMed  Google Scholar 

  77. Docherty KF, Committees on behalf of the DHI and, Jhund PS, et al. Effects of dapagliflozin in DAPA-HF according to background heart failure therapy. Eur Heart J. 2020;41(25):2379–2392. https://doi.org/10.1093/EURHEARTJ/EHAA183.

  78. Damman K, Beusekamp JC, Boorsma EM, et al. Randomized, double-blind, placebo-controlled, multicentre pilot study on the effects of empagliflozin on clinical outcomes in patients with acute decompensated heart failure (EMPA-RESPONSE-AHF). Eur J Heart Fail. 2020;22(4):713–22. https://doi.org/10.1002/ejhf.1713.

    Article  CAS  PubMed  Google Scholar 

  79. Boorsma EM, Beusekamp JC, ter Maaten JM, et al. Effects of empagliflozin on renal sodium and glucose handling in patients with acute heart failure. Eur J Heart Fail. 2021;23(1):68–78. https://doi.org/10.1002/EJHF.2066.

    Article  CAS  PubMed  Google Scholar 

  80. Biegus J, Voors AA, Collins SP, et al. Impact of empagliflozin on decongestion in acute heart failure: the EMPULSE trial. Eur Heart J. 2022:ehac530. https://doi.org/10.1093/eurheartj/ehac530.

  81. Bhatt DL, Szarek M, Steg PG, et al. Sotagliflozin in patients with diabetes and recent worsening heart failure. N Engl J Med. 2020;384(2):117–28. https://doi.org/10.1056/NEJMoa2030183.

    Article  PubMed  Google Scholar 

  82. Jensen KT, Carstens J, Pedersen EB. Effect of BNP on renal hemodynamics, tubular function and vasoactive hormones in humans. Am J Physiol. 1998;274(1):F63-72. https://doi.org/10.1152/ajprenal.1998.274.1.F63.

    Article  CAS  PubMed  Google Scholar 

  83. McMurray JJV, Packer M, Desai AS, et al. Angiotensin–neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371(11):993–1004. https://doi.org/10.1056/NEJMoa1409077.

    Article  CAS  PubMed  Google Scholar 

  84. Vardeny O, Claggett B, Kachadourian J, et al. Reduced loop diuretic use in patients taking sacubitril/valsartan compared with enalapril: the PARADIGM-HF trial. Eur J Heart Fail. 2019;21(3):337–41. https://doi.org/10.1002/EJHF.1402.

    Article  CAS  PubMed  Google Scholar 

  85. Velazquez EJ, Morrow DA, DeVore AD, et al. Angiotensin–neprilysin inhibition in acute decompensated heart failure. N Engl J Med. 2019;380(6):539–48. https://doi.org/10.1056/NEJMoa1812851.

    Article  CAS  PubMed  Google Scholar 

  86. Cox ZL, Hung R, Lenihan DJ, Testani JM. Diuretic strategies for loop diuretic resistance in acute heart failure: the 3T trial. JACC Heart Fail. 2020;8(3):157–68. https://doi.org/10.1016/j.jchf.2019.09.012.

    Article  PubMed  Google Scholar 

  87. Konstam MA, Gheorghiade M, Burnett JC, et al. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST outcome trial. JAMA. 2007;297(12):1319–31. https://doi.org/10.1001/JAMA.297.12.1319.

    Article  CAS  PubMed  Google Scholar 

  88. Konstam MA, Kiernan M, Chandler A, et al. Short-term effects of tolvaptan in patients with acute heart failure and volume overload. J Am Coll Cardiol. 2017;69(11):1409–19. https://doi.org/10.1016/j.jacc.2016.12.035.

    Article  CAS  PubMed  Google Scholar 

  89. Song EK, Moser DK, Kang SM, Lennie TA. Self-reported adherence to a low-sodium diet and health outcomes in patients with heart failure. J Cardiovasc Nurs. 2016;31(6):529–34. https://doi.org/10.1097/JCN.0000000000000287.

    Article  PubMed  Google Scholar 

  90. Lennie TA, Song EK, Wu JR, et al. Three gram sodium intake is associated with longer event-free survival only in patients with advanced heart failure. J Card Fail. 2011;17(4):325–30. https://doi.org/10.1016/j.cardfail.2010.11.008.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Neal B, Wu Y, Feng X, et al. Effect of salt substitution on cardiovascular events and death. 2021;385(12):1067–1077.

  92. Ezekowitz JA, Colin-Ramirez E, Ross H, et al. Reduction of dietary sodium to less than 100 mmol in heart failure (SODIUM-HF): an international, open-label, randomised, controlled trial. The Lancet. 2022;399(10333):1391–400. https://doi.org/10.1016/S0140-6736(22)00369-5.

    Article  CAS  Google Scholar 

  93. Gupta P, Voors AA, Patel P, et al. Non-adherence to heart failure medications predicts clinical outcomes: assessment in a single spot urine sample by liquid chromatography-tandem mass spectrometry (results of a prospective multicentre study). Eur J Heart Fail. 2021;23(7):1182–90. https://doi.org/10.1002/EJHF.2160.

    Article  CAS  PubMed  Google Scholar 

  94. Dovancescu S, Pellicori P, Mabote T, Torabi A, Clark AL, Cleland JGF. The effects of short-term omission of daily medication on the pathophysiology of heart failure. Eur J Heart Fail. 2017;19(5):643–9. https://doi.org/10.1002/ejhf.748.

    Article  PubMed  Google Scholar 

  95. Cleland JGF, Clark RA, Pellicori P, Inglis SC. Caring for people with heart failure and many other medical problems through and beyond the COVID-19 pandemic: the advantages of universal access to home telemonitoring. Eur J Heart Fail. 2020;22(6):995–8. https://doi.org/10.1002/EJHF.1864.

    Article  CAS  PubMed  Google Scholar 

  96. Fudim M, Abraham WT, von Bardeleben RS, et al. Device therapy in chronic heart failure: JACC state-of-the-art review. J Am Coll Cardiol. 2021;78(9):931–56. https://doi.org/10.1016/J.JACC.2021.06.040.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Fraser Graham has been awarded a research project grant from the British Heart Foundation (PG/2019/35089).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javed Khan.

Ethics declarations

Conflict of Interest

Pierpaolo Pellicori reports personal fees from Pharmacosmos, Vifor, and Caption Health, payment of honoraria from AstraZeneca, support from Pharmacosmos for attending meetings, outside the submitted work. Fraser Graham reports receipt of sponsorship from Pharmacosmos to attend an international meeting. Jocelyn Friday reports grants from British Heart Foundation (RE/18/6134217). The other authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised to remove unnecessary files captured as supplementary.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, J., Graham, F.J., Masini, G. et al. Congestion and Use of Diuretics in Heart Failure and Cardiomyopathies: a Practical Guide. Curr Cardiol Rep 25, 411–420 (2023). https://doi.org/10.1007/s11886-023-01865-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-023-01865-y

Keywords

Navigation