Skip to main content

Advertisement

Log in

Acquisition, Processing, and Interpretation of PET 18F-FDG Viability and Inflammation Studies

  • Nuclear Cardiology (V Dilsizian, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This article reviews the acquisition protocols and image interpretation for 18F-fluorodeoxyglucose (18F-FDG) imaging with positron emission tomography (PET) applied to the evaluation of myocardial viability and inflammation.

Recent Findings

Cardiac PET with 18F-FDG provides essential information for the assessment of myocardial viability and inflammation and is usually combined with PET perfusion imaging using 82Rb or 13N-ammonia. Viable myocardium maintains glucose metabolism which can be detected via the uptake of 18F-FDG by PET imaging. The patient is prepared for viability imaging by shifting the metabolism of the heart to maximize the uptake of glucose and hence of 18F-FDG. Comparison of the 18F-FDG and myocardial perfusion images allows distinction between regions of the myocardium that are hibernating and thus may recover function with intervention, from those that are infarcted. Increased glucose utilization in the inflammatory cells also makes 18F-FDG a useful imaging technique in conditions such as cardiac sarcoidosis. Here, suppression of normal myocardial uptake is essential for accurate image interpretation.

Summary

18F-FDG PET broadens the scope of information potentially available through a cardiac PET study. With careful patient preparation, it provides valuable insights into myocardial viability and inflammatory processes such as sarcoidosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013;128(16):1810–52.

    Article  PubMed  Google Scholar 

  2. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey de Jr, Colvin MM, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Failure Society of America. J Am Coll Cardiol. 2017;70(6):776–803.

    Article  PubMed  Google Scholar 

  3. Schinkel AF, Bax JJ, Poldermans D, Elhendy A, Ferrari R, Rahimtoola SH. Hibernating myocardium: diagnosis and patient outcomes. Curr Probl Cardiol. 2007;32:375–410. https://doi.org/10.1016/j.cpcardiol.2007.04.001.

    Article  PubMed  Google Scholar 

  4. Allman KC, Shaw LJ, Hachamovitch R, Udelson JE. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J Am Coll Cardiol. 2002;39:1151–8.

    Article  PubMed  Google Scholar 

  5. Bonow RO, Maurer G, Lee KL, Holly TA, Binkley PF, Desvigne-Nickens P, et al. Myocardial viability and survival in ischemic left ventricular dysfunction. N Engl J Med. 2011;364:1617–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Beanlands RS, Ruddy TD, de Kemp RA, et al. Positron emission tomography and recovery following revascularization (PARR-1): the importance of scar and the development of a prediction rule for the degree of recovery of left ventricular function. J Am Coll Cardiol. 2002;40:1735–43.

    Article  PubMed  Google Scholar 

  7. •• Beanlands RS, Nichol G, Huszti E, et al. F-18-fluorodeoxyglucose positron emission tomography imaging-assisted management of patients with severe left ventricular dysfunction and suspected coronary disease: a randomized, controlled trial (PARR-2). J Am Coll Cardiol. 2007;50:2002–12 A multicenter trial, this study demonstrated that adherence to recommendations based on the PET viability findings resulted in a significant outcome benefit for patients with severe LV dysfunction.

    Article  PubMed  Google Scholar 

  8. McArdle B, Shukla T, Nichol G, et al. Long-term follow-up of outcomes with F-18-fluorodeoxyglucose positron emission tomography imaging-assisted management of patients with severe left ventricular dysfunction secondary to coronary disease. Circ Cardiovasc Imaging. 2016;9:e004331.

    Google Scholar 

  9. Braunwald E, Kloner RA. The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation. 1982;66:1146–9.

    Article  CAS  PubMed  Google Scholar 

  10. Barnes E, Hall RJC, Dutka DP, Camici PG. Absolute blood flow and oxygen consumption in stunned myocardium in patients with coronary artery disease. J Am Coll Cardiol. 2002;39(3):420–7.

    Article  PubMed  Google Scholar 

  11. Di Carli MF, Prcevski P, Singh TP, et al. Myocardial blood flow, function, and metabolism in repetitive stunning. J Nucl Med. 2000;41:1227–34.

    PubMed  Google Scholar 

  12. Rahimtoola SH. From coronary artery disease to heart failure: role of the hibernating myocardium. Am J Cardiol. 1995;75:16E–22E.

    Article  CAS  PubMed  Google Scholar 

  13. Shen YT, Vatner SF. Mechanism of impaired myocardial function during progressive coronary stenosis in conscious pigs. Hibernation versus stunning? Circ Res. 1995;76:479–88.

    Article  CAS  PubMed  Google Scholar 

  14. Tillisch J, Brunken R, Marshall R, Schwaiger M, Mandelkern M, Phelps M, et al. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med. 1986;314(14):884–8.

    Article  CAS  PubMed  Google Scholar 

  15. Fallavollita JA, Malm BJ, Canty JM. Hibernating myocardium retains metabolic and contractile reserve despite regional reductions in flow, function, and oxygen consumption at rest. Circ Res. 2003;92(1):48–55.

    Article  CAS  PubMed  Google Scholar 

  16. Camici PG, Dutka DP. Repetitive stunning, hibernation, and heart failure: contribution of PET to establishing a link. Am J Physiol Heart Circ Physiol. 2001;280(3):H929–36.

    Article  CAS  PubMed  Google Scholar 

  17. Camici P, Ferrannini E, Opie LH. Myocardial metabolism in ischemic heart disease: basic principles and application to imaging by positron emission tomography. Prog Cardiovasc Dis. 1989;32(3):217–38.

    Article  CAS  PubMed  Google Scholar 

  18. Neely JR, Morgan HE. Relationship between carbohydrate and lipid metabolism and the energy balance of heart muscle. Annu Rev Physiol. 1974;36:413–59.

    Article  CAS  PubMed  Google Scholar 

  19. Depre C, Vanoverschelde JL, Taegtmeyer H. Glucose for the heart. Circulation. 1999;99(4):578–88.

    Article  CAS  PubMed  Google Scholar 

  20. Liedtke AJ. Alterations of carbohydrate and lipid metabolism in the acutely ischemic heart. Prog Cardiovasc Dis. 1981;23(5):321–36.

    Article  CAS  PubMed  Google Scholar 

  21. Ghosh N, Rimoldi OE, Beanlands RS, Camici PG. Assessment of myocardial ischaemia and viability: role of positron emission tomography. Eur Heart J. 2010;31(24):2984–95. 1.

    Article  PubMed  Google Scholar 

  22. Neely JR, Rovetto MJ, Oram JF. Myocardial utilization of carbohydrate and lipids. Prog Cardiovasc Dis. 1972;15:289–329.

    Article  CAS  PubMed  Google Scholar 

  23. Stanley WC, Lopaschuk GD, Hall JL, McCormack JG. Regulation of myocardial carbohydrate metabolism under normal and ischaemic conditions. Potential for pharmacological interventions. Cardiovasc Res. 1997;33:243–57.

    Article  CAS  PubMed  Google Scholar 

  24. Bacharach SL, Bax JJ, Case J, Delbeke D, Kurdziel KA, Martin WH, et al. PET myocardial glucose metabolism and perfusion imaging: part 1—guidelines for data acquisition and patient preparation. J Nucl Cardiol. 2003;10:543–56.

    Article  PubMed  Google Scholar 

  25. Choi Y, Brunken RC, Hawkins RA, Huang SC, Buxton DB, Hoh CK, et al. Factors affecting myocardial 2-[F-18] fluoro-2- deoxy-d-glucose uptake in positron emission tomography studies of normal humans. Eur J Nucl Med Mol Imaging. 1993;20:308–18.

    Article  CAS  Google Scholar 

  26. • Dilsizian V, Bacharach SL, Beanlands RS, et al. ASNC imaging guidelines/SNMMI procedure standard for positron emission tomography (PET) nuclear cardiology procedures. J Nucl Cardiol. 2016;23(5):1187–226 Current guidelines on the use of PET for viability imaging summarizing patient preparation and imaging acquisition and processing recommendations.

    Article  PubMed  Google Scholar 

  27. Knuuti MJ, Nuutila P, Ruotsalainen U, Saraste M, Härkönen R, Ahonen A, et al. Euglycemic hyperinsulinemic clamp and oral glucose load in stimulating myocardial glucose-utilization during positron emission tomography. J Nucl Med. 1992;33(7):1255–62.

    CAS  PubMed  Google Scholar 

  28. Vitale GD, de Kemp RA, Ruddy TD, et al. Myocardial glucose utilization and optimization of F-18-FDG PET imaging in patients with non-insulin-dependent diabetes mellitus, coronary artery disease, and left ventricular dysfunction. J Nucl Med. 2001;42(12):1730–6.

    CAS  PubMed  Google Scholar 

  29. Hicks R, Von Dohl J, Lee K, et al. Insulin-glucose clamp for standardization of metabolic conditions during F- 18 fluorodeoxyglucose PET imaging. J Am Coll Cardiol. 1991;17:381A.

    Article  Google Scholar 

  30. Brogsitter C, Gruning T, Weise R, et al. F-18-FDG PET for detecting myocardial viability: validation of 3D data acquisition. J Nucl Med. 2005;46:19–24.

    PubMed  Google Scholar 

  31. Bax JJ, Visser FC, Blanksma PK, Veening MA, Tan ES, Willemsen TM, et al. Comparison of myocardial uptake of fluorine-18-fluorodeoxyglucose imaged with PET and SPECT in dyssynergic myocardium. J Nucl Med. 1996;37:1631–6.

    CAS  PubMed  Google Scholar 

  32. Martin WH, et al. Evaluation of myocardial ischemia using a rest metabolism/stress perfusion protocol with fluorine-18-fluorodeoxyglucose/technetium-99m-MIBI and dual-isotope simultaneous-acquisition single-photon emission computed tomography. J Am Coll Cardiol. 1995;26:870–6.

    Article  PubMed  Google Scholar 

  33. Dilsizian V, Bacharach SL, Muang KM, Smith MF. Fluorine-18-deoxyglucose SPECT and coincidence imaging for myocardial viability: clinical and technological issues. J Nucl Cardiol. 2001;8:75–88.

    Article  CAS  PubMed  Google Scholar 

  34. D’Egidio G, Nichol G, Williams KA, et al. Increasing benefit from revascularization is associated with increasing amounts of myocardial hibernation: a sub-study of the PARR-2 trial. JACC Cardiovasc Imaging. 2009;2:1060–8.

    Article  PubMed  Google Scholar 

  35. Abraham A, Nichol G, Williams KA, Guo A, deKemp R, Garrard L, et al. 18F-FDG PET imaging of myocardial viability in an experienced center with access to 18F-FDG and integration with clinical management teams: the Ottawa-FIVE sub-study of the PARR 2 trial. J Nucl Med. 2010;51:567–74.

    Article  PubMed  Google Scholar 

  36. Thompson K, Saab G, Birnie D, Chow BJ, Ukkonen H, Ananthasubramaniam K, et al. Is septal glucose metabolism altered in patients with left bundle branch block and ischemic cardiomyopathy? J Nucl Med. 2006;47:1763–8.

    CAS  PubMed  Google Scholar 

  37. Anselm DD, Anselm AH, Renaud J, Atkins HL, de Kemp R, Burwash IG, et al. Altered myocardial glucose utilization and the reverse mismatch pattern on rubidium-82 perfusion/F-18-FDG PET during the sub-acute phase following reperfusion of acute anterior myocardial infarction. J Nucl Cardiol. 2011;18(4):657–67.

    Article  PubMed  Google Scholar 

  38. Silverman KJ, Hutchins GM, Bulkley BH. Cardiac sarcoid: a clinicopathologic study of 84 unselected patients with systemic sarcoidosis. Circulation. 1978;58:1204–11.

    Article  CAS  PubMed  Google Scholar 

  39. •• Youssef G, Leung E, Mylonas I, Nery P, Williams K, Wisenberg G, et al. The use of 18F-FDG PET in the diagnosis of cardiac sarcoidosis: a systematic review and metaanalysis including the Ontario experience. J Nucl Med. 2012;53:241–8 A systematic review of the evidence for the diagnosis of sarcoidosis using PET.

    Article  CAS  PubMed  Google Scholar 

  40. • Blankstein R, Osborne M, Haya M, et al. Cardiac positron emission tomography enhances prognostic assessment of patients with suspected cardiac sarcoidosis. J Am Coll Cardiol. 2014;63:329–36 A study demonstrating the prognostic value of PET in assessing sarcoidosis.

    Article  PubMed  Google Scholar 

  41. Birnie DH, Sauer WH, Bogun F, Cooper JM, Culver DA, Duvernoy CS, et al. HRS expert consensus statement on the diagnosis and management of arrhythmias associated with cardiac sarcoidosis. Heart Rhythm. 2014;11:1305–23.

    Article  PubMed  Google Scholar 

  42. Nishiyama Y, Yamamoto Y, Fukunaga K, Takinami H, Iwado Y, Satoh K, et al. Comparative evaluation of 18F-FDG PET and 67 Ga scintigraphy in patients with sarcoidosis. J Nucl Med. 2006;47:1571–6.

    PubMed  Google Scholar 

  43. Ohira H, TsujinoI IS, Oyama N, Takei T, Tsukamoto E, et al. Myocardial imaging with 18F-fluoro-2-deoxyglucose positron emission tomography and magnetic resonance imaging in sarcoidosis. Eur J Nucl Med Mol Imaging. 2008;35:933–41.

    Article  PubMed  Google Scholar 

  44. Kominsky DJ, Campbell EL, Colgan SP. Metabolic shifts in immunity and inflammation. J Immunol. 2010;184:4062–8.

    Article  CAS  PubMed  Google Scholar 

  45. Mochizuki T, Tsukamoto E, Kuge Y, Kanegae K, Zhao S, Hikosaka K, et al. FDG uptake and glucose transporter subtype expressions in experimental tumor and inflammation models. J Nucl Med. 2001;42:1551–5.

    CAS  PubMed  Google Scholar 

  46. Martineau P, Pelletier-Galarneau M, Juneau D, Leung E, Nery PB, de Kemp R, et al. Imaging cardiac sarcoidosis with FLT-PET compared with FDG/perfusion-PET: a prospective pilot study. JACC Cardiovasc Imaging. 2019;12(11 Pt 1):2280–2281. https://doi.org/10.1016/j.jcmg.2019.06.020.

  47. Wykrzykowska J, Lehman S, Williams G, Parker JA, Palmer MR, Varkey S, et al. Imaging of inflamed and vulnerable plaque in coronary arteries with 18F-FDG PET/CT in patients with suppression of myocardial uptake using a low-carbohydrate, high-fat preparation. J Nucl Med. 2009;50:563–8.

    Article  PubMed  Google Scholar 

  48. Langah R, Spicer K, Gebregziabher M, Gordon L. Effectiveness of prolonged fasting 18f-FDG PET-CT in the detection of cardiac sarcoidosis. J Nucl Cardiol. 2009;16:801–10.

    Article  PubMed  Google Scholar 

  49. Asmal AC, Leary WP, Thandroyen F, Botha J, Wattrus S. A dose-response study of the anticoagulant and lipolytic activities of heparin in normal subjects. Br J Clin Pharmacol. 1979;7:531–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Okumura W, Iwasaki T, Toyama T, Iso T, Arai M, Oriuchi N, et al. Usefulness of fasting 18F-FDG PET in identification of cardiac sarcoidosis. J Nucl Med. 2004;45:1989–98.

    PubMed  Google Scholar 

  51. Bartlett ML, Bacharach SL, Voipio-Pulkki LM, Dilsizian V. Artifactual inhomogeneities in myocardial PET and SPECT scans in normal subjects. J Nucl Med. 1995;36:188–95.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Glenn Wells.

Ethics declarations

Conflict of Interest

TDR and RGW: research grant support from GE Healthcare and Advanced Accelerator Applications.

ECG declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Nuclear Cardiology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Celiker-Guler, E., Ruddy, T.D. & Wells, R.G. Acquisition, Processing, and Interpretation of PET 18F-FDG Viability and Inflammation Studies. Curr Cardiol Rep 23, 124 (2021). https://doi.org/10.1007/s11886-021-01555-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11886-021-01555-7

Keywords

Navigation