Skip to main content
Log in

Role of Clinical Genetic Testing in the Management of Aortopathies

  • Cardiovascular Genomics (P Natarajan, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Thoracic aortic aneurysms (TAA) have a strong heritable basis, and identification of a genetic etiology has important implications for patients with TAA and their relatives. This review provides an overview of Mendelian causes of TAA, discusses important considerations for genetic testing, and summarizes the impact a genetic diagnosis may have on a patient’s medical care.

Recent Findings

Thoracic aortic disease may be non-syndromic or seen as part of a genetic syndrome, such as Marfan syndrome, Loeys-Dietz syndrome, or vascular Ehlers-Danlos syndrome. Expanded access to genetic testing has revealed the wide and overlapping phenotypic spectrum of these conditions, highlighting the need for genetic testing to establish an accurate diagnosis. Important aspects of genetic evaluation include thorough phenotyping through family history and physical examination, selection of an appropriate genetic test driven by the patient’s phenotype, and careful interpretation of genetic test results. Improved understanding of the natural history of these conditions has led to tailored management recommendations, including gene-based recommendations for prophylactic surgical repair.

Summary

Identification of a genetic etiology allows for careful monitoring of disease progression, informs the timing of prophylactic surgical repair, and facilitates the identification of other at-risk relatives through cascade genetic testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ito S, Akutsu K, Tamori Y, Sakamoto S, Yoshimuta T, Hashimoto H, et al. Differences in atherosclerotic profiles between patients with thoracic and abdominal aortic aneurysms. Am J Cardiol. 2008;101(5):696–9. https://doi.org/10.1016/j.amjcard.2007.10.039.

    Article  PubMed  Google Scholar 

  2. Hemminki K, Li X, Johansson SE, Sundquist K, Sundquist J. Familial risks of aortic aneurysms among siblings in a nationwide Swedish study. Genet Med. 2006;8(1):43–9. https://doi.org/10.1097/01.gim.0000195973.60136.48.

    Article  PubMed  Google Scholar 

  3. Rigelsky CM, Moran RT. Genetics of syndromic and nonsyndromic aortopathies. Curr Opin Pediatr. 2019;31(6):694–701. https://doi.org/10.1097/MOP.0000000000000836.

    Article  CAS  PubMed  Google Scholar 

  4. Tiecke F, Katzke S, Booms P, Robinson PN, Neumann L, Godfrey M, et al. Classic, atypically severe and neonatal Marfan syndrome: twelve mutations and genotype-phenotype correlations in FBN1 exons 24-40. Eur J Hum Genet. 2001;9(1):13–21. https://doi.org/10.1038/sj.ejhg.5200582.

    Article  CAS  PubMed  Google Scholar 

  5. Takeda N, Inuzuka R, Maemura S, Morita H, Nawata K, Fujita D, et al. Impact of pathogenic FBN1 variant types on the progression of aortic disease in patients with Marfan syndrome. Circ Genomic Precis Med. 2018;11(6):e002058. https://doi.org/10.1161/CIRCGEN.117.002058.

    Article  CAS  Google Scholar 

  6. Franken R, Teixido-Tura G, Brion M, Forteza A, Rodriguez-Palomares J, Gutierrez L, et al. Relationship between fibrillin-1 genotype and severity of cardiovascular involvement in Marfan syndrome. Heart. 2017;103(22):1795–9. https://doi.org/10.1136/heartjnl-2016-310631.

    Article  CAS  PubMed  Google Scholar 

  7. Franken R, Groenink M, De Waard V, et al. Genotype impacts survival in Marfan syndrome. Eur Heart J. 2016;37(43):3285–90. https://doi.org/10.1093/eurheartj/ehv739.

    Article  CAS  PubMed  Google Scholar 

  8. Hostetler EM, Regalado ES, Guo DC, et al. SMAD3 pathogenic variants: Risk for thoracic aortic disease and associated complications from the Montalcino Aortic Consortium. J Med Genet. 2019;56(4):252–60. https://doi.org/10.1136/jmedgenet-2018-105583Study investigating aortic disease phenotype in individuals with SMAD3 variants, providing evidence for gene-specific management.

    Article  CAS  PubMed  Google Scholar 

  9. Pepin MG, Schwarze U, Rice KM, Liu M, Leistritz D, Byers PH. Survival is affected by mutation type and molecular mechanism in vascular Ehlers-Danlos syndrome (EDS type IV). Genet Med. 2014;16:881–8. https://doi.org/10.1038/gim.2014.72.

    Article  CAS  PubMed  Google Scholar 

  10. Regalado ES, Guo DC, Prakash S, Bensend TA, Flynn K, Estrera A, et al. Aortic disease presentation and outcome associated with ACTA2 mutations. Circ Cardiovasc Genet. 2015;8(3):457–64. https://doi.org/10.1161/CIRCGENETICS.114.000943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wallace SE, Regalado ES, Gong L, et al. MYLK pathogenic variants aortic disease presentation, pregnancy risk, and characterization of pathogenic missense variants. Genet Med. 2019;21(1):144–51. https://doi.org/10.1038/s41436-018-0038-0Study describing aortic disease phenotype in individuals with MYLK variants, providing evidence for gene-specific management.

    Article  CAS  PubMed  Google Scholar 

  12. Pyeritz RE. Marfan syndrome: improved clinical history results in expanded natural history. Genet Med. 2019;21(8):1683–90. https://doi.org/10.1038/s41436-018-0399-4.

    Article  PubMed  Google Scholar 

  13. Loeys BL, Dietz HC, Braverman AC, Callewaert BL, de Backer J, Devereux RB, et al. The revised Ghent nosology for the Marfan syndrome. J Med Genet. 2010;47:476–85. https://doi.org/10.1136/jmg.2009.072785.

    Article  CAS  PubMed  Google Scholar 

  14. MacCarrick G, Black JH, Bowdin S, et al. Loeys-Dietz syndrome: a primer for diagnosis and management. Genet Med. 2014;16:576–87. https://doi.org/10.1038/gim.2014.11.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Byers PH, Belmont J, Black J, de Backer J, Frank M, Jeunemaitre X, et al. Diagnosis, natural history, and management in vascular Ehlers–Danlos syndrome. Am J Med Genet Part C Semin Med Genet. 2017;175(1):40–7. https://doi.org/10.1002/ajmg.c.31553.

    Article  PubMed  Google Scholar 

  16. Albornoz G, Coady MA, Roberts M, Davies RR, Tranquilli M, Rizzo JA, et al. Familial thoracic aortic aneurysms and dissections-incidence, modes of inheritance, and phenotypic patterns. Ann Thorac Surg. 2006;82(4):1400–5. https://doi.org/10.1016/j.athoracsur.2006.04.098.

    Article  PubMed  Google Scholar 

  17. Biddinger A, Rocklin M, Coselli J, Milewicz DM. Familial thoracic aortic dilatations and dissections: a case control study. J Vasc Surg. 1997;25(3):506–11. https://doi.org/10.1016/S0741-5214(97)70261-1.

    Article  CAS  PubMed  Google Scholar 

  18. Raunsø J, Song RJ, Vasan RS, Bourdillon MT, Nørager B, Torp-Pedersen C, et al. Familial clustering of aortic size, aneurysms, and dissections in the community. Circulation. 2020;142:920–8. https://doi.org/10.1161/circulationaha.120.045990.

    Article  PubMed  Google Scholar 

  19. Arnaud P, Hanna N, Benarroch L, Aubart M, Bal L, Bouvagnet P, et al. Genetic diversity and pathogenic variants as possible predictors of severity in a French sample of nonsyndromic heritable thoracic aortic aneurysms and dissections (nshTAAD). Genet Med. 2019;21(9):2015–24. https://doi.org/10.1038/s41436-019-0444-y.

    Article  PubMed  Google Scholar 

  20. Renner S, Schüler H, Alawi M, Kolbe V, Rybczynski M, Woitschach R, et al. Next-generation sequencing of 32 genes associated with hereditary aortopathies and related disorders of connective tissue in a cohort of 199 patients. Genet Med. 2019;21(8):1832–41. https://doi.org/10.1038/s41436-019-0435-z.

    Article  PubMed  Google Scholar 

  21. Chuan GD, Hostetler EM, Fan Y, et al. Heritable thoracic aortic disease genes in sporadic aortic dissection. J Am Coll Cardiol. 2017;70(21):2728–30. https://doi.org/10.1016/j.jacc.2017.09.1094.

    Article  Google Scholar 

  22. Verstraeten A, Luyckx I, Loeys B. Aetiology and management of hereditary aortopathy. Nat Rev Cardiol. 2017;14(4):197–208. https://doi.org/10.1038/nrcardio.2016.211.

    Article  CAS  PubMed  Google Scholar 

  23. Legrand A, Devriese M, Dupuis-Girod S, et al. Frequency of de novo variants and parental mosaicism in vascular Ehlers–Danlos syndrome. Genet Med. 2019;21(7):1568–75. https://doi.org/10.1038/s41436-018-0356-2A semi-quantitative assessment of gene-disease associations for HTAAD genes to help inform genetic testing.

    Article  CAS  PubMed  Google Scholar 

  24. Hicks KL, Byers PH, Quiroga E, Pepin MG, Shalhub S. Testing patterns for genetically triggered aortic and arterial aneurysms and dissections at an academic center. J Vasc Surg. 2018;68(3):701–11. https://doi.org/10.1016/j.jvs.2017.12.023.

    Article  PubMed  Google Scholar 

  25. Renard M, Francis C, Ghosh R, Scott AF, Witmer PD, Adès LC, et al. Clinical validity of genes for heritable thoracic aortic aneurysm and dissection. J Am Coll Cardiol. 2018;72(6):605–15. https://doi.org/10.1016/j.jacc.2018.04.089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rehm HL, Berg JS, Brooks LD, Bustamante CD, Evans JP, Landrum MJ, et al. ClinGen — the clinical genome resource. N Engl J Med. 2015;372:2235–42. https://doi.org/10.1056/NEJMsr1406261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–23. https://doi.org/10.1038/gim.2015.30.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Muiño-Mosquera L, Steijns F, Audenaert T, Meerschaut I, de Paepe A, Steyaert W, et al. Tailoring the American College of Medical Genetics and Genomics and the Association for Molecular Pathology Guidelines for the interpretation of sequenced variants in the FBN1 gene for Marfan syndrome: proposal for a disease- and gene-specific guideline. Circ Genomic Precis Med. 2018;11(6):e002039. https://doi.org/10.1161/CIRCGEN.117.002039.

    Article  CAS  Google Scholar 

  29. Clinical Genome Resource. clinicalgenome.org/affiliation/50046/ [Accessed 1 Aug 2020].

  30. Torkamani A, Wineinger NE, Topol EJ. The personal and clinical utility of polygenic risk scores. Nat Rev Genet. 2018;19(9):581–90. https://doi.org/10.1038/s41576-018-0018-x.

    Article  CAS  PubMed  Google Scholar 

  31. Hiratzka LF, Bakris GL, Beckman JA, et al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease: executive summary: a report of the american college of cardiology foundation/american heart association task force on pra. Circulation. 2010;121(13):266–369. https://doi.org/10.1161/CIR.0b013e3181d4739e.

    Article  Google Scholar 

  32. Prince AER, Roche MI. Genetic information, non-discrimination, and privacy protections in genetic counseling practice. J Genet Couns. 2014;23(6):891–902. https://doi.org/10.1007/s10897-014-9743-2.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ahmad F, McNally EM, Ackerman MJ, et al. Establishment of specialized clinical cardiovascular genetics programs: recognizing the need and meeting standards: a scientific statement from the American Heart Association. Circ Genomic Precis Med. 2019;12(6):e000054. https://doi.org/10.1161/HCG.0000000000000054.

    Article  Google Scholar 

  34. Ingles J, Yeates L, Semsarian C. The emerging role of the cardiac genetic counselor. Hear Rhythm. 2011;8(12):1958–62. https://doi.org/10.1016/j.hrthm.2011.07.017.

    Article  Google Scholar 

  35. Shores J, Berger KR, Murphy EAPR. Progression of aortic dilatation and the benefit of long-term beta-adrenergic blockade in Marfan’s syndrome. N Engl J Med. 1994;330(19):1335–41. https://doi.org/10.1056/NEJM199405123301902.

    Article  CAS  PubMed  Google Scholar 

  36. Habashi JP, Judge DP, Holm TM, et al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science (80- ). 2006;312(5770):117–21. https://doi.org/10.1126/science.1124287.

    Article  CAS  Google Scholar 

  37. Lacro RV, Dietz HC, Wruck LM, Bradley TJ, Colan SD, Devereux RB, et al. Rationale and design of a randomized clinical trial of β-blocker therapy (atenolol) versus angiotensin II receptor blocker therapy (losartan) in individuals with Marfan syndrome. Am Heart J. 2007;154(4):624–31. https://doi.org/10.1016/j.ahj.2007.06.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lacro RV, Dietz HC, Sleeper LA, Yetman AT, Bradley TJ, Colan SD, et al. Atenolol versus losartan in children and young adults with Marfan’s syndrome. N Engl J Med. 2014;371(22):2061–71. https://doi.org/10.1056/NEJMoa1404731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mullen M, Jin XY, Child A, Stuart AG, Dodd M, Aragon-Martin JA, et al. Irbesartan in Marfan syndrome (AIMS): a double-blind, placebo-controlled randomised trial. Lancet. 2019;394(10216):2263–70. https://doi.org/10.1016/S0140-6736(19)32518-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Groenink M, De Roos A, Mulder BIM. Changes in aortic distensibility and pulse wave velocity assessed with magnetic resonance imaging following beta-blocker therapy in the marfan syndrome. Radiology. 1999;210(1):293.

    Google Scholar 

  41. Jondeau G, Ropers J, Regalado E, Braverman A, Evangelista A, Teixedo G, et al. International registry of patients carrying TGFBR1 or TGFBR2 mutations: results of the MAC (Montalcino aortic consortium). Circ Cardiovasc Genet. 2016;9(6):548–58. https://doi.org/10.1161/CIRCGENETICS.116.001485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Loeys BL, Chen J, Neptune ER, Judge DP, Podowski M, Holm T, et al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet. 2005;37(3):275–81. https://doi.org/10.1038/ng1511.

    Article  CAS  PubMed  Google Scholar 

  43. Morris SA, Orbach DB, Geva T, Singh MN, Gauvreau K, Lacro RV. Increased vertebral artery tortuosity index is associated with adverse outcomes in children and young adults with connective tissue disorders. Circulation. 2011;124(4):388–96. https://doi.org/10.1161/CIRCULATIONAHA.110.990549.

    Article  PubMed  Google Scholar 

  44. Murray ML, Pepin M, Peterson S, Byers PH. Pregnancy-related deaths and complications in women with vascular Ehlers-Danlos syndrome. Genet Med. 2014;16(12):874–80. https://doi.org/10.1038/gim.2014.53.

    Article  PubMed  Google Scholar 

  45. Roman MJ, Pugh NL, Hendershot TP, Devereux RB, Dietz H, Holmes K, et al. Aortic complications associated with pregnancy in Marfan syndrome: the NHLBI National Registry of genetically triggered thoracic aortic aneurysms and cardiovascular conditions (GenTAC). J Am Heart Assoc. 2016;5(8):1–7. https://doi.org/10.1161/JAHA.116.004052.

    Article  Google Scholar 

  46. Kuperstein R, Cahan T, Yoeli-Ullman R, Ben Zekry S, Shinfeld A, Simchen MJ. Risk of aortic dissection in pregnant patients with the Marfan syndrome. Am J Cardiol. 2017;119(1):132–7. https://doi.org/10.1016/j.amjcard.2016.09.024.

    Article  PubMed  Google Scholar 

  47. Donnelly RT, Pinto NM, Kocolas I, Yetman AT. The immediate and long-term impact of pregnancy on aortic growth rate and mortality in women with Marfan syndrome. J Am Coll Cardiol. 2012;60(3):224–9. https://doi.org/10.1016/j.jacc.2012.03.051.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Lindsay.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Cardiovascular Genomics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harris, S.L., Lindsay, M.E. Role of Clinical Genetic Testing in the Management of Aortopathies. Curr Cardiol Rep 23, 10 (2021). https://doi.org/10.1007/s11886-020-01435-6

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11886-020-01435-6

Keywords

Navigation