Skip to main content

Advertisement

Log in

Gene therapy for atherosclerosis and atherosclerosis-related diseases

  • Published:
Current Atherosclerosis Reports Aims and scope Submit manuscript

Abstract

Gene therapy for atherosclerosis-related disorders of lipoprotein metabolism is primarily directed to liver and aims at long-lasting correction of familial hypercholesterolemia, lipoprotein / hepatic lipase deficiency, and Apolipoprotein A, B, or E -related diseases. Treatment of complications of atherosclerosis (eg, restenosis, ischemia) requires local gene transfer to arterial wall or ischemic muscle with transient gene expression. Catheter-mediated approach or direct injections have been used in clinical trials for the treatment of restenosis and for the induction of angiogenesis in ischaemic limb and myocardium. Other possible applications of local gene transfer include antithrombotic treatment and stabilization of vulnerable plaques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Ferry N, Heard JM: Liver-directed gene transfer vectors. Hum Gene Ther 1998, 9: 1975–1981.

    PubMed  CAS  Google Scholar 

  2. Nabel EG: Gene therapy for cardiovascular disease. Circulation 1995, 91: 541–548.

    PubMed  CAS  Google Scholar 

  3. Ylä-Herttuala S: Vascular gene transfer. Curr Opin Lipidol 1997, 8: 72–76.

    Article  PubMed  Google Scholar 

  4. Goldstein JL, Brown MS: Familial Hypercholesterolemia. In Metabolic Basis of Inherited Disease. Edited by Scriver CR, Beaudet AL, Sly WS, Valle D: New York: McGraw Hill; 1989: 1215–1250.

    Google Scholar 

  5. Grossman M, Rader DJ, Muller D, et al.: A pilot study of ex vivo gene therapy for homozygous familial hypercholesterolemia. Gene Ther 1995, 2: 587–587.

    Google Scholar 

  6. Pakkanen TM, Laitinen M, Hippeläinen M, et al.: Enhanced plasma cholesterol lowering effect of retrovirus- mediated LDL receptor gene transfer to WHHL rabbit liver after improved surgical technique and stimulation of hepatocyte proliferation by combined partial liver resection and thymidine kinase ganciclovir treatment. Gene Ther 1999, 6: 34–41.

    Article  PubMed  CAS  Google Scholar 

  7. Ishibashi S, Brown MS, Goldstein JL, et al.: Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Invest 1993, 92: 883–893.

    PubMed  CAS  Google Scholar 

  8. Kozarsky KF, Jooss K, Donahee M, et al.: Effective treatment of familial hypercholesterolaemia in the mouse model using adenovirus-mediated transfer of the VLDL receptor gene. Nat Genet 1996, 13: 54–62.

    Article  PubMed  CAS  Google Scholar 

  9. Gunsalus JR, Brady DA, Coulter SM, et al.: Reduction of serum cholesterol in watanabe rabbits by xenogeneic hepatocellular transplantation. Nature Med 1997, 3: 48–53.

    Article  PubMed  CAS  Google Scholar 

  10. Wetterau JR, Gregg RE, Harrity TW, et al.: An MTP inhibitor that normalizes atherogenic lipoprotein levels in WHHL rabbits. Science 1998, 282: 751–754.

    Article  PubMed  CAS  Google Scholar 

  11. Ashbourne Excoffon KJ, Liu G, Miao L, et al.: Correction of hypertriglyceridemia and impaired fat tolerance in lipoprotein lipase-deficient mice by adenovirus-mediated expression of human lipoprotein lipase. Arterioscler Thromb Vasc Biol 1997, 17: 2532–2539.

    Google Scholar 

  12. Zsigmond E, Kobayashi K, Tzung KW, et al.: Adenovirus-mediated gene transfer of human lipoprotein lipase ameliorates the hyperlipidemias associated with apolipoprotein E and LDL receptor deficiencies in mice. Hum Gene Ther 1997, 8: 1921–1933.

    PubMed  CAS  Google Scholar 

  13. Applebaum-Bowden D, Kobayashi J, Kashyap VS, et al.: Hepatic lipase gene therapy in hepatic lipase-deficient mice. Adenovirus-mediated replacement of a lipolytic enzyme to the vascular endothelium. J Clin Invest 1996, 97: 799–805.

    PubMed  CAS  Google Scholar 

  14. Dugi KA, Vaisman BL, Sakai N, et al.: Adenovirus-mediated expression of hepatic lipase in LCAT transgenic mice. J Lipid Res 1997, 38: 1822–1832.

    PubMed  CAS  Google Scholar 

  15. Greeve J, Jona VK, Chowdhury NR, et al.: Hepatic gene transfer of the catalytic subunit of the apolipoprotein b mrna editing enzyme results in a reduction of plasma ldl levels in normal and watanabe heritable hyperlipidemic rabbits. J Lipid Res 1996, 37: 2001–2017.

    PubMed  CAS  Google Scholar 

  16. Kozarsky KF, Bonen DK, Giannoni F, et al.: Hepatic expression of the catalytic subunit of the apolipoprotein B mRNA editing enzyme (apobec-1) ameliorates hypercholesterolemia in LDL receptor-deficient rabbits. Hum Gene Ther 1996, 7: 943–957.

    PubMed  CAS  Google Scholar 

  17. Kopfler WP, Willard M, Betz T, et al.: Adenovirus-mediated transfer of a gene encoding human apolipoprotein A-I into normal mice increases circulating high- density lipoprotein cholesterol. Circulation 1994, 90: 1319–1327.

    PubMed  CAS  Google Scholar 

  18. De Geest B, Zhao Z, Collen D, Holvoet P: Effects of adenovirus-mediated human apo A-I gene transfer on neointima formation after endothelial denudation in apo E-deficient mice. Circulation 1997, 96: 4349–4356.

    PubMed  Google Scholar 

  19. Tsukamoto K, Hiester KG, Smith P, et al.: Comparison of human apoA-I expression in mouse models of atherosclerosis after gene transfer using a second generation adenovirus. J Lipid Res 1997, 38: 1869–1876.

    PubMed  CAS  Google Scholar 

  20. Benoit P, Emmanuel F, Caillaud JM, et al.: Somatic gene transfer of human ApoA-I inhibits atherosclerosis progression in mouse models. Circulation 1999, 99: 105–110.

    PubMed  CAS  Google Scholar 

  21. Shah PK, Nilsson J, Kaul S, et al.: Effects of recombinant apolipoprotein A-I(Milano) on aortic atherosclerosis in apolipoprotein E-deficient mice. Circulation 1998, 97: 780–785.

    PubMed  CAS  Google Scholar 

  22. Franceschini G, Calabresi L, Tosi C, et al.: Apolipoprotein AI Milano. Disulfide-linked dimers increase high density lipoprotein stability and hinder particle interconversion in carrier plasma. J Biol Chem 1990, 265: 12224–12231.

    PubMed  CAS  Google Scholar 

  23. Lawn RM, Wade DP, Hammer RE, et al.: Atherogenesis in transgenic mice expressing human apolipoprotein(a). Nature 1992, 360: 670–672.

    Article  PubMed  CAS  Google Scholar 

  24. Morishita R, Yamada S, Yamamoto K, et al.: Novel therapeutic strategy for atherosclerosis: ribozyme oligonucleotides against apolipoprotein(a) selectively inhibit apolipoprotein(a) but not plasminogen gene expression. Circulation 1998, 98: 1898–1904.

    PubMed  CAS  Google Scholar 

  25. Brousseau ME, Santamarina-Fojo S, Vaisman BL, et al.: Over-expression of human lecithin:cholesterol acyltransferase in cholesterol-fed rabbits: LDL metabolism and HDL metabolism are affected in a gene dose-dependent manner. J Lipid Res 1997, 38: 2537–2547.

    PubMed  CAS  Google Scholar 

  26. Brousseau ME, Wang J, Demosky SJJ, et al.: Correction of hypoalphalipoproteinemia in LDL receptor-deficient rabbits by lecithin:cholesterol acyltransferase. J Lipid Res 1998, 39: 1558–1567.

    PubMed  CAS  Google Scholar 

  27. Seguret-Mace S, Latta-Mahieu M, Castro G, et al.: Potential gene therapy for lecithin-cholesterol acyltransferase (LCAT)-deficient and hypoalphalipoproteinemic patients with adenovirus- mediated transfer of human LCAT gene. Circulation 1996, 94: 2177–2184.

    PubMed  CAS  Google Scholar 

  28. Fan L, Drew J, Dunckley MG, et al.: Efficient coexpression and secretion of anti-atherogenic human apolipoprotein AI and lecithin-cholesterol acyltransferase by cultured muscle cells using adeno-associated virus plasmid vectors. Gene Ther 1998, 5: 1434–1440.

    Article  PubMed  CAS  Google Scholar 

  29. Ehnholm S, van Dijk KW, van TH, et al.: Adenovirus mediated overexpression of human phospholipid transfer protein alters plasma HDL levels in mice. J Lipid Res 1998, 39: 1248–1253.

    PubMed  CAS  Google Scholar 

  30. Kodama T, Freeman M, Rohrer L, et al.: Type I macrophage scavenger receptor contains alpha-helical and collagen-like coiled coils. Nature 1990, 343: 531–535.

    Article  PubMed  CAS  Google Scholar 

  31. Laukkanen J, Lehtolainen P, Gough PJ, et al.: Secreted macrophage scavenger receptor competes for modified low density lipoprotein degradation and prevents foam cell formation in macrophages. [Abstract] Circulation 1998;98:(17) I108-I108.

    Google Scholar 

  32. Rigotti A, Trigatti BL, Penman M, et al.: A targeted mutation in the murine gene encoding the high density lipoprotein (HDL) receptor scavenger receptor class B type I reveals its key role in HDL metabolism. Proc Natl Acad Sci U S A 1997, 94: 12610–12615.

    Article  PubMed  CAS  Google Scholar 

  33. Arai T, Wang N, Bezouevski M, et al.: Decreased atherosclerosis in heterozygous low density lipoprotein receptor-deficient mice expressing the scavenger receptor BI transgene. J Biol Chem 1999, 274: 2366–2371.

    Article  PubMed  CAS  Google Scholar 

  34. Kozarsky KF, Donahee MH, Rigotti A, et al.: Overexpression of the HDL receptor SR-BI alters plasma HDL and bile cholesterol levels. Nature 1997, 387: 414–417.

    Article  PubMed  CAS  Google Scholar 

  35. Ylä-Herttuala S, Palinski W, Rosenfeld ME, et al.: Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin Invest 1989, 84: 1086–1095.

    PubMed  Google Scholar 

  36. Fang X, Weintraub NL, Rios CD, et al.: Overexpression of human superoxide dismutase inhibits oxidation of low-density lipoprotein by endothelial cells. Circ Res 1998, 82: 1289–1297.

    PubMed  CAS  Google Scholar 

  37. Miwa K, Igawa A, Inoue H: Soluble E-selectin, ICAM-1 and VCAM-1 levels in systemic and coronary circulation in patients with variant angina. Cardiovasc Res 1997, 36: 37–44.

    Article  PubMed  CAS  Google Scholar 

  38. Plump AS, Smith JD, Hayek T, et al.: Severe hypercholesterolemia and atherosclerosis in apolipoprotein E- deficient mice created by homologous recombination in ES cells. Cell 1992, 71: 343–353.

    Article  PubMed  CAS  Google Scholar 

  39. Kashyap VS, Santamarina-Fojo S, Brown DR, et al.: Apolipoprotein E deficiency in mice: gene replacement and prevention of atherosclerosis using adenovirus vectors. J Clin Invest 1995, 96: 1612–1620.

    PubMed  CAS  Google Scholar 

  40. Tsukamoto K, Smith P, Glick JM, Rader DJ: Liver-directed gene transfer and prolonged expression of three major human ApoE isoforms in ApoE-deficient mice. J Clin Invest 1997, 100: 107–114.

    PubMed  CAS  Google Scholar 

  41. Libby P: Molecular bases of the acute coronary syndromes. Circulation 1995, 91: 2844–2850.

    PubMed  CAS  Google Scholar 

  42. Shi Y, Hutchinson HG, Hall DJ, Zalewski A: Downregulation of c-myc expression by antisense oligonucleotides inhibits proliferation of human smooth muscle cells. Circulation 1993, 88: 1190–1195.

    PubMed  CAS  Google Scholar 

  43. Bai H, Morishita R, Kida I, et al.: Inhibition of intimal hyperplasia after vein grafting by in vivo transfer of human senescent cell-derived inhibitor-1 gene. Gene Ther 1998, 5: 761–769.

    Article  PubMed  CAS  Google Scholar 

  44. Chang MW, Barr E, Seltzer J, et al.: Cytostatic gene therapy for vascular proliferative disorders with a constitutively active form of the retinoblastoma gene product. Science 1995, 267: 518–522.

    Article  PubMed  CAS  Google Scholar 

  45. Ueno H, Yamamoto H, Ito S, et al.: Adenovirus-mediated transfer of a dominant-negative H-ras suppresses neointimal formation in balloon-injured arteries in vivo. Arterioscler Thromb Vasc Biol 1997, 17: 898–904.

    PubMed  CAS  Google Scholar 

  46. Chang MW, Barr E, Lu MM, et al.: Adenovirus-mediated over-expression of the cyclin/cyclin- dependent kinase inhibitor, p21 inhibits vascular smooth muscle cell proliferation and neointima formation in the rat carotid artery model of balloon angioplasty. J Clin Invest 1995, 96: 2260–2268.

    PubMed  CAS  Google Scholar 

  47. Smith RC, Branellec D, Gorski DH, et al.: p21 CIP1-mediated inhibition of cell proliferation by overexpression of the gax homeodomain gene. Genes Dev 1997, 11: 1674–1689.

    Article  PubMed  CAS  Google Scholar 

  48. Iaccarino G, Smithwick LA, Lefkowitz RJ, Koch WJ: Targeting Gbeta gamma signaling in arterial vascular smooth muscle proliferation: a novel strategy to limit restenosis. Proc Natl Acad Sci U S A 1999, 96: 3945–3950.

    Article  PubMed  CAS  Google Scholar 

  49. Nikol S, Huehns TY, Krausz E, et al.: Needle injection catheter delivery of the gene for an antibacterial agent inhibits neointimal formation. Gene Ther 1999, 6: 737–748.

    Article  PubMed  CAS  Google Scholar 

  50. Steg PG, Tahlil O, Aubailly N, et al.: Reduction of restenosis after angioplasty in an atheromatous rabbit model by suicide gene therapy. Circulation 1997, 96: 408–411.

    PubMed  CAS  Google Scholar 

  51. Harrell RL, Rajanayagam S, Doanes AM, et al.: Inhibition of vascular smooth muscle cell proliferation and neointimal accumulation by adenovirus-mediated gene transfer of cytosine deaminase. Circulation 1997, 96: 621–627.

    PubMed  CAS  Google Scholar 

  52. Baker AH, Zaltsman AB, George SJ, Newby AC: Divergent effects of tissue inhibitor of metalloproteinase-1, -2, or -3 overexpression on rat vascular smooth muscle cell invasion, proliferation, and death in vitro. TIMP-3 promotes apoptosis. J Clin Invest 1998, 101: 1478–1487.

    PubMed  CAS  Google Scholar 

  53. Pollman MJ, Hall JL, Mann MJ, et al.: Inhibition of neointimal cell bcl-x expression induces apoptosis and regression of vascular disease. Nat Med 1998, 4: 222–227.

    Article  PubMed  CAS  Google Scholar 

  54. von der Leyen HE, Gibbons GH, Morishita R, et al.: Gene therapy inhibiting neointimal vascular lesion: in vivo transfer of endothelial cell nitric oxide synthase gene. Proc Natl Acad Sci U S A 1995, 92: 1137–1141.

    Article  PubMed  Google Scholar 

  55. Varenne O, Pislaru S, Gillijns H, et al.: Local adenovirus-mediated transfer of human endothelial nitric oxide synthase reduces luminal narrowing after coronary angioplasty in pigs. Circulation 1998, 98: 919–926.

    PubMed  CAS  Google Scholar 

  56. George SJ, Johnson JL, Angelini GD, et al.: Adenovirus-mediated gene transfer of the human TIMP-1 gene inhibits smooth muscle cell migration and neointimal formation in human saphenous vein. Hum Gene Ther 1998, 9: 867–877.

    PubMed  CAS  Google Scholar 

  57. George SJ, Baker AH, Angelini GD, Newby AC: Gene transfer of tissue inhibitor of metalloproteinase-2 inhibits metalloproteinase activity and neointima formation in human saphenous veins. Gene Ther 1998, 5: 1552–1560.

    Article  PubMed  CAS  Google Scholar 

  58. Asahara T, Bauters C, Pastore C, et al.: Local delivery of vascular endothelial growth factor accelerates reendothelialization and attenuates intimal hyperplasia in balloon- injured rat carotid artery. Circulation 1995, 91: 2793–2801.

    PubMed  CAS  Google Scholar 

  59. Laitinen M, Zachary I, Breier G, et al.: Vegf gene transfer reduces intimal thickening via increased production of nitric oxide in carotid arteries. Hum Gene Ther 1997, 8: 1737–1744.

    PubMed  CAS  Google Scholar 

  60. Van Belle E, Tio FO, Couffinhal T, et al.: Stent endothelialization: time course, impact of local catheter delivery, feasibility of recombinant protein administration, and response to cytokine expedition. Circulation 1997, 95: 438–448.

    PubMed  Google Scholar 

  61. Mehta D, Izzat MB, Bryan AJ, Angelini GD: Towards the prevention of vein graft failure. Int J Cardiol 1997, 62 Suppl 1: S55-S63.

    Article  PubMed  Google Scholar 

  62. Mann MJ, Gibbons GH, Kernoff RS, et al.: Genetic engineering of vein grafts resistant to atherosclerosis. Proc Natl Acad Sci U S A 1995, 92: 4502–4506.

    Article  PubMed  CAS  Google Scholar 

  63. Mann MJ, Gibbons GH, Tsao PS, et al.: Cell cycle inhibition preserves endothelial function in genetically engineered rabbit vein grafts. J Clin Invest 1997, 99: 1295–1301.

    PubMed  CAS  Google Scholar 

  64. Ferrara N, Bunting S: Vascular endothelial growth factor, a specific regulator of angiogenesis. Curr Opin Nephrol Hypertens 1996, 5: 35–44.

    Article  PubMed  CAS  Google Scholar 

  65. Takeshita S, Weir L, Chen D, et al.: Therapeutic angiogenesis following arterial gene transfer of vascular endothelial growth factor in a rabbit model of hindlimb ischemia. BIOCHEM BIOPHYS RES COMMUN 1996, 227: 628–635.

    Article  PubMed  CAS  Google Scholar 

  66. Tsurumi Y, Kearney M, Chen DF, et al.: Treatment of acute limb ischemia by intramuscular injection of vascular endothelial growth factor gene. Circulation 1997, 96: 382–388.

    CAS  Google Scholar 

  67. Baumgartner I, Pieczek A, Manor O, et al.: Constitutive expression of phVEGF165 after intramuscular gene transfer promotes collateral vessel development in patients with critical limb ischemia. Circulation 1998, 97: 1114–1123.

    PubMed  CAS  Google Scholar 

  68. Isner JM, Baumgartner I, Rauh G, et al.: Treatment of thromboangiitis obliterans (Buerger’s disease) by intramuscular gene transfer of vascular endothelial growth factor: preliminary clinical results. J Vasc Surg 1998, 28: 964–973.

    Article  PubMed  CAS  Google Scholar 

  69. Fabre JE, Rivard A, Magner M, et al.: Tissue inhibition of angiotensin-converting enzyme activity stimulates angiogenesis In vivo. Circulation 1999, 99: 3043–3049.

    PubMed  CAS  Google Scholar 

  70. Losordo DW, Vale PR, Symes JF, et al.: Gene therapy for myocardial angiogenesis — Initial clinical results with direct myocardial injection of phVEGF(165) as sole therapy for myocardial ischemia. Circulation 1998, 98: 2800–2804.

    PubMed  CAS  Google Scholar 

  71. Ueno H, Li JJ, Masuda S, et al.: Adenovirus-mediated expression of the secreted form of basic fibroblast growth factor (FGF-2) induces cellular proliferation and angiogenesis in vivo. Arterioscler Thromb Vasc Biol 1997, 17: 2453–2460.

    PubMed  CAS  Google Scholar 

  72. Giordano FJ, Ping P, McKirnan MD, et al.: Intracoronary gene transfer of fibroblast growth factor-5 increases blood flow and contractile function in an ischemic region of the heart. Nat Med 1996, 2: 534–539.

    Article  PubMed  CAS  Google Scholar 

  73. Rade JJ, Schulick AH, Virmani R, Dichek DA: Local adenoviral-mediated expression of recombinant hirudin reduces neointima formation after arterial injury. Nat Med 1996, 2: 293–298.

    Article  PubMed  CAS  Google Scholar 

  74. Waugh JM, Yuksel E, Li J, et al.: Local overexpression of thrombomodulin for in vivo prevention of arterial thrombosis in a rabbit model. Circ Res 1999, 84: 84–92.

    PubMed  CAS  Google Scholar 

  75. Yao SK, Akhtar S, Scott-Burden T, et al.: Endogenous and exogenous nitric oxide protect against intracoronary thrombosis and reocclusion after thrombolysis. Circulation 1995, 92: 1005–1010.

    PubMed  CAS  Google Scholar 

  76. Zoldhelyi P, McNatt J, Xu XM, et al.: Prevention of arterial thrombosis by adenovirus-mediated transfer of cyclooxygenase gene. Circulation 1996, 93: 10–17.

    PubMed  CAS  Google Scholar 

  77. Carmeliet P, Stassen JM, Van Vlaenderen I, et al.: Adenovirus-mediated transfer of tissue-type plasminogen activator augments thrombolysis in tissue-type plasminogen activator-deficient and plasminogen activator inhibitor-1-overexpressing mice. Blood 1997, 90: 1527–1534.

    PubMed  CAS  Google Scholar 

  78. Waugh JM, Kattash M, Li J, et al.: Gene therapy to promote thromboresistance: local overexpression of tissue plasminogen activator to prevent arterial thrombosis in an in vivo rabbit model. Proc Natl Acad Sci U S A 1999, 96: 1065–1070.

    Article  PubMed  CAS  Google Scholar 

  79. Moreno PR, Falk E, Palacios IF, et al.: Macrophage infiltration in acute coronary syndromes. Implications for plaque rupture. Circulation 1994, 90: 775–778.

    PubMed  CAS  Google Scholar 

  80. Shears LL, Kibbe MR, Murdock AD, et al.: Efficient inhibition of intimal hyperplasia by adenovirus-mediated inducible nitric oxide synthase gene transfer to rats and pigs in vivo. J Am Coll Surg 1998, 187: 295–306.

    Article  PubMed  Google Scholar 

  81. Qian H, Neplioueva V, Shetty GA, et al.: Nitric oxide synthase gene therapy rapidly reduces adhesion molecule expression and inflammatory cell infiltration in carotid arteries of cholesterol-Fed rabbits. Circulation 1999, 99: 2979–2982.

    PubMed  CAS  Google Scholar 

  82. Laitinen M, Mäkinen K, Manninen H, et al.: Adenovirus-mediated gene transfer to lower limb artery of patients with chronic critical leg ischemia. Hum Gene Ther 1998, 9: 1481–1486.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pakkanen, T., Ylä-Herttuala, S. Gene therapy for atherosclerosis and atherosclerosis-related diseases. Curr Atheroscler Rep 1, 123–130 (1999). https://doi.org/10.1007/s11883-999-0008-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11883-999-0008-8

Keywords

Navigation